mirror of https://github.com/python/cpython
Added more documentation on how mixed-mode arithmetic should be implemented. I
also noticed and fixed a bug in Rational's forward operators (they were claiming all instances of numbers.Rational instead of just the concrete types).
This commit is contained in:
parent
e973c61238
commit
b23dea6adb
|
@ -99,3 +99,144 @@ The numeric tower
|
||||||
3-argument form of :func:`pow`, and the bit-string operations: ``<<``,
|
3-argument form of :func:`pow`, and the bit-string operations: ``<<``,
|
||||||
``>>``, ``&``, ``^``, ``|``, ``~``. Provides defaults for :func:`float`,
|
``>>``, ``&``, ``^``, ``|``, ``~``. Provides defaults for :func:`float`,
|
||||||
:attr:`Rational.numerator`, and :attr:`Rational.denominator`.
|
:attr:`Rational.numerator`, and :attr:`Rational.denominator`.
|
||||||
|
|
||||||
|
|
||||||
|
Notes for type implementors
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
Implementors should be careful to make equal numbers equal and hash
|
||||||
|
them to the same values. This may be subtle if there are two different
|
||||||
|
extensions of the real numbers. For example, :class:`rational.Rational`
|
||||||
|
implements :func:`hash` as follows::
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
if self.denominator == 1:
|
||||||
|
# Get integers right.
|
||||||
|
return hash(self.numerator)
|
||||||
|
# Expensive check, but definitely correct.
|
||||||
|
if self == float(self):
|
||||||
|
return hash(float(self))
|
||||||
|
else:
|
||||||
|
# Use tuple's hash to avoid a high collision rate on
|
||||||
|
# simple fractions.
|
||||||
|
return hash((self.numerator, self.denominator))
|
||||||
|
|
||||||
|
|
||||||
|
Adding More Numeric ABCs
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are, of course, more possible ABCs for numbers, and this would
|
||||||
|
be a poor hierarchy if it precluded the possibility of adding
|
||||||
|
those. You can add ``MyFoo`` between :class:`Complex` and
|
||||||
|
:class:`Real` with::
|
||||||
|
|
||||||
|
class MyFoo(Complex): ...
|
||||||
|
MyFoo.register(Real)
|
||||||
|
|
||||||
|
|
||||||
|
Implementing the arithmetic operations
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
We want to implement the arithmetic operations so that mixed-mode
|
||||||
|
operations either call an implementation whose author knew about the
|
||||||
|
types of both arguments, or convert both to the nearest built in type
|
||||||
|
and do the operation there. For subtypes of :class:`Integral`, this
|
||||||
|
means that :meth:`__add__` and :meth:`__radd__` should be defined as::
|
||||||
|
|
||||||
|
class MyIntegral(Integral):
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
if isinstance(other, MyIntegral):
|
||||||
|
return do_my_adding_stuff(self, other)
|
||||||
|
elif isinstance(other, OtherTypeIKnowAbout):
|
||||||
|
return do_my_other_adding_stuff(self, other)
|
||||||
|
else:
|
||||||
|
return NotImplemented
|
||||||
|
|
||||||
|
def __radd__(self, other):
|
||||||
|
if isinstance(other, MyIntegral):
|
||||||
|
return do_my_adding_stuff(other, self)
|
||||||
|
elif isinstance(other, OtherTypeIKnowAbout):
|
||||||
|
return do_my_other_adding_stuff(other, self)
|
||||||
|
elif isinstance(other, Integral):
|
||||||
|
return int(other) + int(self)
|
||||||
|
elif isinstance(other, Real):
|
||||||
|
return float(other) + float(self)
|
||||||
|
elif isinstance(other, Complex):
|
||||||
|
return complex(other) + complex(self)
|
||||||
|
else:
|
||||||
|
return NotImplemented
|
||||||
|
|
||||||
|
|
||||||
|
There are 5 different cases for a mixed-type operation on subclasses
|
||||||
|
of :class:`Complex`. I'll refer to all of the above code that doesn't
|
||||||
|
refer to ``MyIntegral`` and ``OtherTypeIKnowAbout`` as
|
||||||
|
"boilerplate". ``a`` will be an instance of ``A``, which is a subtype
|
||||||
|
of :class:`Complex` (``a : A <: Complex``), and ``b : B <:
|
||||||
|
Complex``. I'll consider ``a + b``:
|
||||||
|
|
||||||
|
1. If ``A`` defines an :meth:`__add__` which accepts ``b``, all is
|
||||||
|
well.
|
||||||
|
2. If ``A`` falls back to the boilerplate code, and it were to
|
||||||
|
return a value from :meth:`__add__`, we'd miss the possibility
|
||||||
|
that ``B`` defines a more intelligent :meth:`__radd__`, so the
|
||||||
|
boilerplate should return :const:`NotImplemented` from
|
||||||
|
:meth:`__add__`. (Or ``A`` may not implement :meth:`__add__` at
|
||||||
|
all.)
