mirror of https://github.com/python/cpython
Merged revisions 77062 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r77062 | mark.dickinson | 2009-12-27 14:55:57 +0000 (Sun, 27 Dec 2009) | 2 lines Issue #1811: Improve accuracy and consistency of true division for integers. ........
This commit is contained in:
parent
99b2c8f811
commit
cbb62745ac
|
@ -14,6 +14,11 @@ class Frm(object):
|
|||
def __str__(self):
|
||||
return self.format % self.args
|
||||
|
||||
# decorator for skipping tests on non-IEEE 754 platforms
|
||||
requires_IEEE_754 = unittest.skipUnless(
|
||||
float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
|
||||
# SHIFT should match the value in longintrepr.h for best testing.
|
||||
SHIFT = sys.int_info.bits_per_digit
|
||||
BASE = 2 ** SHIFT
|
||||
|
@ -35,6 +40,43 @@ del p2
|
|||
# add complements & negations
|
||||
special += [~x for x in special] + [-x for x in special]
|
||||
|
||||
DBL_MAX = sys.float_info.max
|
||||
DBL_MAX_EXP = sys.float_info.max_exp
|
||||
DBL_MIN_EXP = sys.float_info.min_exp
|
||||
DBL_MANT_DIG = sys.float_info.mant_dig
|
||||
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
|
||||
|
||||
# pure Python version of correctly-rounded true division
|
||||
def truediv(a, b):
|
||||
"""Correctly-rounded true division for integers."""
|
||||
negative = a^b < 0
|
||||
a, b = abs(a), abs(b)
|
||||
|
||||
# exceptions: division by zero, overflow
|
||||
if not b:
|
||||
raise ZeroDivisionError("division by zero")
|
||||
if a >= DBL_MIN_OVERFLOW * b:
|
||||
raise OverflowError("int/int too large to represent as a float")
|
||||
|
||||
# find integer d satisfying 2**(d - 1) <= a/b < 2**d
|
||||
d = a.bit_length() - b.bit_length()
|
||||
if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
|
||||
d += 1
|
||||
|
||||
# compute 2**-exp * a / b for suitable exp
|
||||
exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
|
||||
a, b = a << max(-exp, 0), b << max(exp, 0)
|
||||
q, r = divmod(a, b)
|
||||
|
||||
# round-half-to-even: fractional part is r/b, which is > 0.5 iff
|
||||
# 2*r > b, and == 0.5 iff 2*r == b.
|
||||
if 2*r > b or 2*r == b and q % 2 == 1:
|
||||
q += 1
|
||||
|
||||
result = float(q) * 2.**exp
|
||||
return -result if negative else result
|
||||
|
||||
|
||||
class LongTest(unittest.TestCase):
|
||||
|
||||
# Get quasi-random long consisting of ndigits digits (in base BASE).
|
||||
|
@ -306,10 +348,6 @@ class LongTest(unittest.TestCase):
|
|||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_float_conversion(self):
|
||||
import sys
|
||||
DBL_MAX = sys.float_info.max
|
||||
DBL_MAX_EXP = sys.float_info.max_exp
|
||||
DBL_MANT_DIG = sys.float_info.mant_dig
|
||||
|
||||
exact_values = [0, 1, 2,
|
||||
2**53-3,
|
||||
|
@ -614,6 +652,128 @@ class LongTest(unittest.TestCase):
|
|||
for zero in ["huge / 0", "mhuge / 0"]:
|
||||
self.assertRaises(ZeroDivisionError, eval, zero, namespace)
|
||||
|
||||
def check_truediv(self, a, b, skip_small=True):
|
||||
"""Verify that the result of a/b is correctly rounded, by
|
||||
comparing it with a pure Python implementation of correctly
|
||||
rounded division. b should be nonzero."""
|
||||
|
||||
# skip check for small a and b: in this case, the current
|
||||
# implementation converts the arguments to float directly and
|
||||
# then applies a float division. This can give doubly-rounded
|
||||
# results on x87-using machines (particularly 32-bit Linux).
|
||||
if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
|
||||
return
|
||||
|
||||
try:
|
||||
# use repr so that we can distinguish between -0.0 and 0.0
|
||||
expected = repr(truediv(a, b))
|
||||
except OverflowError:
|
||||
expected = 'overflow'
|
||||
except ZeroDivisionError:
|
||||
expected = 'zerodivision'
|
||||
|
||||
try:
|
||||
got = repr(a / b)
|
||||
except OverflowError:
|
||||
got = 'overflow'
|
||||
except ZeroDivisionError:
|
||||
got = 'zerodivision'
|
||||
|
||||
if expected != got:
|
||||
self.fail("Incorrectly rounded division {}/{}: expected {!r}, "
|
||||
"got {!r}.".format(a, b, expected, got))
|
||||
|
||||
@requires_IEEE_754
|
||||
def test_correctly_rounded_true_division(self):
|
||||
# more stringent tests than those above, checking that the
|
||||
# result of true division of ints is always correctly rounded.
|
||||
# This test should probably be considered CPython-specific.
|
||||
|
||||
# Exercise all the code paths not involving Gb-sized ints.
|
||||
# ... divisions involving zero
|
||||
self.check_truediv(123, 0)
|
||||
self.check_truediv(-456, 0)
|
||||
self.check_truediv(0, 3)
|
||||
self.check_truediv(0, -3)
|
||||
self.check_truediv(0, 0)
|
||||
# ... overflow or underflow by large margin
|
||||
self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
|
||||
self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
|
||||
# ... a much larger or smaller than b
|
||||
self.check_truediv(12345*2**100, 98765)
|
||||
self.check_truediv(12345*2**30, 98765*7**81)
|
||||
# ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
|
||||
# 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
|
||||
bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
|
||||
DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
|
||||
for base in bases:
|
||||
for exp in range(base - 15, base + 15):
|
||||
self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
|
||||
self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
|
||||
|
||||
# overflow corner case
|
||||
for m in [1, 2, 7, 17, 12345, 7**100,
|
||||
-1, -2, -5, -23, -67891, -41**50]:
|
||||
for n in range(-10, 10):
|
||||
self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
|
||||
self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
|
||||
|
||||
# check detection of inexactness in shifting stage
|
||||
for n in range(250):
|
||||
# (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
|
||||
# between two representable floats, and would usually be
|
||||
# rounded down under round-half-to-even. The tiniest of
|
||||
# additions to the numerator should cause it to be rounded
|
||||
# up instead.
|
||||
self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
|
||||
2**DBL_MANT_DIG*12345)
|
||||
|
||||
# 1/2731 is one of the smallest division cases that's subject
|
||||
# to double rounding on IEEE 754 machines working internally with
|
||||
# 64-bit precision. On such machines, the next check would fail,
|
||||
# were it not explicitly skipped in check_truediv.
|
||||
self.check_truediv(1, 2731)
|
||||
|
||||
# a particularly bad case for the old algorithm: gives an
|
||||
# error of close to 3.5 ulps.
|
||||
self.check_truediv(295147931372582273023, 295147932265116303360)
|
||||
for i in range(1000):
|
||||
self.check_truediv(10**(i+1), 10**i)
|
||||
self.check_truediv(10**i, 10**(i+1))
|
||||
|
||||
# test round-half-to-even behaviour, normal result
|
||||
for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
|
||||
-1, -2, -5, -23, -67891, -41**50]:
|
||||
for n in range(-10, 10):
|
||||
self.check_truediv(2**DBL_MANT_DIG*m + n, m)
|
||||
|
||||
# test round-half-to-even, subnormal result
|
||||
for n in range(-20, 20):
|
||||
self.check_truediv(n, 2**1076)
|
||||
|
||||
# largeish random divisions: a/b where |a| <= |b| <=
|
||||
# 2*|a|; |ans| is between 0.5 and 1.0, so error should
|
||||
# always be bounded by 2**-54 with equality possible only
|
||||
# if the least significant bit of q=ans*2**53 is zero.
|
||||
for M in [10**10, 10**100, 10**1000]:
|
||||
for i in range(1000):
|
||||
a = random.randrange(1, M)
|
||||
b = random.randrange(a, 2*a+1)
|
||||
self.check_truediv(a, b)
|
||||
self.check_truediv(-a, b)
|
||||
self.check_truediv(a, -b)
|
||||
self.check_truediv(-a, -b)
|
||||
|
||||
# and some (genuinely) random tests
|
||||
for _ in range(10000):
|
||||
a_bits = random.randrange(1000)
|
||||
b_bits = random.randrange(1, 1000)
|
||||
x = random.randrange(2**a_bits)
|
||||
y = random.randrange(1, 2**b_bits)
|
||||
self.check_truediv(x, y)
|
||||
self.check_truediv(x, -y)
|
||||
self.check_truediv(-x, y)
|
||||
self.check_truediv(-x, -y)
|
||||
|
||||
def test_small_ints(self):
|
||||
for i in range(-5, 257):
|
||||
|
|
|
@ -12,6 +12,11 @@ What's New in Python 3.2 Alpha 1?
|
|||
Core and Builtins
|
||||
-----------------
|
||||
|
||||
- Issue #1811: improve accuracy and cross-platform consistency for
|
||||
true division of integers: the result of a/b is now correctly
|
||||
rounded for ints a and b (at least on IEEE 754 platforms), and in
|
||||
particular does not depend on the internal representation of an int.
|
||||
|
||||
- Issue #6834: replace the implementation for the 'python' and 'pythonw'
|
||||
executables on OSX.
|
||||
|
||||
|
|
|
@ -3213,47 +3213,267 @@ long_div(PyObject *a, PyObject *b)
|
|||
return (PyObject *)div;
|
||||
}
|
||||
|
||||
/* PyLong/PyLong -> float, with correctly rounded result. */
|
||||
|
||||
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
|
||||
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
|
||||
|
||||
static PyObject *
|
||||
long_true_divide(PyObject *a, PyObject *b)
|
||||
long_true_divide(PyObject *v, PyObject *w)
|
||||
{
|
||||
double ad, bd;
|
||||
int failed, aexp = -1, bexp = -1;
|
||||
PyLongObject *a, *b, *x;
|
||||
Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
|
||||
digit mask, low;
|
||||
int inexact, negate, a_is_small, b_is_small;
|
||||
double dx, result;
|
||||
|
||||
CHECK_BINOP(a, b);
|
||||
ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp);
|
||||
bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp);
|
||||
failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
|
||||
if (failed)
|
||||
return NULL;
|
||||
/* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
|
||||
but should really be set correctly after sucessful calls to
|
||||
_PyLong_AsScaledDouble() */
|
||||
assert(aexp >= 0 && bexp >= 0);
|
||||
CHECK_BINOP(v, w);
|
||||
a = (PyLongObject *)v;
|
||||
b = (PyLongObject *)w;
|
||||
|
||||
if (bd == 0.0) {
|
||||
/*
|
||||
Method in a nutshell:
|
||||
|
||||
0. reduce to case a, b > 0; filter out obvious underflow/overflow
|
||||
1. choose a suitable integer 'shift'
|
||||
2. use integer arithmetic to compute x = floor(2**-shift*a/b)
|
||||
3. adjust x for correct rounding
|
||||
4. convert x to a double dx with the same value
|
||||
5. return ldexp(dx, shift).
|
||||
|
||||
In more detail:
|
||||
|
||||
0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
|
||||
returns either 0.0 or -0.0, depending on the sign of b. For a and
|
||||
b both nonzero, ignore signs of a and b, and add the sign back in
|
||||
at the end. Now write a_bits and b_bits for the bit lengths of a
|
||||
and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
|
||||
for b). Then
|
||||
|
||||
2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
|
||||
|
||||
So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
|
||||
so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
|
||||
DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
|
||||
the way, we can assume that
|
||||
|
||||
DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
|
||||
|
||||
1. The integer 'shift' is chosen so that x has the right number of
|
||||
bits for a double, plus two or three extra bits that will be used
|
||||
in the rounding decisions. Writing a_bits and b_bits for the
|
||||
number of significant bits in a and b respectively, a
|
||||
straightforward formula for shift is:
|
||||
|
||||
shift = a_bits - b_bits - DBL_MANT_DIG - 2
|
||||
|
||||
This is fine in the usual case, but if a/b is smaller than the
|
||||
smallest normal float then it can lead to double rounding on an
|
||||
IEEE 754 platform, giving incorrectly rounded results. So we
|
||||
adjust the formula slightly. The actual formula used is:
|
||||
|
||||
shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
|
||||
|
||||
2. The quantity x is computed by first shifting a (left -shift bits
|
||||
if shift <= 0, right shift bits if shift > 0) and then dividing by
|
||||
b. For both the shift and the division, we keep track of whether
|
||||
the result is inexact, in a flag 'inexact'; this information is
|
||||
needed at the rounding stage.
|
||||
|
||||
With the choice of shift above, together with our assumption that
|
||||
a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
|
||||
that x >= 1.
