mirror of https://github.com/python/cpython
GH-126491: GC: Mark objects reachable from roots before doing cycle collection (GH-127110)
* Mark almost all reachable objects before doing collection phase * Add stats for objects marked * Visit new frames before each increment * Update docs * Clearer calculation of work to do.
This commit is contained in:
parent
2a373da770
commit
a8dd821d5b
|
@ -99,6 +99,8 @@ typedef struct _gc_stats {
|
|||
uint64_t collections;
|
||||
uint64_t object_visits;
|
||||
uint64_t objects_collected;
|
||||
uint64_t objects_transitively_reachable;
|
||||
uint64_t objects_not_transitively_reachable;
|
||||
} GCStats;
|
||||
|
||||
typedef struct _uop_stats {
|
||||
|
|
|
@ -75,6 +75,7 @@ typedef struct _PyInterpreterFrame {
|
|||
_PyStackRef *stackpointer;
|
||||
uint16_t return_offset; /* Only relevant during a function call */
|
||||
char owner;
|
||||
char visited;
|
||||
/* Locals and stack */
|
||||
_PyStackRef localsplus[1];
|
||||
} _PyInterpreterFrame;
|
||||
|
@ -207,6 +208,7 @@ _PyFrame_Initialize(
|
|||
#endif
|
||||
frame->return_offset = 0;
|
||||
frame->owner = FRAME_OWNED_BY_THREAD;
|
||||
frame->visited = 0;
|
||||
|
||||
for (int i = null_locals_from; i < code->co_nlocalsplus; i++) {
|
||||
frame->localsplus[i] = PyStackRef_NULL;
|
||||
|
@ -389,6 +391,7 @@ _PyFrame_PushTrampolineUnchecked(PyThreadState *tstate, PyCodeObject *code, int
|
|||
frame->instr_ptr = _PyCode_CODE(code);
|
||||
#endif
|
||||
frame->owner = FRAME_OWNED_BY_THREAD;
|
||||
frame->visited = 0;
|
||||
frame->return_offset = 0;
|
||||
|
||||
#ifdef Py_GIL_DISABLED
|
||||
|
|
|
@ -10,11 +10,11 @@ extern "C" {
|
|||
|
||||
/* GC information is stored BEFORE the object structure. */
|
||||
typedef struct {
|
||||
// Pointer to next object in the list.
|
||||
// Tagged pointer to next object in the list.
|
||||
// 0 means the object is not tracked
|
||||
uintptr_t _gc_next;
|
||||
|
||||
// Pointer to previous object in the list.
|
||||
// Tagged pointer to previous object in the list.
|
||||
// Lowest two bits are used for flags documented later.
|
||||
uintptr_t _gc_prev;
|
||||
} PyGC_Head;
|
||||
|
@ -284,6 +284,11 @@ struct gc_generation_stats {
|
|||
Py_ssize_t uncollectable;
|
||||
};
|
||||
|
||||
enum _GCPhase {
|
||||
GC_PHASE_MARK = 0,
|
||||
GC_PHASE_COLLECT = 1
|
||||
};
|
||||
|
||||
struct _gc_runtime_state {
|
||||
/* List of objects that still need to be cleaned up, singly linked
|
||||
* via their gc headers' gc_prev pointers. */
|
||||
|
@ -311,6 +316,7 @@ struct _gc_runtime_state {
|
|||
Py_ssize_t work_to_do;
|
||||
/* Which of the old spaces is the visited space */
|
||||
int visited_space;
|
||||
int phase;
|
||||
|
||||
#ifdef Py_GIL_DISABLED
|
||||
/* This is the number of objects that survived the last full
|
||||
|
|
|
@ -471,8 +471,8 @@ static inline void _PyObject_GC_TRACK(
|
|||
PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev);
|
||||
_PyGCHead_SET_NEXT(last, gc);
|
||||
_PyGCHead_SET_PREV(gc, last);
|
||||
/* Young objects will be moved into the visited space during GC, so set the bit here */
|
||||
gc->_gc_next = ((uintptr_t)generation0) | (uintptr_t)interp->gc.visited_space;
|
||||
uintptr_t not_visited = 1 ^ interp->gc.visited_space;
|
||||
gc->_gc_next = ((uintptr_t)generation0) | not_visited;
|
||||
generation0->_gc_prev = (uintptr_t)gc;
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -137,6 +137,7 @@ extern PyTypeObject _PyExc_MemoryError;
|
|||
{ .threshold = 0, }, \
|
||||
}, \
|
||||
.work_to_do = -5000, \
|
||||
.phase = GC_PHASE_MARK, \
|
||||
}, \
|
||||
.qsbr = { \
|
||||
.wr_seq = QSBR_INITIAL, \
|
||||
|
|
|
@ -477,6 +477,45 @@ specifically in a generation by calling `gc.collect(generation=NUM)`.
|
|||
```
|
||||
|
||||
|
||||
Optimization: visiting reachable objects
|
||||
========================================
|
||||
|
||||
An object cannot be garbage if it can be reached.
|
||||
|
||||
To avoid having to identify reference cycles across the whole heap, we can
|
||||
reduce the amount of work done considerably by first moving most reachable objects
|
||||
to the `visited` space. Empirically, most reachable objects can be reached from a
|
||||
small set of global objects and local variables.
|
||||
This step does much less work per object, so reduces the time spent
|
||||
performing garbage collection by at least half.
|
||||
|
||||
> [!NOTE]
|
||||
> Objects that are not determined to be reachable by this pass are not necessarily
|
||||
> unreachable. We still need to perform the main algorithm to determine which objects
|
||||
> are actually unreachable.
|
||||
We use the same technique of forming a transitive closure as the incremental
|
||||
collector does to find reachable objects, seeding the list with some global
|
||||
objects and the currently executing frames.
|
||||
|
||||
This phase moves objects to the `visited` space, as follows:
|
||||
|
||||
1. All objects directly referred to by any builtin class, the `sys` module, the `builtins`
|
||||
module and all objects directly referred to from stack frames are added to a working
|
||||
set of reachable objects.
|
||||
2. Until this working set is empty:
|
||||
1. Pop an object from the set and move it to the `visited` space
|
||||
2. For each object directly reachable from that object:
|
||||
* If it is not already in `visited` space and it is a GC object,
|
||||
add it to the working set
|
||||
|
||||
|
||||
Before each increment of collection is performed, the stacks are scanned
|
||||
to check for any new stack frames that have been created since the last
|
||||
increment. All objects directly referred to from those stack frames are
|
||||
added to the working set.
|
||||
Then the above algorithm is repeated, starting from step 2.
|
||||
|
||||
|
||||
Optimization: reusing fields to save memory
|
||||
===========================================
|
||||
|
||||
|
|
|
@ -123,9 +123,9 @@ def runtest_refleak(test_name, test_func,
|
|||
xml_filename = 'refleak-xml.tmp'
|
||||
result = None
|
||||
dash_R_cleanup(fs, ps, pic, zdc, abcs)
|
||||
support.gc_collect()
|
||||
|
||||
for i in rep_range:
|
||||
support.gc_collect()
|
||||
current = refleak_helper._hunting_for_refleaks
|
||||
refleak_helper._hunting_for_refleaks = True
|
||||
try:
|
||||
|
|
|
@ -31,6 +31,11 @@ except ImportError:
|
|||
return C
|
||||
ContainerNoGC = None
|
||||
|
||||
try:
|
||||
import _testinternalcapi
|
||||
except ImportError:
|
||||
_testinternalcapi = None
|
||||
|
||||
### Support code
|
||||
###############################################################################
|
||||
|
||||
|
@ -1130,6 +1135,7 @@ class IncrementalGCTests(unittest.TestCase):
|
|||
def tearDown(self):
|
||||
gc.disable()
|
||||
|
||||
@unittest.skipIf(_testinternalcapi is None, "requires _testinternalcapi")
|
||||
@requires_gil_enabled("Free threading does not support incremental GC")
|
||||
# Use small increments to emulate longer running process in a shorter time
|
||||
@gc_threshold(200, 10)
|
||||
|
@ -1167,20 +1173,15 @@ class IncrementalGCTests(unittest.TestCase):
|
|||
enabled = gc.isenabled()
|
||||
gc.enable()
|
||||
olds = []
|
||||
initial_heap_size = _testinternalcapi.get_tracked_heap_size()
|
||||
for i in range(20_000):
|
||||
newhead = make_ll(20)
|
||||
count += 20
|
||||
newhead.surprise = head
|
||||
olds.append(newhead)
|
||||
if len(olds) == 20:
|
||||
stats = gc.get_stats()
|
||||
young = stats[0]
|
||||
incremental = stats[1]
|
||||
old = stats[2]
|
||||
collected = young['collected'] + incremental['collected'] + old['collected']
|
||||
count += CORRECTION
|
||||
live = count - collected
|
||||
self.assertLess(live, 25000)
|
||||
new_objects = _testinternalcapi.get_tracked_heap_size() - initial_heap_size
|
||||
self.assertLess(new_objects, 27_000, f"Heap growing. Reached limit after {i} iterations")
|
||||
del olds[:]
|
||||
if not enabled:
|
||||
gc.disable()
|
||||
|
@ -1322,7 +1323,8 @@ class GCCallbackTests(unittest.TestCase):
|
|||
from test.support import gc_collect, SuppressCrashReport
|
||||
|
||||
a = [1, 2, 3]
|
||||
b = [a]
|
||||
b = [a, a]
|
||||
a.append(b)
|
||||
|
||||
# Avoid coredump when Py_FatalError() calls abort()
|
||||
SuppressCrashReport().__enter__()
|
||||
|
@ -1332,6 +1334,8 @@ class GCCallbackTests(unittest.TestCase):
|
|||
# (to avoid deallocating it):
|
||||
import ctypes
|
||||
ctypes.pythonapi.Py_DecRef(ctypes.py_object(a))
|
||||
del a
|
||||
del b
|
||||
|
||||
# The garbage collector should now have a fatal error
|
||||
# when it reaches the broken object
|
||||
|
@ -1360,7 +1364,7 @@ class GCCallbackTests(unittest.TestCase):
|
|||
self.assertRegex(stderr,
|
||||
br'object type name: list')
|
||||
self.assertRegex(stderr,
|
||||
br'object repr : \[1, 2, 3\]')
|
||||
br'object repr : \[1, 2, 3, \[\[...\], \[...\]\]\]')
|
||||
|
||||
|
||||
class GCTogglingTests(unittest.TestCase):
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
Add a marking phase to the GC. All objects that can be transitively reached
|
||||
from builtin modules or the stacks are marked as reachable before cycle
|
||||
detection. This reduces the amount of work done by the GC by approximately
|
||||
half.
|
|
@ -2076,6 +2076,11 @@ has_deferred_refcount(PyObject *self, PyObject *op)
|
|||
return PyBool_FromLong(_PyObject_HasDeferredRefcount(op));
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
get_tracked_heap_size(PyObject *self, PyObject *Py_UNUSED(ignored))
|
||||
{
|
||||
return PyLong_FromInt64(PyInterpreterState_Get()->gc.heap_size);
|
||||
}
|
||||
|
||||
static PyMethodDef module_functions[] = {
|
||||
{"get_configs", get_configs, METH_NOARGS},
|
||||
|
@ -2174,6 +2179,7 @@ static PyMethodDef module_functions[] = {
|
|||
{"get_static_builtin_types", get_static_builtin_types, METH_NOARGS},
|
||||
{"identify_type_slot_wrappers", identify_type_slot_wrappers, METH_NOARGS},
|
||||
{"has_deferred_refcount", has_deferred_refcount, METH_O},
|
||||
{"get_tracked_heap_size", get_tracked_heap_size, METH_NOARGS},
|
||||
{NULL, NULL} /* sentinel */
|
||||
};
|
||||
|
||||
|
|
|
@ -818,6 +818,7 @@ _PyEval_EvalFrameDefault(PyThreadState *tstate, _PyInterpreterFrame *frame, int
|
|||
entry_frame.instr_ptr = (_Py_CODEUNIT *)_Py_INTERPRETER_TRAMPOLINE_INSTRUCTIONS + 1;
|
||||
entry_frame.stackpointer = entry_frame.localsplus;
|
||||
entry_frame.owner = FRAME_OWNED_BY_CSTACK;
|
||||
entry_frame.visited = 0;
|
||||
entry_frame.return_offset = 0;
|
||||
/* Push frame */
|
||||
entry_frame.previous = tstate->current_frame;
|
||||
|
|
375
Python/gc.c
375
Python/gc.c
|
@ -106,7 +106,7 @@ gc_old_space(PyGC_Head *g)
|
|||
}
|
||||
|
||||
static inline int
|
||||
flip_old_space(int space)
|
||||
other_space(int space)
|
||||
{
|
||||
assert(space == 0 || space == 1);
|
||||
return space ^ _PyGC_NEXT_MASK_OLD_SPACE_1;
|
||||
|
@ -430,38 +430,7 @@ validate_list(PyGC_Head *head, enum flagstates flags)
|
|||
#endif
|
||||
|
||||
#ifdef GC_EXTRA_DEBUG
|
||||
static void
|
||||
validate_old(GCState *gcstate)
|
||||
{
|
||||
for (int space = 0; space < 2; space++) {
|
||||
PyGC_Head *head = &gcstate->old[space].head;
|
||||
PyGC_Head *gc = GC_NEXT(head);
|
||||
while (gc != head) {
|
||||
PyGC_Head *next = GC_NEXT(gc);
|
||||
assert(gc_old_space(gc) == space);
|
||||
gc = next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
validate_consistent_old_space(PyGC_Head *head)
|
||||
{
|
||||
PyGC_Head *prev = head;
|
||||
PyGC_Head *gc = GC_NEXT(head);
|
||||
if (gc == head) {
|
||||
return;
|
||||
}
|
||||
int old_space = gc_old_space(gc);
|
||||
while (gc != head) {
|
||||
PyGC_Head *truenext = GC_NEXT(gc);
|
||||
assert(truenext != NULL);
|
||||
assert(gc_old_space(gc) == old_space);
|
||||
prev = gc;
|
||||
gc = truenext;
|
||||
}
|
||||
assert(prev == GC_PREV(head));
|
||||
}
|
||||
|
||||
static void
|
||||
gc_list_validate_space(PyGC_Head *head, int space) {
|
||||
|
@ -472,8 +441,37 @@ gc_list_validate_space(PyGC_Head *head, int space) {
|
|||
}
|
||||
}
|
||||
|
||||
static void
|
||||
validate_spaces(GCState *gcstate)
|
||||
{
|
||||
int visited = gcstate->visited_space;
|
||||
int not_visited = other_space(visited);
|
||||
gc_list_validate_space(&gcstate->young.head, not_visited);
|
||||
for (int space = 0; space < 2; space++) {
|
||||
gc_list_validate_space(&gcstate->old[space].head, space);
|
||||
}
|
||||
gc_list_validate_space(&gcstate->permanent_generation.head, visited);
|
||||
}
|
||||
|
||||
static void
|
||||
validate_consistent_old_space(PyGC_Head *head)
|
||||
{
|
||||
PyGC_Head *gc = GC_NEXT(head);
|
||||
if (gc == head) {
|
||||
return;
|
||||
}
|
||||
int old_space = gc_old_space(gc);
|
||||
while (gc != head) {
|
||||
PyGC_Head *truenext = GC_NEXT(gc);
|
||||
assert(truenext != NULL);
|
||||
assert(gc_old_space(gc) == old_space);
|
||||
gc = truenext;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#else
|
||||
#define validate_old(g) do{}while(0)
|
||||
#define validate_spaces(g) do{}while(0)
|
||||
#define validate_consistent_old_space(l) do{}while(0)
|
||||
#define gc_list_validate_space(l, s) do{}while(0)
|
||||
#endif
|
||||
|
@ -494,7 +492,7 @@ update_refs(PyGC_Head *containers)
|
|||
next = GC_NEXT(gc);
|
||||
PyObject *op = FROM_GC(gc);
|
||||
if (_Py_IsImmortal(op)) {
|
||||
gc_list_move(gc, &get_gc_state()->permanent_generation.head);
|
||||
_PyObject_GC_UNTRACK(op);
|
||||
gc = next;
|
||||
continue;
|
||||
}
|
||||
|
@ -733,13 +731,25 @@ move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
|
|||
unreachable->_gc_next &= _PyGC_PREV_MASK;
|
||||
}
|
||||
|
||||
/* In theory, all tuples should be younger than the
|
||||
* objects they refer to, as tuples are immortal.
|
||||
* Therefore, untracking tuples in oldest-first order in the
|
||||
* young generation before promoting them should have tracked
|
||||
* all the tuples that can be untracked.
|
||||
*
|
||||
* Unfortunately, the C API allows tuples to be created
|
||||
* and then filled in. So this won't untrack all tuples
|
||||
* that can be untracked. It should untrack most of them
|
||||
* and is much faster than a more complex approach that
|
||||
* would untrack all relevant tuples.
|
||||
*/
|
||||
static void
|
||||
untrack_tuples(PyGC_Head *head)
|
||||
{
|
||||
PyGC_Head *next, *gc = GC_NEXT(head);
|
||||
PyGC_Head *gc = GC_NEXT(head);
|
||||
while (gc != head) {
|
||||
PyObject *op = FROM_GC(gc);
|
||||
next = GC_NEXT(gc);
|
||||
PyGC_Head *next = GC_NEXT(gc);
|
||||
if (PyTuple_CheckExact(op)) {
|
||||
_PyTuple_MaybeUntrack(op);
|
||||
}
|
||||
|
@ -1293,8 +1303,10 @@ gc_collect_young(PyThreadState *tstate,
|
|||
struct gc_collection_stats *stats)
|
||||
{
|
||||
GCState *gcstate = &tstate->interp->gc;
|
||||
validate_spaces(gcstate);
|
||||
PyGC_Head *young = &gcstate->young.head;
|
||||
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
||||
untrack_tuples(young);
|
||||
GC_STAT_ADD(0, collections, 1);
|
||||
#ifdef Py_STATS
|
||||
{
|
||||
|
@ -1308,39 +1320,21 @@ gc_collect_young(PyThreadState *tstate,
|
|||
|
||||
PyGC_Head survivors;
|
||||
gc_list_init(&survivors);
|
||||
gc_list_set_space(young, gcstate->visited_space);
|
||||
gc_collect_region(tstate, young, &survivors, stats);
|
||||
Py_ssize_t survivor_count = 0;
|
||||
if (gcstate->visited_space) {
|
||||
/* objects in visited space have bit set, so we set it here */
|
||||
survivor_count = gc_list_set_space(&survivors, 1);
|
||||
}
|
||||
else {
|
||||
PyGC_Head *gc;
|
||||
for (gc = GC_NEXT(&survivors); gc != &survivors; gc = GC_NEXT(gc)) {
|
||||
#ifdef GC_DEBUG
|
||||
assert(gc_old_space(gc) == 0);
|
||||
#endif
|
||||
survivor_count++;
|
||||
}
|
||||
}
|
||||
(void)survivor_count; // Silence compiler warning
|
||||
gc_list_merge(&survivors, visited);
|
||||
validate_old(gcstate);
|
||||
validate_spaces(gcstate);
|
||||
gcstate->young.count = 0;
|
||||
gcstate->old[gcstate->visited_space].count++;
|
||||
Py_ssize_t scale_factor = gcstate->old[0].threshold;
|
||||
if (scale_factor < 1) {
|
||||
scale_factor = 1;
|
||||
}
|
||||
gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
|
||||
add_stats(gcstate, 0, stats);
|
||||
validate_spaces(gcstate);
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
static inline int
|
||||
IS_IN_VISITED(PyGC_Head *gc, int visited_space)
|
||||
{
|
||||
assert(visited_space == 0 || flip_old_space(visited_space) == 0);
|
||||
assert(visited_space == 0 || other_space(visited_space) == 0);
|
||||
return gc_old_space(gc) == visited_space;
|
||||
}
|
||||
#endif
|
||||
|
@ -1348,7 +1342,7 @@ IS_IN_VISITED(PyGC_Head *gc, int visited_space)
|
|||
struct container_and_flag {
|
||||
PyGC_Head *container;
|
||||
int visited_space;
|
||||
uintptr_t size;
|
||||
intptr_t size;
|
||||
};
|
||||
|
||||
/* A traversal callback for adding to container) */
|
||||
|
@ -1371,7 +1365,7 @@ visit_add_to_container(PyObject *op, void *arg)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static uintptr_t
|
||||
static intptr_t
|
||||
expand_region_transitively_reachable(PyGC_Head *container, PyGC_Head *gc, GCState *gcstate)
|
||||
{
|
||||
struct container_and_flag arg = {
|
||||
|
@ -1385,6 +1379,7 @@ expand_region_transitively_reachable(PyGC_Head *container, PyGC_Head *gc, GCStat
|
|||
* have been marked as visited */
|
||||
assert(IS_IN_VISITED(gc, gcstate->visited_space));
|
||||
PyObject *op = FROM_GC(gc);
|
||||
assert(_PyObject_GC_IS_TRACKED(op));
|
||||
if (_Py_IsImmortal(op)) {
|
||||
PyGC_Head *next = GC_NEXT(gc);
|
||||
gc_list_move(gc, &get_gc_state()->permanent_generation.head);
|
||||
|
@ -1402,22 +1397,191 @@ expand_region_transitively_reachable(PyGC_Head *container, PyGC_Head *gc, GCStat
|
|||
|
||||
/* Do bookkeeping for a completed GC cycle */
|
||||
static void
|
||||
completed_cycle(GCState *gcstate)
|
||||
completed_scavenge(GCState *gcstate)
|
||||
{
|
||||
#ifdef Py_DEBUG
|
||||
PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
|
||||
assert(gc_list_is_empty(not_visited));
|
||||
#endif
|
||||
gcstate->visited_space = flip_old_space(gcstate->visited_space);
|
||||
/* Make sure all young objects have old space bit set correctly */
|
||||
PyGC_Head *young = &gcstate->young.head;
|
||||
PyGC_Head *gc = GC_NEXT(young);
|
||||
while (gc != young) {
|
||||
PyGC_Head *next = GC_NEXT(gc);
|
||||
gc_set_old_space(gc, gcstate->visited_space);
|
||||
gc = next;
|
||||
/* We must observe two invariants:
|
||||
* 1. Members of the permanent generation must be marked visited.
|
||||
* 2. We cannot touch members of the permanent generation. */
|
||||
int visited;
|
||||
if (gc_list_is_empty(&gcstate->permanent_generation.head)) {
|
||||
/* Permanent generation is empty so we can flip spaces bit */
|
||||
int not_visited = gcstate->visited_space;
|
||||
visited = other_space(not_visited);
|
||||
gcstate->visited_space = visited;
|
||||
/* Make sure all objects have visited bit set correctly */
|
||||
gc_list_set_space(&gcstate->young.head, not_visited);
|
||||
}
|
||||
else {
|
||||
/* We must move the objects from visited to pending space. */
|
||||
visited = gcstate->visited_space;
|
||||
int not_visited = other_space(visited);
|
||||
assert(gc_list_is_empty(&gcstate->old[not_visited].head));
|
||||
gc_list_merge(&gcstate->old[visited].head, &gcstate->old[not_visited].head);
|
||||
gc_list_set_space(&gcstate->old[not_visited].head, not_visited);
|
||||
}
|
||||
assert(gc_list_is_empty(&gcstate->old[visited].head));
|
||||
gcstate->work_to_do = 0;
|
||||
gcstate->phase = GC_PHASE_MARK;
|
||||
}
|
||||
|
||||
static intptr_t
|
||||
move_to_reachable(PyObject *op, PyGC_Head *reachable, int visited_space)
|
||||
{
|
||||
if (op != NULL && !_Py_IsImmortal(op) && _PyObject_IS_GC(op)) {
|
||||
PyGC_Head *gc = AS_GC(op);
|
||||
if (_PyObject_GC_IS_TRACKED(op) &&
|
||||
gc_old_space(gc) != visited_space) {
|
||||
gc_flip_old_space(gc);
|
||||
gc_list_move(gc, reachable);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static intptr_t
|
||||
mark_all_reachable(PyGC_Head *reachable, PyGC_Head *visited, int visited_space)
|
||||
{
|
||||
// Transitively traverse all objects from reachable, until empty
|
||||
struct container_and_flag arg = {
|
||||
.container = reachable,
|
||||
.visited_space = visited_space,
|
||||
.size = 0
|
||||
};
|
||||
while (!gc_list_is_empty(reachable)) {
|
||||
PyGC_Head *gc = _PyGCHead_NEXT(reachable);
|
||||
assert(gc_old_space(gc) == visited_space);
|
||||
gc_list_move(gc, visited);
|
||||
PyObject *op = FROM_GC(gc);
|
||||
traverseproc traverse = Py_TYPE(op)->tp_traverse;
|
||||
(void) traverse(op,
|
||||
visit_add_to_container,
|
||||
&arg);
|
||||
}
|
||||
gc_list_validate_space(visited, visited_space);
|
||||
return arg.size;
|
||||
}
|
||||
|
||||
static intptr_t
|
||||
mark_stacks(PyInterpreterState *interp, PyGC_Head *visited, int visited_space, bool start)
|
||||
{
|
||||
PyGC_Head reachable;
|
||||
gc_list_init(&reachable);
|
||||
Py_ssize_t objects_marked = 0;
|
||||
// Move all objects on stacks to reachable
|
||||
_PyRuntimeState *runtime = &_PyRuntime;
|
||||
HEAD_LOCK(runtime);
|
||||
PyThreadState* ts = PyInterpreterState_ThreadHead(interp);
|
||||
HEAD_UNLOCK(runtime);
|
||||
while (ts) {
|
||||
_PyInterpreterFrame *frame = ts->current_frame;
|
||||
while (frame) {
|
||||
if (frame->owner == FRAME_OWNED_BY_CSTACK) {
|
||||
frame = frame->previous;
|
||||
continue;
|
||||
}
|
||||
_PyStackRef *locals = frame->localsplus;
|
||||
_PyStackRef *sp = frame->stackpointer;
|
||||
objects_marked += move_to_reachable(frame->f_locals, &reachable, visited_space);
|
||||
PyObject *func = PyStackRef_AsPyObjectBorrow(frame->f_funcobj);
|
||||
objects_marked += move_to_reachable(func, &reachable, visited_space);
|
||||
while (sp > locals) {
|
||||
sp--;
|
||||
if (PyStackRef_IsNull(*sp)) {
|
||||
continue;
|
||||
}
|
||||
PyObject *op = PyStackRef_AsPyObjectBorrow(*sp);
|
||||
if (!_Py_IsImmortal(op) && _PyObject_IS_GC(op)) {
|
||||
PyGC_Head *gc = AS_GC(op);
|
||||
if (_PyObject_GC_IS_TRACKED(op) &&
|
||||
gc_old_space(gc) != visited_space) {
|
||||
gc_flip_old_space(gc);
|
||||
objects_marked++;
|
||||
gc_list_move(gc, &reachable);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!start && frame->visited) {
|
||||
// If this frame has already been visited, then the lower frames
|
||||
// will have already been visited and will not have changed
|
||||
break;
|
||||
}
|
||||
frame->visited = 1;
|
||||
frame = frame->previous;
|
||||
}
|
||||
HEAD_LOCK(runtime);
|
||||
ts = PyThreadState_Next(ts);
|
||||
HEAD_UNLOCK(runtime);
|
||||
}
|
||||
objects_marked += mark_all_reachable(&reachable, visited, visited_space);
|
||||
assert(gc_list_is_empty(&reachable));
|
||||
return objects_marked;
|
||||
}
|
||||
|
||||
static intptr_t
|
||||
mark_global_roots(PyInterpreterState *interp, PyGC_Head *visited, int visited_space)
|
||||
{
|
||||
PyGC_Head reachable;
|
||||
gc_list_init(&reachable);
|
||||
Py_ssize_t objects_marked = 0;
|
||||
objects_marked += move_to_reachable(interp->sysdict, &reachable, visited_space);
|
||||
objects_marked += move_to_reachable(interp->builtins, &reachable, visited_space);
|
||||
objects_marked += move_to_reachable(interp->dict, &reachable, visited_space);
|
||||
struct types_state *types = &interp->types;
|
||||
for (int i = 0; i < _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES; i++) {
|
||||
objects_marked += move_to_reachable(types->builtins.initialized[i].tp_dict, &reachable, visited_space);
|
||||
objects_marked += move_to_reachable(types->builtins.initialized[i].tp_subclasses, &reachable, visited_space);
|
||||
}
|
||||
for (int i = 0; i < _Py_MAX_MANAGED_STATIC_EXT_TYPES; i++) {
|
||||
objects_marked += move_to_reachable(types->for_extensions.initialized[i].tp_dict, &reachable, visited_space);
|
||||
objects_marked += move_to_reachable(types->for_extensions.initialized[i].tp_subclasses, &reachable, visited_space);
|
||||
}
|
||||
objects_marked += mark_all_reachable(&reachable, visited, visited_space);
|
||||
assert(gc_list_is_empty(&reachable));
|
||||
return objects_marked;
|
||||
}
|
||||
|
||||
static intptr_t
|
||||
mark_at_start(PyThreadState *tstate)
|
||||
{
|
||||
// TO DO -- Make this incremental
|
||||
GCState *gcstate = &tstate->interp->gc;
|
||||
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
||||
Py_ssize_t objects_marked = mark_global_roots(tstate->interp, visited, gcstate->visited_space);
|
||||
objects_marked += mark_stacks(tstate->interp, visited, gcstate->visited_space, true);
|
||||
gcstate->work_to_do -= objects_marked;
|
||||
gcstate->phase = GC_PHASE_COLLECT;
|
||||
validate_spaces(gcstate);
|
||||
return objects_marked;
|
||||
}
|
||||
|
||||
static intptr_t
|
||||
assess_work_to_do(GCState *gcstate)
|
||||
{
|
||||
/* The amount of work we want to do depends on three things.
|
||||
* 1. The number of new objects created
|
||||
* 2. The growth in heap size since the last collection
|
||||
* 3. The heap size (up to the number of new objects, to avoid quadratic effects)
|
||||
*
|
||||
* For a steady state heap, the amount of work to do is three times the number
|
||||
* of new objects added to the heap. This ensures that we stay ahead in the
|
||||
* worst case of all new objects being garbage.
|
||||
*
|
||||
* This could be improved by tracking survival rates, but it is still a
|
||||
* large improvement on the non-marking approach.
|
||||
*/
|
||||
intptr_t scale_factor = gcstate->old[0].threshold;
|
||||
if (scale_factor < 2) {
|
||||
scale_factor = 2;
|
||||
}
|
||||
intptr_t new_objects = gcstate->young.count;
|
||||
intptr_t max_heap_fraction = new_objects*3/2;
|
||||
intptr_t heap_fraction = gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
|
||||
if (heap_fraction > max_heap_fraction) {
|
||||
heap_fraction = max_heap_fraction;
|
||||
}
|
||||
gcstate->young.count = 0;
|
||||
return new_objects + heap_fraction;
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -1425,18 +1589,30 @@ gc_collect_increment(PyThreadState *tstate, struct gc_collection_stats *stats)
|
|||
{
|
||||
GC_STAT_ADD(1, collections, 1);
|
||||
GCState *gcstate = &tstate->interp->gc;
|
||||
gcstate->work_to_do += assess_work_to_do(gcstate);
|
||||
untrack_tuples(&gcstate->young.head);
|
||||
if (gcstate->phase == GC_PHASE_MARK) {
|
||||
Py_ssize_t objects_marked = mark_at_start(tstate);
|
||||
GC_STAT_ADD(1, objects_transitively_reachable, objects_marked);
|
||||
gcstate->work_to_do -= objects_marked;
|
||||
validate_spaces(gcstate);
|
||||
return;
|
||||
}
|
||||
PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
|
||||
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
||||
PyGC_Head increment;
|
||||
gc_list_init(&increment);
|
||||
Py_ssize_t scale_factor = gcstate->old[0].threshold;
|
||||
if (scale_factor < 1) {
|
||||
scale_factor = 1;
|
||||
int scale_factor = gcstate->old[0].threshold;
|
||||
if (scale_factor < 2) {
|
||||
scale_factor = 2;
|
||||
}
|
||||
intptr_t objects_marked = mark_stacks(tstate->interp, visited, gcstate->visited_space, false);
|
||||
GC_STAT_ADD(1, objects_transitively_reachable, objects_marked);
|
||||
gcstate->work_to_do -= objects_marked;
|
||||
gc_list_set_space(&gcstate->young.head, gcstate->visited_space);
|
||||
gc_list_merge(&gcstate->young.head, &increment);
|
||||
gcstate->young.count = 0;
|
||||
gc_list_validate_space(&increment, gcstate->visited_space);
|
||||
Py_ssize_t increment_size = 0;
|
||||
Py_ssize_t increment_size = gc_list_size(&increment);
|
||||
while (increment_size < gcstate->work_to_do) {
|
||||
if (gc_list_is_empty(not_visited)) {
|
||||
break;
|
||||
|
@ -1444,54 +1620,56 @@ gc_collect_increment(PyThreadState *tstate, struct gc_collection_stats *stats)
|
|||
PyGC_Head *gc = _PyGCHead_NEXT(not_visited);
|
||||
gc_list_move(gc, &increment);
|
||||
increment_size++;
|
||||
assert(!_Py_IsImmortal(FROM_GC(gc)));
|
||||
gc_set_old_space(gc, gcstate->visited_space);
|
||||
increment_size += expand_region_transitively_reachable(&increment, gc, gcstate);
|
||||
}
|
||||
GC_STAT_ADD(1, objects_not_transitively_reachable, increment_size);
|
||||
validate_list(&increment, collecting_clear_unreachable_clear);
|
||||
gc_list_validate_space(&increment, gcstate->visited_space);
|
||||
PyGC_Head survivors;
|
||||
gc_list_init(&survivors);
|
||||
gc_collect_region(tstate, &increment, &survivors, stats);
|
||||
gc_list_validate_space(&survivors, gcstate->visited_space);
|
||||
gc_list_merge(&survivors, visited);
|
||||
assert(gc_list_is_empty(&increment));
|
||||
gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
|
||||
gcstate->work_to_do -= increment_size;
|
||||
|
||||
validate_old(gcstate);
|
||||
add_stats(gcstate, 1, stats);
|
||||
if (gc_list_is_empty(not_visited)) {
|
||||
completed_cycle(gcstate);
|
||||
completed_scavenge(gcstate);
|
||||
}
|
||||
validate_spaces(gcstate);
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
gc_collect_full(PyThreadState *tstate,
|
||||
struct gc_collection_stats *stats)
|
||||
{
|
||||
GC_STAT_ADD(2, collections, 1);
|
||||
GCState *gcstate = &tstate->interp->gc;
|
||||
validate_old(gcstate);
|
||||
validate_spaces(gcstate);
|
||||
PyGC_Head *young = &gcstate->young.head;
|
||||
PyGC_Head *pending = &gcstate->old[gcstate->visited_space^1].head;
|
||||
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
||||
untrack_tuples(young);
|
||||
/* merge all generations into visited */
|
||||
gc_list_validate_space(young, gcstate->visited_space);
|
||||
gc_list_set_space(pending, gcstate->visited_space);
|
||||
gc_list_merge(young, pending);
|
||||
gc_list_validate_space(pending, 1-gcstate->visited_space);
|
||||
gc_list_set_space(pending, gcstate->visited_space);
|
||||
gcstate->young.count = 0;
|
||||
gc_list_merge(pending, visited);
|
||||
validate_spaces(gcstate);
|
||||
|
||||
gc_collect_region(tstate, visited, visited,
|
||||
stats);
|
||||
validate_spaces(gcstate);
|
||||
gcstate->young.count = 0;
|
||||
gcstate->old[0].count = 0;
|
||||
gcstate->old[1].count = 0;
|
||||
|
||||
gcstate->work_to_do = - gcstate->young.threshold * 2;
|
||||
completed_scavenge(gcstate);
|
||||
_PyGC_ClearAllFreeLists(tstate->interp);
|
||||
validate_old(gcstate);
|
||||
validate_spaces(gcstate);
|
||||
add_stats(gcstate, 2, stats);
|
||||
}
|
||||
|
||||
|
@ -1733,20 +1911,23 @@ void
|
|||
_PyGC_Freeze(PyInterpreterState *interp)
|
||||
{
|
||||
GCState *gcstate = &interp->gc;
|
||||
/* The permanent_generation has its old space bit set to zero */
|
||||
if (gcstate->visited_space) {
|
||||
gc_list_set_space(&gcstate->young.head, 0);
|
||||
}
|
||||
/* The permanent_generation must be visited */
|
||||
gc_list_set_space(&gcstate->young.head, gcstate->visited_space);
|
||||
gc_list_merge(&gcstate->young.head, &gcstate->permanent_generation.head);
|
||||
gcstate->young.count = 0;
|
||||
PyGC_Head*old0 = &gcstate->old[0].head;
|
||||
PyGC_Head*old1 = &gcstate->old[1].head;
|
||||
if (gcstate->visited_space) {
|
||||
gc_list_set_space(old0, 1);
|
||||
}
|
||||
else {
|
||||
gc_list_set_space(old1, 0);
|
||||
}
|
||||
gc_list_merge(old0, &gcstate->permanent_generation.head);
|
||||
gcstate->old[0].count = 0;
|
||||
gc_list_set_space(old1, 0);
|
||||
gc_list_merge(old1, &gcstate->permanent_generation.head);
|
||||
gcstate->old[1].count = 0;
|
||||
validate_old(gcstate);
|
||||
validate_spaces(gcstate);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -1754,8 +1935,8 @@ _PyGC_Unfreeze(PyInterpreterState *interp)
|
|||
{
|
||||
GCState *gcstate = &interp->gc;
|
||||
gc_list_merge(&gcstate->permanent_generation.head,
|
||||
&gcstate->old[0].head);
|
||||
validate_old(gcstate);
|
||||
&gcstate->old[gcstate->visited_space].head);
|
||||
validate_spaces(gcstate);
|
||||
}
|
||||
|
||||
Py_ssize_t
|
||||
|
@ -1860,7 +2041,7 @@ _PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
|
|||
_Py_stats->object_stats.object_visits = 0;
|
||||
}
|
||||
#endif
|
||||
validate_old(gcstate);
|
||||
validate_spaces(gcstate);
|
||||
_Py_atomic_store_int(&gcstate->collecting, 0);
|
||||
return stats.uncollectable + stats.collected;
|
||||
}
|
||||
|
|
|
@ -231,6 +231,8 @@ print_gc_stats(FILE *out, GCStats *stats)
|
|||
fprintf(out, "GC[%d] collections: %" PRIu64 "\n", i, stats[i].collections);
|
||||
fprintf(out, "GC[%d] object visits: %" PRIu64 "\n", i, stats[i].object_visits);
|
||||
fprintf(out, "GC[%d] objects collected: %" PRIu64 "\n", i, stats[i].objects_collected);
|
||||
fprintf(out, "GC[%d] objects reachable from roots: %" PRIu64 "\n", i, stats[i].objects_transitively_reachable);
|
||||
fprintf(out, "GC[%d] objects not reachable from roots: %" PRIu64 "\n", i, stats[i].objects_not_transitively_reachable);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1118,6 +1118,8 @@ def gc_stats_section() -> Section:
|
|||
Count(gen["collections"]),
|
||||
Count(gen["objects collected"]),
|
||||
Count(gen["object visits"]),
|
||||
Count(gen["objects reachable from roots"]),
|
||||
Count(gen["objects not reachable from roots"]),
|
||||
)
|
||||
for (i, gen) in enumerate(gc_stats)
|
||||
]
|
||||
|
@ -1127,7 +1129,8 @@ def gc_stats_section() -> Section:
|
|||
"GC collections and effectiveness",
|
||||
[
|
||||
Table(
|
||||
("Generation:", "Collections:", "Objects collected:", "Object visits:"),
|
||||
("Generation:", "Collections:", "Objects collected:", "Object visits:",
|
||||
"Reachable from roots:", "Not reachable from roots:"),
|
||||
calc_gc_stats,
|
||||
)
|
||||
],
|
||||
|
|
Loading…
Reference in New Issue