mirror of https://github.com/python/cpython
gh-119613: Use C99+ functions instead of Py_IS_NAN/INFINITY/FINITE (#119619)
This commit is contained in:
parent
86d1a1aa88
commit
cd11ff12ac
|
@ -2425,12 +2425,12 @@ PyDecType_FromFloatExact(PyTypeObject *type, PyObject *v,
|
|||
}
|
||||
sign = (copysign(1.0, x) == 1.0) ? 0 : 1;
|
||||
|
||||
if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
|
||||
if (isnan(x) || isinf(x)) {
|
||||
dec = PyDecType_New(type);
|
||||
if (dec == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (Py_IS_NAN(x)) {
|
||||
if (isnan(x)) {
|
||||
/* decimal.py calls repr(float(+-nan)),
|
||||
* which always gives a positive result. */
|
||||
mpd_setspecial(MPD(dec), MPD_POS, MPD_NAN);
|
||||
|
|
|
@ -1326,7 +1326,7 @@ encoder_encode_float(PyEncoderObject *s, PyObject *obj)
|
|||
{
|
||||
/* Return the JSON representation of a PyFloat. */
|
||||
double i = PyFloat_AS_DOUBLE(obj);
|
||||
if (!Py_IS_FINITE(i)) {
|
||||
if (!isfinite(i)) {
|
||||
if (!s->allow_nan) {
|
||||
PyErr_Format(
|
||||
PyExc_ValueError,
|
||||
|
|
|
@ -117,7 +117,7 @@ enum special_types {
|
|||
static enum special_types
|
||||
special_type(double d)
|
||||
{
|
||||
if (Py_IS_FINITE(d)) {
|
||||
if (isfinite(d)) {
|
||||
if (d != 0) {
|
||||
if (copysign(1., d) == 1.)
|
||||
return ST_POS;
|
||||
|
@ -131,7 +131,7 @@ special_type(double d)
|
|||
return ST_NZERO;
|
||||
}
|
||||
}
|
||||
if (Py_IS_NAN(d))
|
||||
if (isnan(d))
|
||||
return ST_NAN;
|
||||
if (copysign(1., d) == 1.)
|
||||
return ST_PINF;
|
||||
|
@ -139,11 +139,11 @@ special_type(double d)
|
|||
return ST_NINF;
|
||||
}
|
||||
|
||||
#define SPECIAL_VALUE(z, table) \
|
||||
if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
|
||||
errno = 0; \
|
||||
return table[special_type((z).real)] \
|
||||
[special_type((z).imag)]; \
|
||||
#define SPECIAL_VALUE(z, table) \
|
||||
if (!isfinite((z).real) || !isfinite((z).imag)) { \
|
||||
errno = 0; \
|
||||
return table[special_type((z).real)] \
|
||||
[special_type((z).imag)]; \
|
||||
}
|
||||
|
||||
#define P Py_MATH_PI
|
||||
|
@ -329,10 +329,10 @@ cmath_atan_impl(PyObject *module, Py_complex z)
|
|||
static double
|
||||
c_atan2(Py_complex z)
|
||||
{
|
||||
if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
|
||||
if (isnan(z.real) || isnan(z.imag))
|
||||
return Py_NAN;
|
||||
if (Py_IS_INFINITY(z.imag)) {
|
||||
if (Py_IS_INFINITY(z.real)) {
|
||||
if (isinf(z.imag)) {
|
||||
if (isinf(z.real)) {
|
||||
if (copysign(1., z.real) == 1.)
|
||||
/* atan2(+-inf, +inf) == +-pi/4 */
|
||||
return copysign(0.25*Py_MATH_PI, z.imag);
|
||||
|
@ -343,7 +343,7 @@ c_atan2(Py_complex z)
|
|||
/* atan2(+-inf, x) == +-pi/2 for finite x */
|
||||
return copysign(0.5*Py_MATH_PI, z.imag);
|
||||
}
|
||||
if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
|
||||
if (isinf(z.real) || z.imag == 0.) {
|
||||
if (copysign(1., z.real) == 1.)