|
||||
|
||||
3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
|
||||
this with an exactly representable float of the form
|
||||
|
||||
round(x/2**extra_bits) * 2**(extra_bits+shift).
|
||||
|
||||
For float representability, we need x/2**extra_bits <
|
||||
2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
|
||||
DBL_MANT_DIG. This translates to the condition:
|
||||
|
||||
extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
|
||||
|
||||
To round, we just modify the bottom digit of x in-place; this can
|
||||
end up giving a digit with value > PyLONG_MASK, but that's not a
|
||||
problem since digits can hold values up to 2*PyLONG_MASK+1.
|
||||
|
||||
With the original choices for shift above, extra_bits will always
|
||||
be 2 or 3. Then rounding under the round-half-to-even rule, we
|
||||
round up iff the most significant of the extra bits is 1, and
|
||||
either: (a) the computation of x in step 2 had an inexact result,
|
||||
or (b) at least one other of the extra bits is 1, or (c) the least
|
||||
significant bit of x (above those to be rounded) is 1.
|
||||
|
||||
4. Conversion to a double is straightforward; all floating-point
|
||||
operations involved in the conversion are exact, so there's no
|
||||
danger of rounding errors.
|
||||
|
||||
5. Use ldexp(x, shift) to compute x*2**shift, the final result.
|
||||
The result will always be exactly representable as a double, except
|
||||
in the case that it overflows. To avoid dependence on the exact
|
||||
behaviour of ldexp on overflow, we check for overflow before
|
||||
applying ldexp. The result of ldexp is adjusted for sign before
|
||||
returning.
|
||||
*/
|
||||
|
||||
/* Reduce to case where a and b are both positive. */
|
||||
a_size = ABS(Py_SIZE(a));
|
||||
b_size = ABS(Py_SIZE(b));
|
||||
negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
|
||||
if (b_size == 0) {
|
||||
PyErr_SetString(PyExc_ZeroDivisionError,
|
||||
"integer division or modulo by zero");
|
||||
return NULL;
|
||||
"division by zero");
|
||||
goto error;
|
||||
}
|
||||
if (a_size == 0)
|
||||
goto underflow_or_zero;
|
||||
|
||||
/* Fast path for a and b small (exactly representable in a double).
|
||||
Relies on floating-point division being correctly rounded; results
|
||||
may be subject to double rounding on x86 machines that operate with
|
||||
the x87 FPU set to 64-bit precision. */
|
||||
a_is_small = a_size <= MANT_DIG_DIGITS ||
|
||||
(a_size == MANT_DIG_DIGITS+1 &&
|
||||
a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
|
||||
b_is_small = b_size <= MANT_DIG_DIGITS ||
|
||||
(b_size == MANT_DIG_DIGITS+1 &&
|
||||
b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
|
||||
if (a_is_small && b_is_small) {
|
||||
double da, db;
|
||||
da = a->ob_digit[--a_size];
|
||||
while (a_size > 0)
|
||||
da = da * PyLong_BASE + a->ob_digit[--a_size];
|
||||
db = b->ob_digit[--b_size];
|
||||
while (b_size > 0)
|
||||
db = db * PyLong_BASE + b->ob_digit[--b_size];
|
||||
result = da / db;
|
||||
goto success;
|
||||
}
|
||||
|
||||
/* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */
|
||||
ad /= bd; /* overflow/underflow impossible here */
|
||||
aexp -= bexp;
|
||||
if (aexp > INT_MAX / PyLong_SHIFT)
|
||||
/* Catch obvious cases of underflow and overflow */
|
||||
diff = a_size - b_size;
|
||||
if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
|
||||
/* Extreme overflow */
|
||||
goto overflow;
|
||||
else if (aexp < -(INT_MAX / PyLong_SHIFT))
|
||||
return PyFloat_FromDouble(0.0); /* underflow to 0 */
|
||||
errno = 0;
|
||||
ad = ldexp(ad, aexp * PyLong_SHIFT);
|
||||
if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
|
||||
else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
|
||||
/* Extreme underflow */
|
||||
goto underflow_or_zero;
|
||||
/* Next line is now safe from overflowing a Py_ssize_t */
|
||||
diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
|
||||
bits_in_digit(b->ob_digit[b_size - 1]);
