mirror of https://github.com/python/cpython
Tim's quicksort on May 10.
This commit is contained in:
parent
01fc65d92f
commit
b7057640d1
|
@ -624,6 +624,15 @@ docompare(x, y, compare)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* MINSIZE is the smallest array we care to partition; smaller arrays
|
||||
are sorted using a straight insertion sort (above). It must be at
|
||||
least 3 for the quicksort implementation to work. Assuming that
|
||||
comparisons are more expensive than everything else (and this is a
|
||||
good assumption for Python), it should be 10, which is the cutoff
|
||||
point: quicksort requires more comparisons than insertion sort for
|
||||
smaller arrays. */
|
||||
#define MINSIZE 12
|
||||
|
||||
/* Straight insertion sort. More efficient for sorting small arrays. */
|
||||
|
||||
static int
|
||||
|
@ -640,30 +649,23 @@ insertionsort(array, size, compare)
|
|||
register PyObject *key = *p;
|
||||
register PyObject **q = p;
|
||||
while (--q >= a) {
|
||||
register int k = docompare(*q, key, compare);
|
||||
register int k = docompare(key, *q, compare);
|
||||
/* if (p-q >= MINSIZE)
|
||||
fprintf(stderr, "OUCH! %d\n", p-q); */
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k <= 0)
|
||||
break;
|
||||
if (k < 0) {
|
||||
*(q+1) = *q;
|
||||
*q = key; /* For consistency */
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* MINSIZE is the smallest array we care to partition; smaller arrays
|
||||
are sorted using a straight insertion sort (above). It must be at
|
||||
least 2 for the quicksort implementation to work. Assuming that
|
||||
comparisons are more expensive than everything else (and this is a
|
||||
good assumption for Python), it should be 10, which is the cutoff
|
||||
point: quicksort requires more comparisons than insertion sort for
|
||||
smaller arrays. */
|
||||
#define MINSIZE 10
|
||||
|
||||
/* STACKSIZE is the size of our work stack. A rough estimate is that
|
||||
this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large
|
||||
enough. (Because of the way we push the biggest partition first,
|
||||
|
@ -682,8 +684,9 @@ quicksort(array, size, compare)
|
|||
PyObject *compare;/* Comparison function object, or NULL for default */
|
||||
{
|
||||
register PyObject *tmp, *pivot;
|
||||
register PyObject **lo, **hi, **l, **r;
|
||||
int top, k, n, n2;
|
||||
register PyObject **l, **r, **p;
|
||||
register PyObject **lo, **hi;
|
||||
int top, k, n;
|
||||
PyObject **lostack[STACKSIZE];
|
||||
PyObject **histack[STACKSIZE];
|
||||
|
||||
|
@ -699,88 +702,117 @@ quicksort(array, size, compare)
|
|||
|
||||
/* If it's a small one, use straight insertion sort */
|
||||
n = hi - lo;
|
||||
if (n < MINSIZE) {
|
||||
/*
|
||||
* skip it. The insertion sort at the end will
|
||||
* catch these
|
||||
*/
|
||||
if (n < MINSIZE)
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Choose median of first, middle and last item as pivot */
|
||||
|
||||
l = lo + (n>>1); /* Middle */
|
||||
/* Choose median of first, middle and last as pivot;
|
||||
these 3 are reverse-sorted in the process; the ends
|
||||
will be swapped on the first do-loop iteration.
