Update itertool recipe: polynomial_from_roots() (GH-103973)

This commit is contained in:
Raymond Hettinger 2023-04-28 12:25:50 -05:00 committed by GitHub
parent 81387fe36e
commit c3453fbb11
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 4 additions and 5 deletions

View File

@ -789,6 +789,7 @@ which incur interpreter overhead.
.. testcode::
import collections
import functools
import math
import operator
import random
@ -1082,7 +1083,7 @@ The following recipes have a more mathematical flavor:
# convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
kernel = tuple(kernel)[::-1]
n = len(kernel)
padded_signal = chain(repeat(0, n-1), signal, [0] * (n-1))
padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))
for window in sliding_window(padded_signal, n):
yield math.sumprod(kernel, window)
@ -1092,10 +1093,8 @@ The following recipes have a more mathematical flavor:
(x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60
"""
# polynomial_from_roots([5, -4, 3]) --> [1, -4, -17, 60]
expansion = [1]
for r in roots:
expansion = convolve(expansion, (1, -r))
return list(expansion)
factors = zip(repeat(1), map(operator.neg, roots))
return list(functools.reduce(convolve, factors, [1]))
def polynomial_eval(coefficients, x):
"""Evaluate a polynomial at a specific value.