|
||||
/* Now diff = a_bits - b_bits. */
|
||||
if (diff > DBL_MAX_EXP)
|
||||
goto overflow;
|
||||
return PyFloat_FromDouble(ad);
|
||||
else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
|
||||
goto underflow_or_zero;
|
||||
|
||||
/* Choose value for shift; see comments for step 1 above. */
|
||||
shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
|
||||
|
||||
inexact = 0;
|
||||
|
||||
/* x = abs(a * 2**-shift) */
|
||||
if (shift <= 0) {
|
||||
Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
|
||||
digit rem;
|
||||
/* x = a << -shift */
|
||||
if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
|
||||
/* In practice, it's probably impossible to end up
|
||||
here. Both a and b would have to be enormous,
|
||||
using close to SIZE_T_MAX bytes of memory each. */
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"intermediate overflow during division");
|
||||
goto error;
|
||||
}
|
||||
x = _PyLong_New(a_size + shift_digits + 1);
|
||||
if (x == NULL)
|
||||
goto error;
|
||||
for (i = 0; i < shift_digits; i++)
|
||||
x->ob_digit[i] = 0;
|
||||
rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
|
||||
a_size, -shift % PyLong_SHIFT);
|
||||
x->ob_digit[a_size + shift_digits] = rem;
|
||||
}
|
||||
else {
|
||||
Py_ssize_t shift_digits = shift / PyLong_SHIFT;
|
||||
digit rem;
|
||||
/* x = a >> shift */
|
||||
assert(a_size >= shift_digits);
|
||||
x = _PyLong_New(a_size - shift_digits);
|
||||
if (x == NULL)
|
||||
goto error;
|
||||
rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
|
||||
a_size - shift_digits, shift % PyLong_SHIFT);
|
||||
/* set inexact if any of the bits shifted out is nonzero */
|
||||
if (rem)
|
||||
inexact = 1;
|
||||
while (!inexact && shift_digits > 0)
|
||||
if (a->ob_digit[--shift_digits])
|
||||
inexact = 1;
|
||||
}
|
||||
long_normalize(x);
|
||||
x_size = Py_SIZE(x);
|
||||
|
||||
/* x //= b. If the remainder is nonzero, set inexact. We own the only
|
||||
reference to x, so it's safe to modify it in-place. */
|
||||
if (b_size == 1) {
|
||||
digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
|
||||
b->ob_digit[0]);
|
||||
long_normalize(x);
|
||||
if (rem)
|
||||
inexact = 1;
|
||||
}
|
||||
else {
|
||||
PyLongObject *div, *rem;
|
||||
div = x_divrem(x, b, &rem);
|
||||
Py_DECREF(x);
|
||||
x = div;
|
||||
if (x == NULL)
|
||||
goto error;
|
||||
if (Py_SIZE(rem))
|
||||
inexact = 1;
|
||||
Py_DECREF(rem);
|
||||
}
|
||||
x_size = ABS(Py_SIZE(x));
|
||||
assert(x_size > 0); /* result of division is never zero */
|
||||
x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
|
||||
|
||||
/* The number of extra bits that have to be rounded away. */
|
||||
extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
|
||||
assert(extra_bits == 2 || extra_bits == 3);
|
||||
|
||||
/* Round by directly modifying the low digit of x. */
|
||||
mask = (digit)1 << (extra_bits - 1);
|
||||
low = x->ob_digit[0] | inexact;
|
||||
if (low & mask && low & (3*mask-1))
|
||||
low += mask;
|
||||
x->ob_digit[0] = low & ~(mask-1U);
|
||||
|
||||
/* Convert x to a double dx; the conversion is exact. */
|
||||
dx = x->ob_digit[--x_size];
|
||||
while (x_size > 0)
|
||||
dx = dx * PyLong_BASE + x->ob_digit[--x_size];
|
||||
Py_DECREF(x);
|
||||
|
||||
/* Check whether ldexp result will overflow a double. */
|
||||
if (shift + x_bits >= DBL_MAX_EXP &&
|
||||
(shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, x_bits)))
|
||||
goto overflow;
|
||||
result = ldexp(dx, shift);
|
||||
|
||||
success:
|
||||
return PyFloat_FromDouble(negate ? -result : result);
|
||||
|
||||
underflow_or_zero:
|
||||
return PyFloat_FromDouble(negate ? -0.0 : 0.0);
|
||||
|
||||
overflow:
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"int/int too large for a float");
|
||||
"integer division result too large for a float");
|
||||
error:
|
||||
return NULL;
|
||||
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
|
|
Loading…
Reference in New Issue