Small improvements to the recipes and examples. (GH-19635)

* Add underscores to long numbers to improve readability
* Use bigger dataset in the bootstrapping example
* Convert single-server queue example to more useful multi-server queue
This commit is contained in:
Raymond Hettinger 2020-04-21 16:11:00 -07:00 committed by GitHub
parent 9c82ea7868
commit d3a8d616fa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 24 additions and 28 deletions

View File

@ -425,29 +425,28 @@ Simulations::
>>> def trial():
... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
...
>>> sum(trial() for i in range(10000)) / 10000
>>> sum(trial() for i in range(10_000)) / 10_000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
... return 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10000)) / 10000
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958
Example of `statistical bootstrapping
<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling
with replacement to estimate a confidence interval for the mean of a sample of
size five::
with replacement to estimate a confidence interval for the mean of a sample::
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import fmean as mean
from random import choices
data = 1, 2, 4, 4, 10
means = sorted(mean(choices(data, k=5)) for i in range(20))
data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
f'interval from {means[1]:.1f} to {means[-2]:.1f}')
f'interval from {means[5]:.1f} to {means[94]:.1f}')
Example of a `resampling permutation test
<https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests>`_
@ -463,7 +462,7 @@ between the effects of a drug versus a placebo::
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)
n = 10000
n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
@ -476,32 +475,29 @@ between the effects of a drug versus a placebo::
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')
Simulation of arrival times and service deliveries in a single server queue::
Simulation of arrival times and service deliveries for a multiserver queue::
from heapq import heappush, heappop
from random import expovariate, gauss
from statistics import mean, median, stdev
average_arrival_interval = 5.6
average_service_time = 5.0
stdev_service_time = 0.5
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3
num_waiting = 0
arrivals = []
starts = []
arrival = service_end = 0.0
for i in range(20000):
if arrival <= service_end:
num_waiting += 1
arrival += expovariate(1.0 / average_arrival_interval)
arrivals.append(arrival)
else:
num_waiting -= 1
service_start = service_end if num_waiting else arrival
service_time = gauss(average_service_time, stdev_service_time)
service_end = service_start + service_time
starts.append(service_start)
waits = []
arrival_time = 0.0
servers = [0.0] * num_servers # time when each server becomes available
for i in range(100_000):
arrival_time += expovariate(1.0 / average_arrival_interval)
next_server_available = heappop(servers)
wait = max(0.0, next_server_available - arrival_time)
waits.append(wait)
service_duration = gauss(average_service_time, stdev_service_time)
service_completed = arrival_time + wait + service_duration
heappush(servers, service_completed)
waits = [start - arrival for arrival, start in zip(arrivals, starts)]
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')