|
||||
/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
||||
return copysign(0., z.imag);
|
||||
|
@ -448,8 +448,8 @@ cmath_cosh_impl(PyObject *module, Py_complex z)
|
|||
double x_minus_one;
|
||||
|
||||
/* special treatment for cosh(+/-inf + iy) if y is not a NaN */
|
||||
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
||||
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
|
||||
if (!isfinite(z.real) || !isfinite(z.imag)) {
|
||||
if (isinf(z.real) && isfinite(z.imag) &&
|
||||
(z.imag != 0.)) {
|
||||
if (z.real > 0) {
|
||||
r.real = copysign(INF, cos(z.imag));
|
||||
|
@ -466,7 +466,7 @@ cmath_cosh_impl(PyObject *module, Py_complex z)
|
|||
}
|
||||
/* need to set errno = EDOM if y is +/- infinity and x is not
|
||||
a NaN */
|
||||
if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
||||
if (isinf(z.imag) && !isnan(z.real))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -484,7 +484,7 @@ cmath_cosh_impl(PyObject *module, Py_complex z)
|
|||
r.imag = sin(z.imag) * sinh(z.real);
|
||||
}
|
||||
/* detect overflow, and set errno accordingly */
|
||||
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
||||
if (isinf(r.real) || isinf(r.imag))
|
||||
errno = ERANGE;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -509,8 +509,8 @@ cmath_exp_impl(PyObject *module, Py_complex z)
|
|||
Py_complex r;
|
||||
double l;
|
||||
|
||||
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
||||
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
||||
if (!isfinite(z.real) || !isfinite(z.imag)) {
|
||||
if (isinf(z.real) && isfinite(z.imag)
|
||||
&& (z.imag != 0.)) {
|
||||
if (z.real > 0) {
|
||||
r.real = copysign(INF, cos(z.imag));
|
||||
|
@ -527,9 +527,9 @@ cmath_exp_impl(PyObject *module, Py_complex z)
|
|||
}
|
||||
/* need to set errno = EDOM if y is +/- infinity and x is not
|
||||
a NaN and not -infinity */
|
||||
if (Py_IS_INFINITY(z.imag) &&
|
||||
(Py_IS_FINITE(z.real) ||
|
||||
(Py_IS_INFINITY(z.real) && z.real > 0)))
|
||||
if (isinf(z.imag) &&
|
||||
(isfinite(z.real) ||
|
||||
(isinf(z.real) && z.real > 0)))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -546,7 +546,7 @@ cmath_exp_impl(PyObject *module, Py_complex z)
|
|||
r.imag = l*sin(z.imag);
|
||||
}
|
||||
/* detect overflow, and set errno accordingly */
|
||||
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
||||
if (isinf(r.real) || isinf(r.imag))
|
||||
errno = ERANGE;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -686,8 +686,8 @@ cmath_sinh_impl(PyObject *module, Py_complex z)
|
|||
|
||||
/* special treatment for sinh(+/-inf + iy) if y is finite and
|
||||
nonzero */
|
||||
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
||||
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
||||
if (!isfinite(z.real) || !isfinite(z.imag)) {
|
||||
if (isinf(z.real) && isfinite(z.imag)
|
||||
&& (z.imag != 0.)) {
|
||||
if (z.real > 0) {
|
||||
r.real = copysign(INF, cos(z.imag));
|
||||
|
@ -704,7 +704,7 @@ cmath_sinh_impl(PyObject *module, Py_complex z)
|
|||
}
|
||||
/* need to set errno = EDOM if y is +/- infinity and x is not
|
||||
a NaN */
|
||||
if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
||||
if (isinf(z.imag) && !isnan(z.real))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -720,7 +720,7 @@ cmath_sinh_impl(PyObject *module, Py_complex z)
|
|||
r.imag = sin(z.imag) * cosh(z.real);
|
||||
}
|
||||
/* detect overflow, and set errno accordingly */
|
||||
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
||||
if (isinf(r.real) || isinf(r.imag))
|
||||
errno = ERANGE;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -856,8 +856,8 @@ cmath_tanh_impl(PyObject *module, Py_complex z)
|
|||
|
||||
/* special treatment for tanh(+/-inf + iy) if y is finite and
|
||||
nonzero */
|
||||
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
||||
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
||||
if (!isfinite(z.real) || !isfinite(z.imag)) {
|
||||
if (isinf(z.real) && isfinite(z.imag)
|
||||
&& (z.imag != 0.)) {
|
||||
if (z.real > 0) {
|
||||
r.real = 1.0;
|
||||
|
@ -876,7 +876,7 @@ cmath_tanh_impl(PyObject *module, Py_complex z)
|
|||
}
|
||||
/* need to set errno = EDOM if z.imag is +/-infinity and
|
||||
z.real is finite */
|
||||
if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
|
||||
if (isinf(z.imag) && isfinite(z.real))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -1030,11 +1030,11 @@ cmath_rect_impl(PyObject *module, double r, double phi)
|
|||
errno = 0;
|
||||
|
||||
/* deal with special values */
|
||||
if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
|
||||
if (!isfinite(r) || !isfinite(phi)) {
|
||||
/* if r is +/-infinity and phi is finite but nonzero then
|
||||
result is (+-INF +-INF i), but we need to compute cos(phi)
|
||||
and sin(phi) to figure out the signs. */
|
||||
if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
|
||||
if (isinf(r) && (isfinite(phi)
|
||||
&& (phi != 0.))) {
|
||||
if (r > 0) {
|
||||
z.real = copysign(INF, cos(phi));
|
||||
|
@ -1051,7 +1051,7 @@ cmath_rect_impl(PyObject *module, double r, double phi)
|
|||
}
|
||||
/* need to set errno = EDOM if r is a nonzero number and phi
|
||||
is infinite */
|
||||
if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
|
||||
if (r != 0. && !isnan(r) && isinf(phi))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -1085,7 +1085,7 @@ static PyObject *
|
|||
cmath_isfinite_impl(PyObject *module, Py_complex z)
|
||||
/*[clinic end generated code: output=ac76611e2c774a36 input=848e7ee701895815]*/
|
||||
{
|
||||
return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag));
|
||||
return PyBool_FromLong(isfinite(z.real) && isfinite(z.imag));
|
||||
}
|
||||
|
||||
/*[clinic input]
|
||||
|
@ -1098,7 +1098,7 @@ static PyObject *
|
|||
cmath_isnan_impl(PyObject *module, Py_complex z)
|
||||
/*[clinic end generated code: output=e7abf6e0b28beab7 input=71799f5d284c9baf]*/
|
||||
{
|
||||
return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
|
||||
return PyBool_FromLong(isnan(z.real) || isnan(z.imag));
|
||||
}
|
||||
|
||||
/*[clinic input]
|
||||
|
@ -1111,8 +1111,7 @@ static PyObject *
|
|||
cmath_isinf_impl(PyObject *module, Py_complex z)
|
||||
/*[clinic end generated code: output=502a75a79c773469 input=363df155c7181329]*/
|
||||
{
|
||||
return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
|
||||
Py_IS_INFINITY(z.imag));
|
||||
return PyBool_FromLong(isinf(z.real) || isinf(z.imag));
|
||||
}
|
||||
|
||||
/*[clinic input]
|
||||
|
@ -1167,8 +1166,7 @@ cmath_isclose_impl(PyObject *module, Py_complex a, Py_complex b,
|
|||
above.
|
||||
*/
|
||||
|
||||
if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) ||
|
||||
Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) {
|
||||
if (isinf(a.real) || isinf(a.imag) || isinf(b.real) || isinf(b.imag)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -237,7 +237,7 @@ m_sinpi(double x)
|
|||
double y, r;
|
||||
int n;
|
||||
/* this function should only ever be called for finite arguments */
|
||||
assert(Py_IS_FINITE(x));
|
||||
assert(isfinite(x));
|
||||
y = fmod(fabs(x), 2.0);
|
||||
n = (int)round(2.0*y);
|
||||
assert(0 <= n && n <= 4);
|
||||
|
@ -396,8 +396,8 @@ m_tgamma(double x)
|
|||
double absx, r, y, z, sqrtpow;
|
||||
|
||||
/* special cases */
|
||||
if (!Py_IS_FINITE(x)) {
|
||||
if (Py_IS_NAN(x) || x > 0.0)
|
||||
if (!isfinite(x)) {
|
||||
if (isnan(x) || x > 0.0)
|
||||
return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
|
||||
else {
|
||||
errno = EDOM;
|
||||
|
@ -424,7 +424,7 @@ m_tgamma(double x)
|
|||
/* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
|
||||
if (absx < 1e-20) {
|
||||
r = 1.0/x;
|
||||
if (Py_IS_INFINITY(r))
|
||||
if (isinf(r))
|
||||
errno = ERANGE;
|
||||
return r;
|
||||
}
|
||||
|
@ -481,7 +481,7 @@ m_tgamma(double x)
|
|||
r *= sqrtpow;
|
||||
}
|
||||
}
|
||||
if (Py_IS_INFINITY(r))
|
||||
if (isinf(r))
|
||||
errno = ERANGE;
|
||||
return r;
|
||||
}
|
||||
|
@ -498,8 +498,8 @@ m_lgamma(double x)
|
|||
double absx;
|
||||
|
||||
/* special cases */
|
||||
if (!Py_IS_FINITE(x)) {
|
||||
if (Py_IS_NAN(x))
|
||||
if (!isfinite(x)) {
|
||||
if (isnan(x))
|
||||
return x; /* lgamma(nan) = nan */
|
||||
else
|
||||
return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
|
||||
|
@ -530,7 +530,7 @@ m_lgamma(double x)
|
|||
if (x < 0.0)
|
||||
/* Use reflection formula to get value for negative x. */
|
||||
r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
|
||||
if (Py_IS_INFINITY(r))
|
||||
if (isinf(r))
|
||||
errno = ERANGE;
|
||||
return r;
|
||||
}
|
||||
|
@ -546,10 +546,10 @@ m_lgamma(double x)
|
|||
static double
|
||||
m_atan2(double y, double x)
|
||||
{
|
||||
if (Py_IS_NAN(x) || Py_IS_NAN(y))
|
||||
if (isnan(x) || isnan(y))
|
||||
return Py_NAN;
|
||||
if (Py_IS_INFINITY(y)) {
|
||||
if (Py_IS_INFINITY(x)) {
|
||||
if (isinf(y)) {
|
||||
if (isinf(x)) {
|
||||
if (copysign(1., x) == 1.)
|
||||
/* atan2(+-inf, +inf) == +-pi/4 */
|
||||
return copysign(0.25*Py_MATH_PI, y);
|
||||
|
@ -560,7 +560,7 @@ m_atan2(double y, double x)
|
|||
/* atan2(+-inf, x) == +-pi/2 for finite x */
|
||||
return copysign(0.5*Py_MATH_PI, y);
|
||||
}
|
||||
if (Py_IS_INFINITY(x) || y == 0.) {
|
||||
if (isinf(x) || y == 0.) {
|
||||
if (copysign(1., x) == 1.)
|
||||
/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
||||
return copysign(0., y);
|
||||
|
@ -580,7 +580,7 @@ static double
|
|||
m_remainder(double x, double y)
|
||||
{
|
||||
/* Deal with most common case first. */
|
||||
if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
|
||||
if (isfinite(x) && isfinite(y)) {
|
||||
double absx, absy, c, m, r;
|
||||
|
||||
if (y == 0.0) {
|
||||
|
@ -653,16 +653,16 @@ m_remainder(double x, double y)
|
|||
}
|
||||
|
||||
/* Special values. */
|
||||
if (Py_IS_NAN(x)) {
|
||||
if (isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
if (Py_IS_NAN(y)) {
|
||||
if (isnan(y)) {
|
||||
return y;
|
||||
}
|
||||
if (Py_IS_INFINITY(x)) {
|
||||
if (isinf(x)) {
|
||||
return Py_NAN;
|
||||
}
|
||||
assert(Py_IS_INFINITY(y));
|
||||
assert(isinf(y));
|
||||
return x;
|
||||
}
|
||||
|
||||
|
@ -677,7 +677,7 @@ m_remainder(double x, double y)
|
|||
static double
|
||||
m_log(double x)
|
||||
{
|
||||
if (Py_IS_FINITE(x)) {
|
||||
if (isfinite(x)) {
|
||||
if (x > 0.0)
|
||||
return log(x);
|
||||
errno = EDOM;
|
||||
|
@ -686,7 +686,7 @@ m_log(double x)
|
|||
else
|
||||
return Py_NAN; /* log(-ve) = nan */
|
||||
}
|
||||
else if (Py_IS_NAN(x))
|
||||
else if (isnan(x))
|
||||
return x; /* log(nan) = nan */
|
||||
else if (x > 0.0)
|
||||
return x; /* log(inf) = inf */
|
||||
|
@ -709,8 +709,8 @@ m_log(double x)
|
|||
static double
|
||||
m_log2(double x)
|
||||
{
|
||||
if (!Py_IS_FINITE(x)) {
|
||||
if (Py_IS_NAN(x))
|
||||
if (!isfinite(x)) {
|
||||
if (isnan(x))
|
||||
return x; /* log2(nan) = nan */
|
||||
else if (x > 0.0)
|
||||
return x; /* log2(+inf) = +inf */
|
||||
|
@ -736,7 +736,7 @@ m_log2(double x)
|
|||
static double
|
||||
m_log10(double x)
|
||||
{
|
||||
if (Py_IS_FINITE(x)) {
|
||||
if (isfinite(x)) {
|
||||
if (x > 0.0)
|
||||
return log10(x);
|
||||
errno = EDOM;
|
||||
|
@ -745,7 +745,7 @@ m_log10(double x)
|
|||
else
|
||||
return Py_NAN; /* log10(-ve) = nan */
|
||||
}
|
||||
else if (Py_IS_NAN(x))
|
||||
else if (isnan(x))
|
||||
return x; /* log10(nan) = nan */
|
||||
else if (x > 0.0)
|
||||
return x; /* log10(inf) = inf */
|
||||
|
@ -966,12 +966,12 @@ math_1(PyObject *arg, double (*func) (double), int can_overflow)
|
|||
return NULL;
|
||||
errno = 0;
|
||||
r = (*func)(x);
|
||||
if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
|
||||
if (isnan(r) && !isnan(x)) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"math domain error"); /* invalid arg */
|
||||
return NULL;
|
||||
}
|
||||
if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
|
||||
if (isinf(r) && isfinite(x)) {
|
||||
if (can_overflow)
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"math range error"); /* overflow */
|
||||
|
@ -980,7 +980,7 @@ math_1(PyObject *arg, double (*func) (double), int can_overflow)
|
|||
"math domain error"); /* singularity */
|
||||
return NULL;
|
||||
}
|
||||
if (Py_IS_FINITE(r) && errno && is_error(r))
|
||||
if (isfinite(r) && errno && is_error(r))
|
||||
/* this branch unnecessary on most platforms */
|
||||
return NULL;
|
||||
|
||||
|
@ -1049,14 +1049,14 @@ math_2(PyObject *const *args, Py_ssize_t nargs,
|
|||
}
|
||||
errno = 0;
|
||||
r = (*func)(x, y);
|
||||
if (Py_IS_NAN(r)) {
|
||||
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
||||
if (isnan(r)) {
|
||||
if (!isnan(x) && !isnan(y))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
}
|
||||
else if (Py_IS_INFINITY(r)) {
|
||||
if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
|
||||
else if (isinf(r)) {
|
||||
if (isfinite(x) && isfinite(y))
|
||||
errno = ERANGE;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -1403,17 +1403,17 @@ math_fsum(PyObject *module, PyObject *seq)
|
|||
|
||||
n = i; /* ps[i:] = [x] */
|
||||
if (x != 0.0) {
|
||||
if (! Py_IS_FINITE(x)) {
|
||||
if (! isfinite(x)) {
|
||||
/* a nonfinite x could arise either as
|
||||
a result of intermediate overflow, or
|
||||
as a result of a nan or inf in the
|
||||
summands */
|
||||
if (Py_IS_FINITE(xsave)) {
|
||||
if (isfinite(xsave)) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"intermediate overflow in fsum");
|
||||
goto _fsum_error;
|
||||
}
|
||||
if (Py_IS_INFINITY(xsave))
|
||||
if (isinf(xsave))
|
||||
inf_sum += xsave;
|
||||
special_sum += xsave;
|
||||
/* reset partials */
|
||||
|
@ -1427,7 +1427,7 @@ math_fsum(PyObject *module, PyObject *seq)
|
|||
}
|
||||
|
||||
if (special_sum != 0.0) {
|
||||
if (Py_IS_NAN(inf_sum))
|
||||
if (isnan(inf_sum))
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"-inf + inf in fsum");
|
||||
else
|
||||
|
@ -2108,7 +2108,7 @@ math_frexp_impl(PyObject *module, double x)
|
|||
int i;
|
||||