|
||||
*/
|
||||
l = lo; /* First */
|
||||
p = lo + (n>>1); /* Middle */
|
||||
r = hi - 1; /* Last */
|
||||
|
||||
k = docompare(*l, *lo, compare);
|
||||
k = docompare(*l, *p, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
{ tmp = *lo; *lo = *l; *l = tmp; }
|
||||
{ tmp = *l; *l = *p; *p = tmp; }
|
||||
|
||||
k = docompare(*r, *l, compare);
|
||||
k = docompare(*p, *r, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
{ tmp = *r; *r = *l; *l = tmp; }
|
||||
{ tmp = *p; *p = *r; *r = tmp; }
|
||||
|
||||
k = docompare(*l, *lo, compare);
|
||||
k = docompare(*l, *p, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
{ tmp = *l; *l = *lo; *lo = tmp; }
|
||||
pivot = *l;
|
||||
{ tmp = *l; *l = *p; *p = tmp; }
|
||||
|
||||
/* Move pivot off to the side (swap with lo+1) */
|
||||
*l = *(lo+1); *(lo+1) = pivot;
|
||||
pivot = *p;
|
||||
|
||||
/* Partition the array */
|
||||
l = lo+2;
|
||||
r = hi-2;
|
||||
do {
|
||||
/* Move left index to element >= pivot */
|
||||
while (l < hi) {
|
||||
k = docompare(*l, pivot, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k >= 0)
|
||||
break;
|
||||
tmp = *l; *l = *r; *r = tmp;
|
||||
if (l == p) {
|
||||
p = r;
|
||||
l++;
|
||||
}
|
||||
/* Move right index to element <= pivot */
|
||||
while (r > lo) {
|
||||
k = docompare(pivot, *r, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k >= 0)
|
||||
break;
|
||||
else if (r == p) {
|
||||
p = l;
|
||||
r--;
|
||||
}
|
||||
else {
|
||||
l++;
|
||||
r--;
|
||||
}
|
||||
|
||||
/* If they crossed, we're through */
|
||||
if (l <= r) {
|
||||
/* Swap elements and continue */
|
||||
tmp = *l; *l = *r; *r = tmp;
|
||||
l++; r--;
|
||||
/* Move left index to element >= pivot */
|
||||
while (l < p) {
|
||||
k = docompare(*l, pivot, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
l++;
|
||||
else
|
||||
break;
|
||||
}
|
||||
/* Move right index to element <= pivot */
|
||||
while (r > p) {
|
||||
k = docompare(pivot, *r, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
r--;
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
} while (l <= r);
|
||||
} while (l < r);
|
||||
|
||||
/* Swap pivot back into place; *r <= pivot */
|
||||
*(lo+1) = *r; *r = pivot;
|
||||
/* lo < l == p == r < hi-1
|
||||
*p == pivot
|
||||
|
||||
/* We have now reached the following conditions:
|
||||
lo <= r < l <= hi
|
||||
all x in [lo,r) are <= pivot
|
||||
all x in [r,l) are == pivot
|
||||
all x in [l,hi) are >= pivot
|
||||
The partitions are [lo,r) and [l,hi)
|
||||
All in [lo,p) are <= pivot
|
||||
At p == pivot
|
||||
All in [p+1,hi) are >= pivot
|
||||
|
||||
Now extend as far as possible (around p) so that:
|
||||
All in [lo,r) are <= pivot
|
||||
All in [r,l) are == pivot
|
||||
All in [l,hi) are >= pivot
|
||||
This wastes two compares if no elements are == to the
|
||||
pivot, but can win big when there are duplicates.
|
||||
Mildly tricky: continue using only "<" -- we deduce
|
||||
equality indirectly.
|
||||
*/
|
||||
while (r > lo) {
|
||||
/* because r-1 < p, *(r-1) <= pivot is known */
|
||||
k = docompare(*(r-1), pivot, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
break;
|
||||
/* <= and not < implies == */
|
||||
r--;
|
||||
}
|
||||
|
||||
l++;
|
||||
while (l < hi) {
|
||||
/* because l > p, pivot <= *l is known */
|
||||
k = docompare(pivot, *l, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
break;
|
||||
/* <= and not < implies == */
|
||||
l++;
|
||||
}
|
||||
|
||||
/* Push biggest partition first */
|
||||
n = r - lo;
|
||||
n2 = hi - l;
|
||||
if (n > n2) {
|
||||
if (r - lo >= hi - l) {
|
||||
/* First one is bigger */
|
||||
lostack[top] = lo;
|
||||
histack[top++] = r;
|
||||
|
@ -793,7 +825,6 @@ quicksort(array, size, compare)
|
|||
lostack[top] = lo;
|
||||
histack[top++] = r;
|
||||
}
|
||||
|
||||
/* Should assert top <= STACKSIZE */
|
||||
}
|
||||
|
||||
|
@ -808,7 +839,7 @@ quicksort(array, size, compare)
|
|||
if (insertionsort(array, size, compare) < 0)
|
||||
return -1;
|
||||
|
||||
/* Succes */
|
||||
/* Success */
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue