Merged revisions 77062 via svnmerge from

svn+ssh://pythondev@svn.python.org/python/trunk

........
  r77062 | mark.dickinson | 2009-12-27 14:55:57 +0000 (Sun, 27 Dec 2009) | 2 lines

  Issue #1811:  Improve accuracy and consistency of true division for integers.
........
This commit is contained in:
Mark Dickinson 2009-12-27 15:09:50 +00:00
parent 99b2c8f811
commit cbb62745ac
3 changed files with 418 additions and 33 deletions

View File

@ -14,6 +14,11 @@ class Frm(object):
def __str__(self): def __str__(self):
return self.format % self.args return self.format % self.args
# decorator for skipping tests on non-IEEE 754 platforms
requires_IEEE_754 = unittest.skipUnless(
float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
# SHIFT should match the value in longintrepr.h for best testing. # SHIFT should match the value in longintrepr.h for best testing.
SHIFT = sys.int_info.bits_per_digit SHIFT = sys.int_info.bits_per_digit
BASE = 2 ** SHIFT BASE = 2 ** SHIFT
@ -35,6 +40,43 @@ del p2
# add complements & negations # add complements & negations
special += [~x for x in special] + [-x for x in special] special += [~x for x in special] + [-x for x in special]
DBL_MAX = sys.float_info.max
DBL_MAX_EXP = sys.float_info.max_exp
DBL_MIN_EXP = sys.float_info.min_exp
DBL_MANT_DIG = sys.float_info.mant_dig
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
# pure Python version of correctly-rounded true division
def truediv(a, b):
"""Correctly-rounded true division for integers."""
negative = a^b < 0
a, b = abs(a), abs(b)
# exceptions: division by zero, overflow
if not b:
raise ZeroDivisionError("division by zero")
if a >= DBL_MIN_OVERFLOW * b:
raise OverflowError("int/int too large to represent as a float")
# find integer d satisfying 2**(d - 1) <= a/b < 2**d
d = a.bit_length() - b.bit_length()
if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
d += 1
# compute 2**-exp * a / b for suitable exp
exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
a, b = a << max(-exp, 0), b << max(exp, 0)
q, r = divmod(a, b)
# round-half-to-even: fractional part is r/b, which is > 0.5 iff
# 2*r > b, and == 0.5 iff 2*r == b.
if 2*r > b or 2*r == b and q % 2 == 1:
q += 1
result = float(q) * 2.**exp
return -result if negative else result
class LongTest(unittest.TestCase): class LongTest(unittest.TestCase):
# Get quasi-random long consisting of ndigits digits (in base BASE). # Get quasi-random long consisting of ndigits digits (in base BASE).
@ -306,10 +348,6 @@ class LongTest(unittest.TestCase):
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles") "test requires IEEE 754 doubles")
def test_float_conversion(self): def test_float_conversion(self):
import sys
DBL_MAX = sys.float_info.max
DBL_MAX_EXP = sys.float_info.max_exp
DBL_MANT_DIG = sys.float_info.mant_dig
exact_values = [0, 1, 2, exact_values = [0, 1, 2,
2**53-3, 2**53-3,
@ -614,6 +652,128 @@ class LongTest(unittest.TestCase):
for zero in ["huge / 0", "mhuge / 0"]: for zero in ["huge / 0", "mhuge / 0"]:
self.assertRaises(ZeroDivisionError, eval, zero, namespace) self.assertRaises(ZeroDivisionError, eval, zero, namespace)
def check_truediv(self, a, b, skip_small=True):
"""Verify that the result of a/b is correctly rounded, by
comparing it with a pure Python implementation of correctly
rounded division. b should be nonzero."""
# skip check for small a and b: in this case, the current
# implementation converts the arguments to float directly and
# then applies a float division. This can give doubly-rounded
# results on x87-using machines (particularly 32-bit Linux).
if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