|
||||||
|
3. Then ``B``'s :meth:`__radd__` gets a chance. If it accepts
|
||||||
|
``a``, all is well.
|
||||||
|
4. If it falls back to the boilerplate, there are no more possible
|
||||||
|
methods to try, so this is where the default implementation
|
||||||
|
should live.
|
||||||
|
5. If ``B <: A``, Python tries ``B.__radd__`` before
|
||||||
|
``A.__add__``. This is ok, because it was implemented with
|
||||||
|
knowledge of ``A``, so it can handle those instances before
|
||||||
|
delegating to :class:`Complex`.
|
||||||
|
|
||||||
|
If ``A<:Complex`` and ``B<:Real`` without sharing any other knowledge,
|
||||||
|
then the appropriate shared operation is the one involving the built
|
||||||
|
in :class:`complex`, and both :meth:`__radd__` s land there, so ``a+b
|
||||||
|
== b+a``.
|
||||||
|
|
||||||
|
Because most of the operations on any given type will be very similar,
|
||||||
|
it can be useful to define a helper function which generates the
|
||||||
|
forward and reverse instances of any given operator. For example,
|
||||||
|
:class:`rational.Rational` uses::
|
||||||
|
|
||||||
|
def _operator_fallbacks(monomorphic_operator, fallback_operator):
|
||||||
|
def forward(a, b):
|
||||||
|
if isinstance(b, (int, long, Rational)):
|
||||||
|
return monomorphic_operator(a, b)
|
||||||
|
elif isinstance(b, float):
|
||||||
|
return fallback_operator(float(a), b)
|
||||||
|
elif isinstance(b, complex):
|
||||||
|
return fallback_operator(complex(a), b)
|
||||||
|
else:
|
||||||
|
return NotImplemented
|
||||||
|
forward.__name__ = '__' + fallback_operator.__name__ + '__'
|
||||||
|
forward.__doc__ = monomorphic_operator.__doc__
|
||||||
|
|
||||||
|
def reverse(b, a):
|
||||||
|
if isinstance(a, RationalAbc):
|
||||||
|
# Includes ints.
|
||||||
|
return monomorphic_operator(a, b)
|
||||||
|
elif isinstance(a, numbers.Real):
|
||||||
|
return fallback_operator(float(a), float(b))
|
||||||
|
elif isinstance(a, numbers.Complex):
|
||||||
|
return fallback_operator(complex(a), complex(b))
|
||||||
|
else:
|
||||||
|
return NotImplemented
|
||||||
|
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
|
||||||
|
reverse.__doc__ = monomorphic_operator.__doc__
|
||||||
|
|
||||||
|
return forward, reverse
|
||||||
|
|
||||||
|
def _add(a, b):
|
||||||
|
"""a + b"""
|
||||||
|
return Rational(a.numerator * b.denominator +
|
||||||
|
b.numerator * a.denominator,
|
||||||
|
a.denominator * b.denominator)
|
||||||
|
|
||||||
|
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
|
||||||
|
|
||||||
|
# ...
|
|
@ -292,7 +292,13 @@ class Rational(Real, Exact):
|
||||||
|
|
||||||
# Concrete implementation of Real's conversion to float.
|
# Concrete implementation of Real's conversion to float.
|
||||||
def __float__(self):
|
def __float__(self):
|
||||||
"""float(self) = self.numerator / self.denominator"""
|
"""float(self) = self.numerator / self.denominator
|
||||||
|
|
||||||
|
It's important that this conversion use the integer's "true"
|
||||||
|
division rather than casting one side to float before dividing
|
||||||
|
so that ratios of huge integers convert without overflowing.
|
||||||
|
|
||||||
|
"""
|
||||||
return self.numerator / self.denominator
|
return self.numerator / self.denominator
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -179,16 +179,6 @@ class Rational(RationalAbc):
|
||||||
else:
|
else:
|
||||||
return '%s/%s' % (self.numerator, self.denominator)
|
return '%s/%s' % (self.numerator, self.denominator)
|
||||||
|
|
||||||
""" XXX This section needs a lot more commentary
|
|
||||||
|
|
||||||
* Explain the typical sequence of checks, calls, and fallbacks.
|
|
||||||
* Explain the subtle reasons why this logic was needed.
|
|
||||||
* It is not clear how common cases are handled (for example, how
|
|
||||||
does the ratio of two huge integers get converted to a float
|
|
||||||
without overflowing the long-->float conversion.
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def _operator_fallbacks(monomorphic_operator, fallback_operator):
|
def _operator_fallbacks(monomorphic_operator, fallback_operator):
|
||||||
"""Generates forward and reverse operators given a purely-rational
|
"""Generates forward and reverse operators given a purely-rational
|
||||||
operator and a function from the operator module.
|
operator and a function from the operator module.
|
||||||
|
@ -196,10 +186,82 @@ class Rational(RationalAbc):
|
||||||
Use this like:
|
Use this like:
|
||||||
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
|
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
|
||||||
|
|
||||||
|
In general, we want to implement the arithmetic operations so
|
||||||
|
that mixed-mode operations either call an implementation whose
|
||||||
|
author knew about the types of both arguments, or convert both
|
||||||
|
to the nearest built in type and do the operation there. In
|
||||||
|
Rational, that means that we define __add__ and __radd__ as:
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
if isinstance(other, (int, long, Rational)):
|
||||||
|
# Do the real operation.
|
||||||
|
return Rational(self.numerator * other.denominator +
|
||||||
|
other.numerator * self.denominator,
|
||||||
|
self.denominator * other.denominator)
|
||||||
|
# float and complex don't follow this protocol, and
|
||||||
|
# Rational knows about them, so special case them.
|
||||||
|
elif isinstance(other, float):
|
||||||
|
return float(self) + other
|
||||||
|
elif isinstance(other, complex):
|
||||||
|
return complex(self) + other
|
||||||
|
else:
|
||||||
|
# Let the other type take over.
|
||||||
|
return NotImplemented
|
||||||
|
|
||||||
|
def __radd__(self, other):
|
||||||
|
# radd handles more types than add because there's
|
||||||
|
# nothing left to fall back to.
|
||||||
|
if isinstance(other, RationalAbc):
|
||||||
|
return Rational(self.numerator * other.denominator +
|
||||||
|
other.numerator * self.denominator,
|
||||||
|
self.denominator * other.denominator)
|
||||||
|
elif isinstance(other, Real):
|
||||||
|
return float(other) + float(self)
|
||||||
|
elif isinstance(other, Complex):
|
||||||
|
return complex(other) + complex(self)
|
||||||
|
else:
|
||||||
|
return NotImplemented
|
||||||
|
|
||||||
|
|
||||||
|
There are 5 different cases for a mixed-type addition on
|
||||||
|
Rational. I'll refer to all of the above code that doesn't
|
||||||
|
refer to Rational, float, or complex as "boilerplate". 'r'
|
||||||
|
will be an instance of Rational, which is a subtype of
|
||||||
|
RationalAbc (r : Rational <: RationalAbc), and b : B <:
|
||||||
|
Complex. The first three involve 'r + b':
|
||||||
|
|
||||||
|
1. If B <: Rational, int, float, or complex, we handle
|
||||||
|
that specially, and all is well.
|
||||||
|
2. If Rational falls back to the boilerplate code, and it
|
||||||
|
were to return a value from __add__, we'd miss the
|
||||||
|
possibility that B defines a more intelligent __radd__,
|
||||||
|
so the boilerplate should return NotImplemented from
|
||||||
|
__add__. In particular, we don't handle RationalAbc
|
||||||
|
here, even though we could get an exact answer, in case
|
||||||
|
the other type wants to do something special.
|
||||||
|
3. If B <: Rational, Python tries B.__radd__ before
|
||||||
|
Rational.__add__. This is ok, because it was
|
||||||
|
implemented with knowledge of Rational, so it can
|
||||||
|
handle those instances before delegating to Real or
|
||||||
|
Complex.
|
||||||
|
|
||||||
|
The next two situations describe 'b + r'. We assume that b
|
||||||
|
didn't know about Rational in its implementation, and that it
|
||||||
|
uses similar boilerplate code:
|
||||||
|
|
||||||
|
4. If B <: RationalAbc, then __radd_ converts both to the
|
||||||
|
builtin rational type (hey look, that's us) and
|
||||||
|
proceeds.
|
||||||
|
5. Otherwise, __radd__ tries to find the nearest common
|
||||||
|
base ABC, and fall back to its builtin type. Since this
|
||||||
|
class doesn't subclass a concrete type, there's no
|
||||||
|
implementation to fall back to, so we need to try as
|
||||||
|
hard as possible to return an actual value, or the user
|
||||||
|
will get a TypeError.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def forward(a, b):
|
def forward(a, b):
|
||||||
if isinstance(b, RationalAbc):
|
if isinstance(b, (int, long, Rational)):
|
||||||
# Includes ints.
|
|
||||||
return monomorphic_operator(a, b)
|
return monomorphic_operator(a, b)
|
||||||
elif isinstance(b, float):
|
elif isinstance(b, float):
|
||||||
return fallback_operator(float(a), b)
|
return fallback_operator(float(a), b)
|
||||||
|
|
Loading…
Reference in New Issue