/* deal with special cases directly, to sidestep platform
|
||||
differences */
|
||||
if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
|
||||
if (isnan(x) || isinf(x) || !x) {
|
||||
i = 0;
|
||||
}
|
||||
else {
|
||||
|
@ -2153,7 +2153,7 @@ math_ldexp_impl(PyObject *module, double x, PyObject *i)
|
|||
return NULL;
|
||||
}
|
||||
|
||||
if (x == 0. || !Py_IS_FINITE(x)) {
|
||||
if (x == 0. || !isfinite(x)) {
|
||||
/* NaNs, zeros and infinities are returned unchanged */
|
||||
r = x;
|
||||
errno = 0;
|
||||
|
@ -2168,7 +2168,7 @@ math_ldexp_impl(PyObject *module, double x, PyObject *i)
|
|||
} else {
|
||||
errno = 0;
|
||||
r = ldexp(x, (int)exp);
|
||||
if (Py_IS_INFINITY(r))
|
||||
if (isinf(r))
|
||||
errno = ERANGE;
|
||||
}
|
||||
|
||||
|
@ -2196,9 +2196,9 @@ math_modf_impl(PyObject *module, double x)
|
|||
double y;
|
||||
/* some platforms don't do the right thing for NaNs and
|
||||
infinities, so we take care of special cases directly. */
|
||||
if (Py_IS_INFINITY(x))
|
||||
if (isinf(x))
|
||||
return Py_BuildValue("(dd)", copysign(0., x), x);
|
||||
else if (Py_IS_NAN(x))
|
||||
else if (isnan(x))
|
||||
return Py_BuildValue("(dd)", x, x);
|
||||
|
||||
errno = 0;
|
||||
|
@ -2341,19 +2341,19 @@ math_fma_impl(PyObject *module, double x, double y, double z)
|
|||
double r = fma(x, y, z);
|
||||
|
||||
/* Fast path: if we got a finite result, we're done. */
|
||||
if (Py_IS_FINITE(r)) {
|
||||
if (isfinite(r)) {
|
||||
return PyFloat_FromDouble(r);
|
||||
}
|
||||
|
||||
/* Non-finite result. Raise an exception if appropriate, else return r. */
|
||||
if (Py_IS_NAN(r)) {
|
||||
if (!Py_IS_NAN(x) && !Py_IS_NAN(y) && !Py_IS_NAN(z)) {
|
||||
if (isnan(r)) {
|
||||
if (!isnan(x) && !isnan(y) && !isnan(z)) {
|
||||
/* NaN result from non-NaN inputs. */
|
||||
PyErr_SetString(PyExc_ValueError, "invalid operation in fma");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
else if (Py_IS_FINITE(x) && Py_IS_FINITE(y) && Py_IS_FINITE(z)) {
|
||||
else if (isfinite(x) && isfinite(y) && isfinite(z)) {
|
||||
/* Infinite result from finite inputs. */
|
||||
PyErr_SetString(PyExc_OverflowError, "overflow in fma");
|
||||
return NULL;
|
||||
|
@ -2381,12 +2381,12 @@ math_fmod_impl(PyObject *module, double x, double y)
|
|||
{
|
||||
double r;
|
||||
/* fmod(x, +/-Inf) returns x for finite x. */
|
||||
if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
|
||||
if (isinf(y) && isfinite(x))
|
||||
return PyFloat_FromDouble(x);
|
||||
errno = 0;
|
||||
r = fmod(x, y);
|
||||
if (Py_IS_NAN(r)) {
|
||||
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
||||
if (isnan(r)) {
|
||||
if (!isnan(x) && !isnan(y))
|
||||
errno = EDOM;
|
||||
else
|
||||
errno = 0;
|
||||
|
@ -2508,7 +2508,7 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
|||
int max_e;
|
||||
Py_ssize_t i;
|
||||
|
||||
if (Py_IS_INFINITY(max)) {
|
||||
if (isinf(max)) {
|
||||
return max;
|
||||
}
|
||||
if (found_nan) {
|
||||
|
@ -2530,7 +2530,7 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
|||
assert(max * scale < 1.0);
|
||||
for (i=0 ; i < n ; i++) {
|
||||
x = vec[i];
|
||||
assert(Py_IS_FINITE(x) && fabs(x) <= max);
|
||||
assert(isfinite(x) && fabs(x) <= max);
|
||||
x *= scale; // lossless scaling
|
||||
assert(fabs(x) < 1.0);
|
||||
pr = dl_mul(x, x); // lossless squaring
|
||||
|
@ -2620,7 +2620,7 @@ math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
|
|||
ASSIGN_DOUBLE(qx, item, error_exit);
|
||||
x = fabs(px - qx);
|
||||
diffs[i] = x;
|
||||
found_nan |= Py_IS_NAN(x);
|
||||
found_nan |= isnan(x);
|
||||
if (x > max) {
|
||||
max = x;
|
||||
}
|
||||
|
@ -2673,7 +2673,7 @@ math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
|
|||
ASSIGN_DOUBLE(x, item, error_exit);
|
||||
x = fabs(x);
|
||||
coordinates[i] = x;
|
||||
found_nan |= Py_IS_NAN(x);
|
||||
found_nan |= isnan(x);
|
||||
if (x > max) {
|
||||
max = x;
|
||||
}
|
||||
|
@ -2976,14 +2976,14 @@ math_pow_impl(PyObject *module, double x, double y)
|
|||
/* deal directly with IEEE specials, to cope with problems on various
|
||||
platforms whose semantics don't exactly match C99 */
|
||||
r = 0.; /* silence compiler warning */
|
||||
if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
|
||||
if (!isfinite(x) || !isfinite(y)) {
|
||||
errno = 0;
|
||||
if (Py_IS_NAN(x))
|
||||
if (isnan(x))
|
||||
r = y == 0. ? 1. : x; /* NaN**0 = 1 */
|
||||
else if (Py_IS_NAN(y))
|
||||
else if (isnan(y))
|
||||
r = x == 1. ? 1. : y; /* 1**NaN = 1 */
|
||||
else if (Py_IS_INFINITY(x)) {
|
||||
odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
|
||||
else if (isinf(x)) {
|
||||
odd_y = isfinite(y) && fmod(fabs(y), 2.0) == 1.0;
|
||||
if (y > 0.)
|
||||
r = odd_y ? x : fabs(x);
|
||||
else if (y == 0.)
|
||||
|
@ -2992,7 +2992,7 @@ math_pow_impl(PyObject *module, double x, double y)
|
|||
r = odd_y ? copysign(0., x) : 0.;
|
||||
}
|
||||
else {
|
||||
assert(Py_IS_INFINITY(y));
|
||||
assert(isinf(y));
|
||||
if (fabs(x) == 1.0)
|
||||
r = 1.;
|
||||
else if (y > 0. && fabs(x) > 1.0)
|
||||
|
@ -3010,8 +3010,8 @@ math_pow_impl(PyObject *module, double x, double y)
|
|||
r = pow(x, y);
|
||||
/* a NaN result should arise only from (-ve)**(finite
|
||||
non-integer); in this case we want to raise ValueError. */
|
||||
if (!Py_IS_FINITE(r)) {
|
||||
if (Py_IS_NAN(r)) {
|
||||
if (!isfinite(r)) {
|
||||
if (isnan(r)) {
|
||||
errno = EDOM;
|
||||
}
|
||||
/*
|
||||
|
@ -3019,7 +3019,7 @@ math_pow_impl(PyObject *module, double x, double y)
|
|||
(A) (+/-0.)**negative (-> divide-by-zero)
|
||||
(B) overflow of x**y with x and y finite
|
||||
*/
|
||||
else if (Py_IS_INFINITY(r)) {
|
||||
else if (isinf(r)) {
|
||||
if (x == 0.)
|
||||
errno = EDOM;
|
||||
else
|
||||
|
@ -3085,7 +3085,7 @@ static PyObject *
|
|||
math_isfinite_impl(PyObject *module, double x)
|
||||
/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
|
||||
{
|
||||
return PyBool_FromLong((long)Py_IS_FINITE(x));
|
||||
return PyBool_FromLong((long)isfinite(x));
|
||||
}
|
||||
|
||||
|
||||
|
@ -3102,7 +3102,7 @@ static PyObject *
|
|||
math_isnan_impl(PyObject *module, double x)
|
||||
/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
|
||||
{
|
||||
return PyBool_FromLong((long)Py_IS_NAN(x));
|
||||
return PyBool_FromLong((long)isnan(x));
|
||||
}
|
||||
|
||||
|
||||
|
@ -3119,7 +3119,7 @@ static PyObject *
|
|||
math_isinf_impl(PyObject *module, double x)
|
||||
/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
|
||||
{
|
||||
return PyBool_FromLong((long)Py_IS_INFINITY(x));
|
||||
return PyBool_FromLong((long)isinf(x));
|
||||
}
|
||||
|
||||
|
||||
|
@ -3176,7 +3176,7 @@ math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
|
|||
above.
|
||||
*/
|
||||
|
||||
if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
|
||||
if (isinf(a) || isinf(b)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -3926,10 +3926,10 @@ math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
|
|||
Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */
|
||||
return PyFloat_FromDouble(y);
|
||||
}
|
||||
if (Py_IS_NAN(x)) {
|
||||
if (isnan(x)) {
|
||||
return PyFloat_FromDouble(x);
|
||||
}
|
||||
if (Py_IS_NAN(y)) {
|
||||
if (isnan(y)) {
|
||||
return PyFloat_FromDouble(y);
|
||||
}
|
||||
#endif
|
||||
|
@ -3975,10 +3975,10 @@ math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
|
|||
if (usteps == 0) {
|
||||
return PyFloat_FromDouble(x);
|
||||
}
|
||||
if (Py_IS_NAN(x)) {
|
||||
if (isnan(x)) {
|
||||
return PyFloat_FromDouble(x);
|
||||
}
|
||||
if (Py_IS_NAN(y)) {
|
||||
if (isnan(y)) {
|
||||
return PyFloat_FromDouble(y);
|
||||
}
|
||||
|
||||
|
@ -4044,16 +4044,16 @@ static double
|
|||
math_ulp_impl(PyObject *module, double x)
|
||||
/*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/
|
||||
{
|
||||
if (Py_IS_NAN(x)) {
|
||||
if (isnan(x)) {
|
||||
return x;
|
||||
}
|
||||
x = fabs(x);
|
||||
if (Py_IS_INFINITY(x)) {
|
||||
if (isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
double inf = Py_INFINITY;
|
||||
double x2 = nextafter(x, inf);
|
||||
if (Py_IS_INFINITY(x2)) {
|
||||
if (isinf(x2)) {
|
||||
/* special case: x is the largest positive representable float */
|
||||
x2 = nextafter(x, -inf);
|
||||
return x - x2;
|
||||
|
|
|
@ -188,16 +188,16 @@ _Py_c_abs(Py_complex z)
|
|||
/* sets errno = ERANGE on overflow; otherwise errno = 0 */
|
||||
double result;
|
||||
|
||||
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
||||
if (!isfinite(z.real) || !isfinite(z.imag)) {
|
||||
/* C99 rules: if either the real or the imaginary part is an
|
||||
infinity, return infinity, even if the other part is a
|
||||
NaN. */
|
||||
if (Py_IS_INFINITY(z.real)) {
|
||||
if (isinf(z.real)) {
|
||||
result = fabs(z.real);
|
||||
errno = 0;
|
||||
return result;
|
||||
}
|
||||
if (Py_IS_INFINITY(z.imag)) {
|
||||
if (isinf(z.imag)) {
|
||||
result = fabs(z.imag);
|
||||
errno = 0;
|
||||
return result;
|
||||
|
@ -207,7 +207,7 @@ _Py_c_abs(Py_complex z)
|
|||
return Py_NAN;
|
||||
}
|
||||
result = hypot(z.real, z.imag);
|
||||
if (!Py_IS_FINITE(result))
|
||||
if (!isfinite(result))
|
||||
errno = ERANGE;
|
||||
else
|
||||
errno = 0;
|
||||
|
|
|
@ -418,7 +418,7 @@ float_richcompare(PyObject *v, PyObject *w, int op)
|
|||
if (PyFloat_Check(w))
|
||||
j = PyFloat_AS_DOUBLE(w);
|
||||
|
||||
else if (!Py_IS_FINITE(i)) {
|
||||
else if (!isfinite(i)) {
|
||||
if (PyLong_Check(w))
|
||||
/* If i is an infinity, its magnitude exceeds any
|
||||
* finite integer, so it doesn't matter which int we
|
||||
|
@ -749,13 +749,13 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
|
|||
if (iw == 0) { /* v**0 is 1, even 0**0 */
|
||||
return PyFloat_FromDouble(1.0);
|
||||
}
|
||||
if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
|
||||
if (isnan(iv)) { /* nan**w = nan, unless w == 0 */
|
||||
return PyFloat_FromDouble(iv);
|
||||
}
|
||||
if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
|
||||
if (isnan(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
|
||||
return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
|
||||
}
|
||||
if (Py_IS_INFINITY(iw)) {
|
||||
if (isinf(iw)) {
|
||||
/* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
|
||||
* abs(v) > 1 (including case where v infinite)
|
||||
*
|
||||
|
@ -770,7 +770,7 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
|
|||
else
|
||||
return PyFloat_FromDouble(0.0);
|
||||
}
|
||||
if (Py_IS_INFINITY(iv)) {
|
||||
if (isinf(iv)) {
|
||||
/* (+-inf)**w is: inf for w positive, 0 for w negative; in
|
||||
* both cases, we need to add the appropriate sign if w is
|
||||
* an odd integer.
|
||||
|
@ -885,7 +885,7 @@ float_is_integer_impl(PyObject *self)
|
|||
|
||||
if (x == -1.0 && PyErr_Occurred())
|
||||
return NULL;
|
||||
if (!Py_IS_FINITE(x))
|
||||
if (!isfinite(x))
|
||||
Py_RETURN_FALSE;
|
||||
errno = 0;
|
||||
o = (floor(x) == x) ? Py_True : Py_False;
|
||||
|
@ -1021,7 +1021,7 @@ double_round(double x, int ndigits) {
|
|||
}
|
||||
y = (x*pow1)*pow2;
|
||||
/* if y overflows, then rounded value is exactly x */
|
||||
if (!Py_IS_FINITE(y))
|
||||
if (!isfinite(y))
|
||||
return PyFloat_FromDouble(x);
|
||||
}
|
||||
else {
|
||||
|
@ -1041,7 +1041,7 @@ double_round(double x, int ndigits) {
|
|||
z *= pow1;
|
||||
|
||||
/* if computation resulted in overflow, raise OverflowError */
|
||||
if (!Py_IS_FINITE(z)) {
|
||||
if (!isfinite(z)) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"overflow occurred during round");
|
||||
return NULL;
|
||||
|
@ -1089,7 +1089,7 @@ float___round___impl(PyObject *self, PyObject *o_ndigits)
|
|||
return NULL;
|
||||
|
||||
/* nans and infinities round to themselves */
|
||||
if (!Py_IS_FINITE(x))
|
||||
if (!isfinite(x))
|
||||
return PyFloat_FromDouble(x);
|
||||
|
||||
/* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
|
||||
|
@ -1237,7 +1237,7 @@ float_hex_impl(PyObject *self)
|
|||
|
||||
CONVERT_TO_DOUBLE(self, x);
|
||||
|
||||
if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
|
||||
if (isnan(x) || isinf(x))
|
||||
return float_repr((PyFloatObject *)self);
|
||||
|
||||
if (x == 0.0) {
|
||||
|
@ -1570,12 +1570,12 @@ float_as_integer_ratio_impl(PyObject *self)
|
|||
|
||||
CONVERT_TO_DOUBLE(self, self_double);
|
||||
|
||||
if (Py_IS_INFINITY(self_double)) {
|
||||
if (isinf(self_double)) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"cannot convert Infinity to integer ratio");
|
||||
return NULL;
|
||||
}
|
||||
if (Py_IS_NAN(self_double)) {
|
||||
if (isnan(self_double)) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"cannot convert NaN to integer ratio");
|
||||
return NULL;
|
||||
|
@ -2060,12 +2060,12 @@ PyFloat_Pack2(double x, char *data, int le)
|
|||
e = 0;
|
||||
bits = 0;
|
||||
}
|
||||
else if (Py_IS_INFINITY(x)) {
|
||||
else if (isinf(x)) {
|
||||
sign = (x < 0.0);
|
||||
e = 0x1f;