return
try:
# use repr so that we can distinguish between -0.0 and 0.0
expected = repr(truediv(a, b))
except OverflowError:
expected = 'overflow'
except ZeroDivisionError:
expected = 'zerodivision'
try:
got = repr(a / b)
except OverflowError:
got = 'overflow'
except ZeroDivisionError:
got = 'zerodivision'
if expected != got:
self.fail("Incorrectly rounded division {}/{}: expected {!r}, "
"got {!r}.".format(a, b, expected, got))
@requires_IEEE_754
def test_correctly_rounded_true_division(self):
# more stringent tests than those above, checking that the
# result of true division of ints is always correctly rounded.
# This test should probably be considered CPython-specific.
# Exercise all the code paths not involving Gb-sized ints.
# ... divisions involving zero
self.check_truediv(123, 0)
self.check_truediv(-456, 0)
self.check_truediv(0, 3)
self.check_truediv(0, -3)
self.check_truediv(0, 0)
# ... overflow or underflow by large margin
self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
# ... a much larger or smaller than b
self.check_truediv(12345*2**100, 98765)
self.check_truediv(12345*2**30, 98765*7**81)
# ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
# 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
for base in bases:
for exp in range(base - 15, base + 15):
self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
# overflow corner case
for m in [1, 2, 7, 17, 12345, 7**100,
-1, -2, -5, -23, -67891, -41**50]:
for n in range(-10, 10):
self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
# check detection of inexactness in shifting stage
for n in range(250):
# (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
# between two representable floats, and would usually be
# rounded down under round-half-to-even. The tiniest of
# additions to the numerator should cause it to be rounded
# up instead.
self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
2**DBL_MANT_DIG*12345)
# 1/2731 is one of the smallest division cases that's subject
# to double rounding on IEEE 754 machines working internally with
# 64-bit precision. On such machines, the next check would fail,
# were it not explicitly skipped in check_truediv.
self.check_truediv(1, 2731)
# a particularly bad case for the old algorithm: gives an
# error of close to 3.5 ulps.
self.check_truediv(295147931372582273023, 295147932265116303360)
for i in range(1000):
self.check_truediv(10**(i+1), 10**i)
self.check_truediv(10**i, 10**(i+1))
# test round-half-to-even behaviour, normal result
for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
-1, -2, -5, -23, -67891, -41**50]:
for n in range(-10, 10):
self.check_truediv(2**DBL_MANT_DIG*m + n, m)
# test round-half-to-even, subnormal result
for n in range(-20, 20):
self.check_truediv(n, 2**1076)
# largeish random divisions: a/b where |a| <= |b| <=
# 2*|a|; |ans| is between 0.5 and 1.0, so error should
# always be bounded by 2**-54 with equality possible only
# if the least significant bit of q=ans*2**53 is zero.
for M in [10**10, 10**100, 10**1000]:
for i in range(1000):
a = random.randrange(1, M)
b = random.randrange(a, 2*a+1)
self.check_truediv(a, b)
self.check_truediv(-a, b)
self.check_truediv(a, -b)
self.check_truediv(-a, -b)
# and some (genuinely) random tests
for _ in range(10000):
a_bits = random.randrange(1000)
b_bits = random.randrange(1, 1000)
x = random.randrange(2**a_bits)
y = random.randrange(1, 2**b_bits)
self.check_truediv(x, y)
self.check_truediv(x, -y)
self.check_truediv(-x, y)
self.check_truediv(-x, -y)
def test_small_ints(self): def test_small_ints(self):
for i in range(-5, 257): for i in range(-5, 257):

View File

@ -12,6 +12,11 @@ What's New in Python 3.2 Alpha 1?
Core and Builtins Core and Builtins
----------------- -----------------
- Issue #1811: improve accuracy and cross-platform consistency for
true division of integers: the result of a/b is now correctly
rounded for ints a and b (at least on IEEE 754 platforms), and in
particular does not depend on the internal representation of an int.
- Issue #6834: replace the implementation for the 'python' and 'pythonw' - Issue #6834: replace the implementation for the 'python' and 'pythonw'
executables on OSX. executables on OSX.

View File

@ -3213,47 +3213,267 @@ long_div(PyObject *a, PyObject *b)
return (PyObject *)div; return (PyObject *)div;
} }
/* PyLong/PyLong -> float, with correctly rounded result. */
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
static PyObject * static PyObject *
long_true_divide(PyObject *a, PyObject *b) long_true_divide(PyObject *v, PyObject *w)
{ {
double ad, bd; PyLongObject *a, *b, *x;
int failed, aexp = -1, bexp = -1; Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
digit mask, low;
int inexact, negate, a_is_small, b_is_small;
double dx, result;
CHECK_BINOP(a, b); CHECK_BINOP(v, w);
ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp); a = (PyLongObject *)v;
bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp); b = (PyLongObject *)w;
failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
if (failed)
return NULL;
/* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
but should really be set correctly after sucessful calls to
_PyLong_AsScaledDouble() */
assert(aexp >= 0 && bexp >= 0);
if (bd == 0.0) { /*
Method in a nutshell:
0. reduce to case a, b > 0; filter out obvious underflow/overflow
1. choose a suitable integer 'shift'
2. use integer arithmetic to compute x = floor(2**-shift*a/b)
3. adjust x for correct rounding
4. convert x to a double dx with the same value
5. return ldexp(dx, shift).
In more detail:
0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
returns either 0.0 or -0.0, depending on the sign of b. For a and
b both nonzero, ignore signs of a and b, and add the sign back in
at the end. Now write a_bits and b_bits for the bit lengths of a
and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
for b). Then
2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
the way, we can assume that
DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
1. The integer 'shift' is chosen so that x has the right number of
bits for a double, plus two or three extra bits that will be used
in the rounding decisions. Writing a_bits and b_bits for the
number of significant bits in a and b respectively, a
straightforward formula for shift is:
shift = a_bits - b_bits - DBL_MANT_DIG - 2
This is fine in the usual case, but if a/b is smaller than the
smallest normal float then it can lead to double rounding on an
IEEE 754 platform, giving incorrectly rounded results. So we
adjust the formula slightly. The actual formula used is:
shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
2. The quantity x is computed by first shifting a (left -shift bits
if shift <= 0, right shift bits if shift > 0) and then dividing by
b. For both the shift and the division, we keep track of whether
the result is inexact, in a flag 'inexact'; this information is
needed at the rounding stage.
With the choice of shift above, together with our assumption that
a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
that x >= 1.
3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
this with an exactly representable float of the form
round(x/2**extra_bits) * 2**(extra_bits+shift).
For float representability, we need x/2**extra_bits <
2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
DBL_MANT_DIG. This translates to the condition:
extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
To round, we just modify the bottom digit of x in-place; this can
end up giving a digit with value > PyLONG_MASK, but that's not a
problem since digits can hold values up to 2*PyLONG_MASK+1.
With the original choices for shift above, extra_bits will always
be 2 or 3. Then rounding under the round-half-to-even rule, we
round up iff the most significant of the extra bits is 1, and
either: (a) the computation of x in step 2 had an inexact result,
or (b) at least one other of the extra bits is 1, or (c) the least
significant bit of x (above those to be rounded) is 1.
4. Conversion to a double is straightforward; all floating-point
operations involved in the conversion are exact, so there's no
danger of rounding errors.
5. Use ldexp(x, shift) to compute x*2**shift, the final result.
The result will always be exactly representable as a double, except
in the case that it overflows. To avoid dependence on the exact
behaviour of ldexp on overflow, we check for overflow before
applying ldexp. The result of ldexp is adjusted for sign before
returning.
*/
/* Reduce to case where a and b are both positive. */
a_size = ABS(Py_SIZE(a));
b_size = ABS(Py_SIZE(b));
negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
if (b_size == 0) {
PyErr_SetString(PyExc_ZeroDivisionError, PyErr_SetString(PyExc_ZeroDivisionError,
"integer division or modulo by zero"); "division by zero");
return NULL; goto error;
}
if (a_size == 0)
goto underflow_or_zero;
/* Fast path for a and b small (exactly representable in a double).
Relies on floating-point division being correctly rounded; results
may be subject to double rounding on x86 machines that operate with
the x87 FPU set to 64-bit precision. */
a_is_small = a_size <= MANT_DIG_DIGITS ||
(a_size == MANT_DIG_DIGITS+1 &&
a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
b_is_small = b_size <= MANT_DIG_DIGITS ||
(b_size == MANT_DIG_DIGITS+1 &&
b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
if (a_is_small && b_is_small) {
double da, db;
da = a->ob_digit[--a_size];
while (a_size > 0)
da = da * PyLong_BASE + a->ob_digit[--a_size];
db = b->ob_digit[--b_size];
while (b_size > 0)
db = db * PyLong_BASE + b->ob_digit[--b_size];
result = da / db;
goto success;
} }
/* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */ /* Catch obvious cases of underflow and overflow */
ad /= bd; /* overflow/underflow impossible here */ diff = a_size - b_size;
aexp -= bexp; if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
if (aexp > INT_MAX / PyLong_SHIFT) /* Extreme overflow */
goto overflow; goto overflow;
else if (aexp < -(INT_MAX / PyLong_SHIFT)) else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
return PyFloat_FromDouble(0.0); /* underflow to 0 */ /* Extreme underflow */
errno = 0; goto underflow_or_zero;
ad = ldexp(ad, aexp * PyLong_SHIFT); /* Next line is now safe from overflowing a Py_ssize_t */
if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */ diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
bits_in_digit(b->ob_digit[b_size - 1]);
/* Now diff = a_bits - b_bits. */
if (diff > DBL_MAX_EXP)
goto overflow; goto overflow;
return PyFloat_FromDouble(ad); else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
goto underflow_or_zero;
/* Choose value for shift; see comments for step 1 above. */
shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
inexact = 0;
/* x = abs(a * 2**-shift) */
if (shift <= 0) {
Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
digit rem;
/* x = a << -shift */
if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
/* In practice, it's probably impossible to end up
here. Both a and b would have to be enormous,
using close to SIZE_T_MAX bytes of memory each. */
PyErr_SetString(PyExc_OverflowError,
"intermediate overflow during division");
goto error;
}
x = _PyLong_New(a_size + shift_digits + 1);
if (x == NULL)
goto error;
for (i = 0; i < shift_digits; i++)
x->ob_digit[i] = 0;
rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
a_size, -shift % PyLong_SHIFT);
x->ob_digit[a_size + shift_digits] = rem;
}
else {
Py_ssize_t shift_digits = shift / PyLong_SHIFT;
digit rem;
/* x = a >> shift */
assert(a_size >= shift_digits);
x = _PyLong_New(a_size - shift_digits);
if (x == NULL)
goto error;
rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
a_size - shift_digits, shift % PyLong_SHIFT);
/* set inexact if any of the bits shifted out is nonzero */
if (rem)
inexact = 1;
while (!inexact && shift_digits > 0)
if (a->ob_digit[--shift_digits])
inexact = 1;
}
long_normalize(x);
x_size = Py_SIZE(x);
/* x //= b. If the remainder is nonzero, set inexact. We own the only
reference to x, so it's safe to modify it in-place. */
if (b_size == 1) {
digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
b->ob_digit[0]);
long_normalize(x);
if (rem)
inexact = 1;
}
else {
PyLongObject *div, *rem;
div = x_divrem(x, b, &rem);
Py_DECREF(x);
x = div;
if (x == NULL)
goto error;
if (Py_SIZE(rem))
inexact = 1;
Py_DECREF(rem);
}
x_size = ABS(Py_SIZE(x));
assert(x_size > 0); /* result of division is never zero */
x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
/* The number of extra bits that have to be rounded away. */
extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
assert(extra_bits == 2 || extra_bits == 3);
/* Round by directly modifying the low digit of x. */
mask = (digit)1 << (extra_bits - 1);
low = x->ob_digit[0] | inexact;
if (low & mask && low & (3*mask-1))
low += mask;
x->ob_digit[0] = low & ~(mask-1U);
/* Convert x to a double dx; the conversion is exact. */
dx = x->ob_digit[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x->ob_digit[--x_size];
Py_DECREF(x);
/* Check whether ldexp result will overflow a double. */
if (shift + x_bits >= DBL_MAX_EXP &&
(shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, x_bits)))
goto overflow;
result = ldexp(dx, shift);
success:
return PyFloat_FromDouble(negate ? -result : result);
underflow_or_zero:
return PyFloat_FromDouble(negate ? -0.0 : 0.0);
overflow: overflow:
PyErr_SetString(PyExc_OverflowError, PyErr_SetString(PyExc_OverflowError,
"int/int too large for a float"); "integer division result too large for a float");
error:
return NULL; return NULL;
} }
static PyObject * static PyObject *