|
||||
bits = 0;
|
||||
}
|
||||
else if (Py_IS_NAN(x)) {
|
||||
else if (isnan(x)) {
|
||||
/* There are 2046 distinct half-precision NaNs (1022 signaling and
|
||||
1024 quiet), but there are only two quiet NaNs that don't arise by
|
||||
quieting a signaling NaN; we get those by setting the topmost bit
|
||||
|
@ -2234,7 +2234,7 @@ PyFloat_Pack4(double x, char *data, int le)
|
|||
float y = (float)x;
|
||||
int i, incr = 1;
|
||||
|
||||
if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
|
||||
if (isinf(y) && !isinf(x))
|
||||
goto Overflow;
|
||||
|
||||
unsigned char s[sizeof(float)];
|
||||
|
|
|
@ -401,12 +401,12 @@ PyLong_FromDouble(double dval)
|
|||
double frac;
|
||||
int i, ndig, expo, neg;
|
||||
neg = 0;
|
||||
if (Py_IS_INFINITY(dval)) {
|
||||
if (isinf(dval)) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"cannot convert float infinity to integer");
|
||||
return NULL;
|
||||
}
|
||||
if (Py_IS_NAN(dval)) {
|
||||
if (isnan(dval)) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"cannot convert float NaN to integer");
|
||||
return NULL;
|
||||
|
|
|
@ -79,7 +79,7 @@ append_repr(_PyUnicodeWriter *writer, PyObject *obj)
|
|||
return -1;
|
||||
}
|
||||
|
||||
if ((PyFloat_CheckExact(obj) && Py_IS_INFINITY(PyFloat_AS_DOUBLE(obj))) ||
|
||||
if ((PyFloat_CheckExact(obj) && isinf(PyFloat_AS_DOUBLE(obj))) ||
|
||||
PyComplex_CheckExact(obj))
|
||||
{
|
||||
PyInterpreterState *interp = _PyInterpreterState_GET();
|
||||
|
|
|
@ -2640,7 +2640,7 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
/* Avoid losing the sign on a negative result,
|
||||
and don't let adding the compensation convert
|
||||
an infinite or overflowed sum to a NaN. */
|
||||
if (c && Py_IS_FINITE(c)) {
|
||||
if (c && isfinite(c)) {
|
||||
f_result += c;
|
||||
}
|
||||
return PyFloat_FromDouble(f_result);
|
||||
|
@ -2672,7 +2672,7 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
continue;
|
||||
}
|
||||
}
|
||||
if (c && Py_IS_FINITE(c)) {
|
||||
if (c && isfinite(c)) {
|
||||
f_result += c;
|
||||
}
|
||||
result = PyFloat_FromDouble(f_result);
|
||||
|
|
|
@ -90,8 +90,8 @@ _Py_HashDouble(PyObject *inst, double v)
|
|||
double m;
|
||||
Py_uhash_t x, y;
|
||||
|
||||
if (!Py_IS_FINITE(v)) {
|
||||
if (Py_IS_INFINITY(v))
|
||||
if (!isfinite(v)) {
|
||||
if (isinf(v))
|
||||
return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
|
||||
else
|
||||
return PyObject_GenericHash(inst);
|
||||
|
|
|
@ -842,7 +842,7 @@ char * PyOS_double_to_string(double val,
|
|||
|
||||
*/
|
||||
|
||||
if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
|
||||
if (isnan(val) || isinf(val))
|
||||
/* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
|
||||
bufsize = 5;
|
||||
else {
|
||||
|
@ -860,10 +860,10 @@ char * PyOS_double_to_string(double val,
|
|||
}
|
||||
|
||||
/* Handle nan and inf. */
|
||||
if (Py_IS_NAN(val)) {
|
||||
if (isnan(val)) {
|
||||
strcpy(buf, "nan");
|
||||
t = Py_DTST_NAN;
|
||||
} else if (Py_IS_INFINITY(val)) {
|
||||
} else if (isinf(val)) {
|
||||
if (copysign(1., val) == 1.)
|
||||
strcpy(buf, "inf");
|
||||
else
|
||||
|
|
|
@ -375,7 +375,7 @@ pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator,
|
|||
|
||||
if (PyFloat_Check(obj)) {
|
||||
double d = PyFloat_AsDouble(obj);
|
||||
if (Py_IS_NAN(d)) {
|
||||
if (isnan(d)) {
|
||||
*numerator = 0;
|
||||
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
||||
return -1;
|
||||
|
@ -403,7 +403,7 @@ _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
|
|||
volatile double d;
|
||||
|
||||
d = PyFloat_AsDouble(obj);
|
||||
if (Py_IS_NAN(d)) {
|
||||
if (isnan(d)) {
|
||||
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
||||
return -1;
|
||||
}
|
||||
|
@ -590,7 +590,7 @@ pytime_from_object(PyTime_t *tp, PyObject *obj, _PyTime_round_t round,
|
|||
if (PyFloat_Check(obj)) {
|
||||
double d;
|
||||
d = PyFloat_AsDouble(obj);
|
||||
if (Py_IS_NAN(d)) {
|
||||
if (isnan(d)) {
|
||||
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
||||
return -1;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue