gh-85454: Remove distutils documentation (#95239)

Most places now refer to setuptools or link to setuptools documentation.
Some examples like zipapp need to be updated later.
This commit is contained in:
Christian Heimes 2022-07-25 15:50:46 +02:00 committed by GitHub
parent d58be48369
commit a566912049
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 26 additions and 4543 deletions

View File

@ -27,5 +27,4 @@
.. toctree:: .. toctree::
:hidden: :hidden:
distutils/index.rst
install/index.rst install/index.rst

View File

@ -1,5 +0,0 @@
.. note::
This document is being retained solely until the ``setuptools`` documentation
at https://setuptools.readthedocs.io/en/latest/setuptools.html
independently covers all of the relevant information currently included here.

File diff suppressed because it is too large Load Diff

View File

@ -1,392 +0,0 @@
.. _built-dist:
****************************
Creating Built Distributions
****************************
.. include:: ./_setuptools_disclaimer.rst
A "built distribution" is what you're probably used to thinking of either as a
"binary package" or an "installer" (depending on your background). It's not
necessarily binary, though, because it might contain only Python source code
and/or byte-code; and we don't call it a package, because that word is already
spoken for in Python. (And "installer" is a term specific to the world of
mainstream desktop systems.)
A built distribution is how you make life as easy as possible for installers of
your module distribution: for users of RPM-based Linux systems, it's a binary
RPM; for Windows users, it's an executable installer; for Debian-based Linux
users, it's a Debian package; and so forth. Obviously, no one person will be
able to create built distributions for every platform under the sun, so the
Distutils are designed to enable module developers to concentrate on their
specialty---writing code and creating source distributions---while an
intermediary species called *packagers* springs up to turn source distributions
into built distributions for as many platforms as there are packagers.
Of course, the module developer could be their own packager; or the packager could
be a volunteer "out there" somewhere who has access to a platform which the
original developer does not; or it could be software periodically grabbing new
source distributions and turning them into built distributions for as many
platforms as the software has access to. Regardless of who they are, a packager
uses the setup script and the :command:`bdist` command family to generate built
distributions.
As a simple example, if I run the following command in the Distutils source
tree::
python setup.py bdist
then the Distutils builds my module distribution (the Distutils itself in this
case), does a "fake" installation (also in the :file:`build` directory), and
creates the default type of built distribution for my platform. The default
format for built distributions is a "dumb" tar file on Unix, and a simple
executable installer on Windows. (That tar file is considered "dumb" because it
has to be unpacked in a specific location to work.)
Thus, the above command on a Unix system creates
:file:`Distutils-1.0.{plat}.tar.gz`; unpacking this tarball from the right place
installs the Distutils just as though you had downloaded the source distribution
and run ``python setup.py install``. (The "right place" is either the root of
the filesystem or Python's :file:`{prefix}` directory, depending on the options
given to the :command:`bdist_dumb` command; the default is to make dumb
distributions relative to :file:`{prefix}`.)
Obviously, for pure Python distributions, this isn't any simpler than just
running ``python setup.py install``\ ---but for non-pure distributions, which
include extensions that would need to be compiled, it can mean the difference
between someone being able to use your extensions or not. And creating "smart"
built distributions, such as an RPM package or an executable installer for
Windows, is far more convenient for users even if your distribution doesn't
include any extensions.
The :command:`bdist` command has a :option:`!--formats` option, similar to the
:command:`sdist` command, which you can use to select the types of built
distribution to generate: for example, ::
python setup.py bdist --format=zip
would, when run on a Unix system, create
:file:`Distutils-1.0.{plat}.zip`\ ---again, this archive would be unpacked
from the root directory to install the Distutils.
The available formats for built distributions are:
+-------------+------------------------------+---------+
| Format | Description | Notes |
+=============+==============================+=========+
| ``gztar`` | gzipped tar file | \(1) |
| | (:file:`.tar.gz`) | |
+-------------+------------------------------+---------+
| ``bztar`` | bzipped tar file | |
| | (:file:`.tar.bz2`) | |
+-------------+------------------------------+---------+
| ``xztar`` | xzipped tar file | |
| | (:file:`.tar.xz`) | |
+-------------+------------------------------+---------+
| ``ztar`` | compressed tar file | \(3) |
| | (:file:`.tar.Z`) | |
+-------------+------------------------------+---------+
| ``tar`` | tar file (:file:`.tar`) | |
+-------------+------------------------------+---------+
| ``zip`` | zip file (:file:`.zip`) | (2),(4) |
+-------------+------------------------------+---------+
| ``rpm`` | RPM | \(5) |
+-------------+------------------------------+---------+
| ``pkgtool`` | Solaris :program:`pkgtool` | |
+-------------+------------------------------+---------+
| ``sdux`` | HP-UX :program:`swinstall` | |
+-------------+------------------------------+---------+
| ``msi`` | Microsoft Installer. | |
+-------------+------------------------------+---------+
.. versionchanged:: 3.5
Added support for the ``xztar`` format.
Notes:
(1)
default on Unix
(2)
default on Windows
(3)
requires external :program:`compress` utility.
(4)
requires either external :program:`zip` utility or :mod:`zipfile` module (part
of the standard Python library since Python 1.6)
(5)
requires external :program:`rpm` utility, version 3.0.4 or better (use ``rpm
--version`` to find out which version you have)
You don't have to use the :command:`bdist` command with the :option:`!--formats`
option; you can also use the command that directly implements the format you're
interested in. Some of these :command:`bdist` "sub-commands" actually generate
several similar formats; for instance, the :command:`bdist_dumb` command
generates all the "dumb" archive formats (``tar``, ``gztar``, ``bztar``,
``xztar``, ``ztar``, and ``zip``), and :command:`bdist_rpm` generates both
binary and source RPMs. The :command:`bdist` sub-commands, and the formats
generated by each, are:
+--------------------------+-------------------------------------+
| Command | Formats |
+==========================+=====================================+
| :command:`bdist_dumb` | tar, gztar, bztar, xztar, ztar, zip |
+--------------------------+-------------------------------------+
| :command:`bdist_rpm` | rpm, srpm |
+--------------------------+-------------------------------------+
The following sections give details on the individual :command:`bdist_\*`
commands.
.. .. _creating-dumb:
.. Creating dumb built distributions
.. =================================
.. XXX Need to document absolute vs. prefix-relative packages here, but first
I have to implement it!
.. _creating-rpms:
Creating RPM packages
=====================
The RPM format is used by many popular Linux distributions, including Red Hat,
SuSE, and Mandrake. If one of these (or any of the other RPM-based Linux
distributions) is your usual environment, creating RPM packages for other users
of that same distribution is trivial. Depending on the complexity of your module
distribution and differences between Linux distributions, you may also be able
to create RPMs that work on different RPM-based distributions.
The usual way to create an RPM of your module distribution is to run the
:command:`bdist_rpm` command::
python setup.py bdist_rpm
or the :command:`bdist` command with the :option:`!--format` option::
python setup.py bdist --formats=rpm
The former allows you to specify RPM-specific options; the latter allows you to
easily specify multiple formats in one run. If you need to do both, you can
explicitly specify multiple :command:`bdist_\*` commands and their options::
python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>"
Creating RPM packages is driven by a :file:`.spec` file, much as using the
Distutils is driven by the setup script. To make your life easier, the
:command:`bdist_rpm` command normally creates a :file:`.spec` file based on the
information you supply in the setup script, on the command line, and in any
Distutils configuration files. Various options and sections in the
:file:`.spec` file are derived from options in the setup script as follows:
+------------------------------------------+----------------------------------------------+
| RPM :file:`.spec` file option or section | Distutils setup script option |
+==========================================+==============================================+
| Name | ``name`` |
+------------------------------------------+----------------------------------------------+
| Summary (in preamble) | ``description`` |
+------------------------------------------+----------------------------------------------+
| Version | ``version`` |
+------------------------------------------+----------------------------------------------+
| Vendor | ``author`` and ``author_email``, |
| | or --- & ``maintainer`` and |
| | ``maintainer_email`` |
+------------------------------------------+----------------------------------------------+
| Copyright | ``license`` |
+------------------------------------------+----------------------------------------------+
| Url | ``url`` |
+------------------------------------------+----------------------------------------------+
| %description (section) | ``long_description`` |
+------------------------------------------+----------------------------------------------+
Additionally, there are many options in :file:`.spec` files that don't have
corresponding options in the setup script. Most of these are handled through
options to the :command:`bdist_rpm` command as follows:
+-------------------------------+-----------------------------+-------------------------+
| RPM :file:`.spec` file option | :command:`bdist_rpm` option | default value |
| or section | | |
+===============================+=============================+=========================+
| Release | ``release`` | "1" |
+-------------------------------+-----------------------------+-------------------------+
| Group | ``group`` | "Development/Libraries" |
+-------------------------------+-----------------------------+-------------------------+
| Vendor | ``vendor`` | (see above) |
+-------------------------------+-----------------------------+-------------------------+
| Packager | ``packager`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| Provides | ``provides`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| Requires | ``requires`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| Conflicts | ``conflicts`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| Obsoletes | ``obsoletes`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| Distribution | ``distribution_name`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| BuildRequires | ``build_requires`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
| Icon | ``icon`` | (none) |
+-------------------------------+-----------------------------+-------------------------+
Obviously, supplying even a few of these options on the command-line would be
tedious and error-prone, so it's usually best to put them in the setup
configuration file, :file:`setup.cfg`\ ---see section :ref:`setup-config`. If
you distribute or package many Python module distributions, you might want to
put options that apply to all of them in your personal Distutils configuration
file (:file:`~/.pydistutils.cfg`). If you want to temporarily disable
this file, you can pass the :option:`!--no-user-cfg` option to :file:`setup.py`.
There are three steps to building a binary RPM package, all of which are
handled automatically by the Distutils:
#. create a :file:`.spec` file, which describes the package (analogous to the
Distutils setup script; in fact, much of the information in the setup script
winds up in the :file:`.spec` file)
#. create the source RPM
#. create the "binary" RPM (which may or may not contain binary code, depending
on whether your module distribution contains Python extensions)
Normally, RPM bundles the last two steps together; when you use the Distutils,
all three steps are typically bundled together.
If you wish, you can separate these three steps. You can use the
:option:`!--spec-only` option to make :command:`bdist_rpm` just create the
:file:`.spec` file and exit; in this case, the :file:`.spec` file will be
written to the "distribution directory"---normally :file:`dist/`, but
customizable with the :option:`!--dist-dir` option. (Normally, the :file:`.spec`
file winds up deep in the "build tree," in a temporary directory created by
:command:`bdist_rpm`.)
.. % \XXX{this isn't implemented yet---is it needed?!}
.. % You can also specify a custom \file{.spec} file with the
.. % \longprogramopt{spec-file} option; used in conjunction with
.. % \longprogramopt{spec-only}, this gives you an opportunity to customize
.. % the \file{.spec} file manually:
.. %
.. % \ begin{verbatim}
.. % > python setup.py bdist_rpm --spec-only
.. % # ...edit dist/FooBar-1.0.spec
.. % > python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec
.. % \ end{verbatim}
.. %
.. % (Although a better way to do this is probably to override the standard
.. % \command{bdist\_rpm} command with one that writes whatever else you want
.. % to the \file{.spec} file.)
.. _cross-compile-windows:
Cross-compiling on Windows
==========================
Starting with Python 2.6, distutils is capable of cross-compiling between
Windows platforms. In practice, this means that with the correct tools
installed, you can use a 32bit version of Windows to create 64bit extensions
and vice-versa.
To build for an alternate platform, specify the :option:`!--plat-name` option
to the build command. Valid values are currently 'win32', and 'win-amd64'.
For example, on a 32bit version of Windows, you could execute::
python setup.py build --plat-name=win-amd64
to build a 64bit version of your extension.
would create a 64bit installation executable on your 32bit version of Windows.
To cross-compile, you must download the Python source code and cross-compile
Python itself for the platform you are targeting - it is not possible from a
binary installation of Python (as the .lib etc file for other platforms are
not included.) In practice, this means the user of a 32 bit operating
system will need to use Visual Studio 2008 to open the
:file:`PCbuild/PCbuild.sln` solution in the Python source tree and build the
"x64" configuration of the 'pythoncore' project before cross-compiling
extensions is possible.
Note that by default, Visual Studio 2008 does not install 64bit compilers or
tools. You may need to reexecute the Visual Studio setup process and select
these tools (using Control Panel->[Add/Remove] Programs is a convenient way to
check or modify your existing install.)
.. _postinstallation-script:
The Postinstallation script
---------------------------
Starting with Python 2.3, a postinstallation script can be specified with the
:option:`!--install-script` option. The basename of the script must be
specified, and the script filename must also be listed in the scripts argument
to the setup function.
This script will be run at installation time on the target system after all the
files have been copied, with ``argv[1]`` set to :option:`!-install`, and again at
uninstallation time before the files are removed with ``argv[1]`` set to
:option:`!-remove`.
The installation script runs embedded in the windows installer, every output
(``sys.stdout``, ``sys.stderr``) is redirected into a buffer and will be
displayed in the GUI after the script has finished.
Some functions especially useful in this context are available as additional
built-in functions in the installation script.
.. function:: directory_created(path)
file_created(path)
These functions should be called when a directory or file is created by the
postinstall script at installation time. It will register *path* with the
uninstaller, so that it will be removed when the distribution is uninstalled.
To be safe, directories are only removed if they are empty.
.. function:: get_special_folder_path(csidl_string)
This function can be used to retrieve special folder locations on Windows like
the Start Menu or the Desktop. It returns the full path to the folder.
*csidl_string* must be one of the following strings::
"CSIDL_APPDATA"
"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"
"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"
"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"
"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"
"CSIDL_FONTS"
If the folder cannot be retrieved, :exc:`OSError` is raised.
Which folders are available depends on the exact Windows version, and probably
also the configuration. For details refer to Microsoft's documentation of the
:c:func:`SHGetSpecialFolderPath` function.
.. function:: create_shortcut(target, description, filename[, arguments[, workdir[, iconpath[, iconindex]]]])
This function creates a shortcut. *target* is the path to the program to be
started by the shortcut. *description* is the description of the shortcut.
*filename* is the title of the shortcut that the user will see. *arguments*
specifies the command line arguments, if any. *workdir* is the working directory
for the program. *iconpath* is the file containing the icon for the shortcut,
and *iconindex* is the index of the icon in the file *iconpath*. Again, for
details consult the Microsoft documentation for the :class:`IShellLink`
interface.

View File

@ -1,105 +0,0 @@
.. _reference:
*****************
Command Reference
*****************
.. include:: ./_setuptools_disclaimer.rst
.. % \section{Building modules: the \protect\command{build} command family}
.. % \label{build-cmds}
.. % \subsubsection{\protect\command{build}}
.. % \label{build-cmd}
.. % \subsubsection{\protect\command{build\_py}}
.. % \label{build-py-cmd}
.. % \subsubsection{\protect\command{build\_ext}}
.. % \label{build-ext-cmd}
.. % \subsubsection{\protect\command{build\_clib}}
.. % \label{build-clib-cmd}
.. _install-cmd:
Installing modules: the :command:`install` command family
=========================================================
The install command ensures that the build commands have been run and then runs
the subcommands :command:`install_lib`, :command:`install_data` and
:command:`install_scripts`.
.. % \subsubsection{\protect\command{install\_lib}}
.. % \label{install-lib-cmd}
.. _install-data-cmd:
:command:`install_data`
-----------------------
This command installs all data files provided with the distribution.
.. _install-scripts-cmd:
:command:`install_scripts`
--------------------------
This command installs all (Python) scripts in the distribution.
.. % \subsection{Cleaning up: the \protect\command{clean} command}
.. % \label{clean-cmd}
.. _sdist-cmd:
Creating a source distribution: the :command:`sdist` command
============================================================
.. XXX fragment moved down from above: needs context!
The manifest template commands are:
+-------------------------------------------+-----------------------------------------------+
| Command | Description |
+===========================================+===============================================+
| :command:`include pat1 pat2 ...` | include all files matching any of the listed |
| | patterns |
+-------------------------------------------+-----------------------------------------------+
| :command:`exclude pat1 pat2 ...` | exclude all files matching any of the listed |
| | patterns |
+-------------------------------------------+-----------------------------------------------+
| :command:`recursive-include dir pat1 pat2 | include all files under *dir* matching any of |
| ...` | the listed patterns |
+-------------------------------------------+-----------------------------------------------+
| :command:`recursive-exclude dir pat1 pat2 | exclude all files under *dir* matching any of |
| ...` | the listed patterns |
+-------------------------------------------+-----------------------------------------------+
| :command:`global-include pat1 pat2 ...` | include all files anywhere in the source tree |
| | matching --- & any of the listed patterns |
+-------------------------------------------+-----------------------------------------------+
| :command:`global-exclude pat1 pat2 ...` | exclude all files anywhere in the source tree |
| | matching --- & any of the listed patterns |
+-------------------------------------------+-----------------------------------------------+
| :command:`prune dir` | exclude all files under *dir* |
+-------------------------------------------+-----------------------------------------------+
| :command:`graft dir` | include all files under *dir* |
+-------------------------------------------+-----------------------------------------------+
The patterns here are Unix-style "glob" patterns: ``*`` matches any sequence of
regular filename characters, ``?`` matches any single regular filename
character, and ``[range]`` matches any of the characters in *range* (e.g.,
``a-z``, ``a-zA-Z``, ``a-f0-9_.``). The definition of "regular filename
character" is platform-specific: on Unix it is anything except slash; on Windows
anything except backslash or colon.
.. XXX Windows support not there yet
.. % \section{Creating a built distribution: the
.. % \protect\command{bdist} command family}
.. % \label{bdist-cmds}
.. % \subsection{\protect\command{bdist}}
.. % \subsection{\protect\command{bdist\_dumb}}
.. % \subsection{\protect\command{bdist\_rpm}}

View File

@ -1,144 +0,0 @@
.. _setup-config:
************************************
Writing the Setup Configuration File
************************************
.. include:: ./_setuptools_disclaimer.rst
Often, it's not possible to write down everything needed to build a distribution
*a priori*: you may need to get some information from the user, or from the
user's system, in order to proceed. As long as that information is fairly
simple---a list of directories to search for C header files or libraries, for
example---then providing a configuration file, :file:`setup.cfg`, for users to
edit is a cheap and easy way to solicit it. Configuration files also let you
provide default values for any command option, which the installer can then
override either on the command-line or by editing the config file.
The setup configuration file is a useful middle-ground between the setup
script---which, ideally, would be opaque to installers [#]_---and the command-line to
the setup script, which is outside of your control and entirely up to the
installer. In fact, :file:`setup.cfg` (and any other Distutils configuration
files present on the target system) are processed after the contents of the
setup script, but before the command-line. This has several useful
consequences:
.. % (If you have more advanced needs, such as determining which extensions
.. % to build based on what capabilities are present on the target system,
.. % then you need the Distutils ``auto-configuration'' facility. This
.. % started to appear in Distutils 0.9 but, as of this writing, isn't mature
.. % or stable enough yet for real-world use.)
* installers can override some of what you put in :file:`setup.py` by editing
:file:`setup.cfg`
* you can provide non-standard defaults for options that are not easily set in
:file:`setup.py`
* installers can override anything in :file:`setup.cfg` using the command-line
options to :file:`setup.py`
The basic syntax of the configuration file is simple:
.. code-block:: ini
[command]
option=value
...
where *command* is one of the Distutils commands (e.g. :command:`build_py`,
:command:`install`), and *option* is one of the options that command supports.
Any number of options can be supplied for each command, and any number of
command sections can be included in the file. Blank lines are ignored, as are
comments, which run from a ``'#'`` character until the end of the line. Long
option values can be split across multiple lines simply by indenting the
continuation lines.
You can find out the list of options supported by a particular command with the
universal :option:`!--help` option, e.g.
.. code-block:: shell-session
$ python setup.py --help build_ext
[...]
Options for 'build_ext' command:
--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the
source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine
--swig-opts list of SWIG command line options
[...]
Note that an option spelled :option:`!--foo-bar` on the command-line is spelled
``foo_bar`` in configuration files.
.. _distutils-build-ext-inplace:
For example, say you want your extensions to be built "in-place"---that is, you
have an extension :mod:`pkg.ext`, and you want the compiled extension file
(:file:`ext.so` on Unix, say) to be put in the same source directory as your
pure Python modules :mod:`pkg.mod1` and :mod:`pkg.mod2`. You can always use the
:option:`!--inplace` option on the command-line to ensure this:
.. code-block:: sh
python setup.py build_ext --inplace
But this requires that you always specify the :command:`build_ext` command
explicitly, and remember to provide :option:`!--inplace`. An easier way is to
"set and forget" this option, by encoding it in :file:`setup.cfg`, the
configuration file for this distribution:
.. code-block:: ini
[build_ext]
inplace=1
This will affect all builds of this module distribution, whether or not you
explicitly specify :command:`build_ext`. If you include :file:`setup.cfg` in
your source distribution, it will also affect end-user builds---which is
probably a bad idea for this option, since always building extensions in-place
would break installation of the module distribution. In certain peculiar cases,
though, modules are built right in their installation directory, so this is
conceivably a useful ability. (Distributing extensions that expect to be built
in their installation directory is almost always a bad idea, though.)
Another example: certain commands take a lot of options that don't change from
run to run; for example, :command:`bdist_rpm` needs to know everything required
to generate a "spec" file for creating an RPM distribution. Some of this
information comes from the setup script, and some is automatically generated by
the Distutils (such as the list of files installed). But some of it has to be
supplied as options to :command:`bdist_rpm`, which would be very tedious to do
on the command-line for every run. Hence, here is a snippet from the Distutils'
own :file:`setup.cfg`:
.. code-block:: ini
[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt
README.txt
USAGE.txt
doc/
examples/
Note that the ``doc_files`` option is simply a whitespace-separated string
split across multiple lines for readability.
.. seealso::
:ref:`inst-config-syntax` in "Installing Python Modules"
More information on the configuration files is available in the manual for
system administrators.
.. rubric:: Footnotes
.. [#] This ideal probably won't be achieved until auto-configuration is fully
supported by the Distutils.

View File

@ -1,340 +0,0 @@
.. _distutils_examples:
******************
Distutils Examples
******************
.. include:: ./_setuptools_disclaimer.rst
This chapter provides a number of basic examples to help get started with
distutils. Additional information about using distutils can be found in the
Distutils Cookbook.
.. seealso::
`Distutils Cookbook <https://wiki.python.org/moin/Distutils/Cookbook>`_
Collection of recipes showing how to achieve more control over distutils.
.. _pure-mod:
Pure Python distribution (by module)
====================================
If you're just distributing a couple of modules, especially if they don't live
in a particular package, you can specify them individually using the
``py_modules`` option in the setup script.
In the simplest case, you'll have two files to worry about: a setup script and
the single module you're distributing, :file:`foo.py` in this example::
<root>/
setup.py
foo.py
(In all diagrams in this section, *<root>* will refer to the distribution root
directory.) A minimal setup script to describe this situation would be::
from distutils.core import setup
setup(name='foo',
version='1.0',
py_modules=['foo'],
)
Note that the name of the distribution is specified independently with the
``name`` option, and there's no rule that says it has to be the same as
the name of the sole module in the distribution (although that's probably a good
convention to follow). However, the distribution name is used to generate
filenames, so you should stick to letters, digits, underscores, and hyphens.
Since ``py_modules`` is a list, you can of course specify multiple
modules, eg. if you're distributing modules :mod:`foo` and :mod:`bar`, your
setup might look like this::
<root>/
setup.py
foo.py
bar.py
and the setup script might be ::
from distutils.core import setup
setup(name='foobar',
version='1.0',
py_modules=['foo', 'bar'],
)
You can put module source files into another directory, but if you have enough
modules to do that, it's probably easier to specify modules by package rather
than listing them individually.
.. _pure-pkg:
Pure Python distribution (by package)
=====================================
If you have more than a couple of modules to distribute, especially if they are
in multiple packages, it's probably easier to specify whole packages rather than
individual modules. This works even if your modules are not in a package; you
can just tell the Distutils to process modules from the root package, and that
works the same as any other package (except that you don't have to have an
:file:`__init__.py` file).
The setup script from the last example could also be written as ::
from distutils.core import setup
setup(name='foobar',
version='1.0',
packages=[''],
)
(The empty string stands for the root package.)
If those two files are moved into a subdirectory, but remain in the root
package, e.g.::
<root>/
setup.py
src/ foo.py
bar.py
then you would still specify the root package, but you have to tell the
Distutils where source files in the root package live::
from distutils.core import setup
setup(name='foobar',
version='1.0',
package_dir={'': 'src'},
packages=[''],
)
More typically, though, you will want to distribute multiple modules in the same
package (or in sub-packages). For example, if the :mod:`foo` and :mod:`bar`
modules belong in package :mod:`foobar`, one way to layout your source tree is
::
<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py
This is in fact the default layout expected by the Distutils, and the one that
requires the least work to describe in your setup script::
from distutils.core import setup
setup(name='foobar',
version='1.0',
packages=['foobar'],
)
If you want to put modules in directories not named for their package, then you
need to use the ``package_dir`` option again. For example, if the
:file:`src` directory holds modules in the :mod:`foobar` package::
<root>/
setup.py
src/
__init__.py
foo.py
bar.py
an appropriate setup script would be ::
from distutils.core import setup
setup(name='foobar',
version='1.0',
package_dir={'foobar': 'src'},
packages=['foobar'],
)
Or, you might put modules from your main package right in the distribution
root::
<root>/
setup.py
__init__.py
foo.py
bar.py
in which case your setup script would be ::
from distutils.core import setup
setup(name='foobar',
version='1.0',
package_dir={'foobar': ''},
packages=['foobar'],
)
(The empty string also stands for the current directory.)
If you have sub-packages, they must be explicitly listed in ``packages``,
but any entries in ``package_dir`` automatically extend to sub-packages.
(In other words, the Distutils does *not* scan your source tree, trying to
figure out which directories correspond to Python packages by looking for
:file:`__init__.py` files.) Thus, if the default layout grows a sub-package::
<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py
subfoo/
__init__.py
blah.py
then the corresponding setup script would be ::
from distutils.core import setup
setup(name='foobar',
version='1.0',
packages=['foobar', 'foobar.subfoo'],
)
.. _single-ext:
Single extension module
=======================
Extension modules are specified using the ``ext_modules`` option.
``package_dir`` has no effect on where extension source files are found;
it only affects the source for pure Python modules. The simplest case, a
single extension module in a single C source file, is::
<root>/
setup.py
foo.c
If the :mod:`foo` extension belongs in the root package, the setup script for
this could be ::
from distutils.core import setup
from distutils.extension import Extension
setup(name='foobar',
version='1.0',
ext_modules=[Extension('foo', ['foo.c'])],
)
If the extension actually belongs in a package, say :mod:`foopkg`, then
With exactly the same source tree layout, this extension can be put in the
:mod:`foopkg` package simply by changing the name of the extension::
from distutils.core import setup
from distutils.extension import Extension
setup(name='foobar',
version='1.0',
ext_modules=[Extension('foopkg.foo', ['foo.c'])],
)
Checking a package
==================
The ``check`` command allows you to verify if your package meta-data
meet the minimum requirements to build a distribution.
To run it, just call it using your :file:`setup.py` script. If something is
missing, ``check`` will display a warning.
Let's take an example with a simple script::
from distutils.core import setup
setup(name='foobar')
Running the ``check`` command will display some warnings:
.. code-block:: shell-session
$ python setup.py check
running check
warning: check: missing required meta-data: version, url
warning: check: missing meta-data: either (author and author_email) or
(maintainer and maintainer_email) should be supplied
If you use the reStructuredText syntax in the ``long_description`` field and
`docutils`_ is installed you can check if the syntax is fine with the
``check`` command, using the ``restructuredtext`` option.
For example, if the :file:`setup.py` script is changed like this::
from distutils.core import setup
desc = """\
My description
==============
This is the description of the ``foobar`` package.
"""
setup(name='foobar', version='1', author='tarek',
author_email='tarek@ziade.org',
url='http://example.com', long_description=desc)
Where the long description is broken, ``check`` will be able to detect it
by using the :mod:`docutils` parser:
.. code-block:: shell-session
$ python setup.py check --restructuredtext
running check
warning: check: Title underline too short. (line 2)
warning: check: Could not finish the parsing.
Reading the metadata
=====================
The :func:`distutils.core.setup` function provides a command-line interface
that allows you to query the metadata fields of a project through the
``setup.py`` script of a given project:
.. code-block:: shell-session
$ python setup.py --name
distribute
This call reads the ``name`` metadata by running the
:func:`distutils.core.setup` function. Although, when a source or binary
distribution is created with Distutils, the metadata fields are written
in a static file called :file:`PKG-INFO`. When a Distutils-based project is
installed in Python, the :file:`PKG-INFO` file is copied alongside the modules
and packages of the distribution under :file:`NAME-VERSION-pyX.X.egg-info`,
where ``NAME`` is the name of the project, ``VERSION`` its version as defined
in the Metadata, and ``pyX.X`` the major and minor version of Python like
``2.7`` or ``3.2``.
You can read back this static file, by using the
:class:`distutils.dist.DistributionMetadata` class and its
:func:`read_pkg_file` method::
>>> from distutils.dist import DistributionMetadata
>>> metadata = DistributionMetadata()
>>> metadata.read_pkg_file(open('distribute-0.6.8-py2.7.egg-info'))
>>> metadata.name
'distribute'
>>> metadata.version
'0.6.8'
>>> metadata.description
'Easily download, build, install, upgrade, and uninstall Python packages'
Notice that the class can also be instantiated with a metadata file path to
loads its values::
>>> pkg_info_path = 'distribute-0.6.8-py2.7.egg-info'
>>> DistributionMetadata(pkg_info_path).name
'distribute'
.. % \section{Multiple extension modules}
.. % \label{multiple-ext}
.. % \section{Putting it all together}
.. _docutils: http://docutils.sourceforge.net

View File

@ -1,98 +0,0 @@
.. _extending-distutils:
*******************
Extending Distutils
*******************
.. include:: ./_setuptools_disclaimer.rst
Distutils can be extended in various ways. Most extensions take the form of new
commands or replacements for existing commands. New commands may be written to
support new types of platform-specific packaging, for example, while
replacements for existing commands may be made to modify details of how the
command operates on a package.
Most extensions of the distutils are made within :file:`setup.py` scripts that
want to modify existing commands; many simply add a few file extensions that
should be copied into packages in addition to :file:`.py` files as a
convenience.
Most distutils command implementations are subclasses of the
:class:`distutils.cmd.Command` class. New commands may directly inherit from
:class:`Command`, while replacements often derive from :class:`Command`
indirectly, directly subclassing the command they are replacing. Commands are
required to derive from :class:`Command`.
.. % \section{Extending existing commands}
.. % \label{extend-existing}
.. % \section{Writing new commands}
.. % \label{new-commands}
.. % \XXX{Would an uninstall command be a good example here?}
Integrating new commands
========================
There are different ways to integrate new command implementations into
distutils. The most difficult is to lobby for the inclusion of the new features
in distutils itself, and wait for (and require) a version of Python that
provides that support. This is really hard for many reasons.
The most common, and possibly the most reasonable for most needs, is to include
the new implementations with your :file:`setup.py` script, and cause the
:func:`distutils.core.setup` function use them::
from distutils.command.build_py import build_py as _build_py
from distutils.core import setup
class build_py(_build_py):
"""Specialized Python source builder."""
# implement whatever needs to be different...
setup(cmdclass={'build_py': build_py},
...)
This approach is most valuable if the new implementations must be used to use a
particular package, as everyone interested in the package will need to have the
new command implementation.
Beginning with Python 2.4, a third option is available, intended to allow new
commands to be added which can support existing :file:`setup.py` scripts without
requiring modifications to the Python installation. This is expected to allow
third-party extensions to provide support for additional packaging systems, but
the commands can be used for anything distutils commands can be used for. A new
configuration option, ``command_packages`` (command-line option
:option:`!--command-packages`), can be used to specify additional packages to be
searched for modules implementing commands. Like all distutils options, this
can be specified on the command line or in a configuration file. This option
can only be set in the ``[global]`` section of a configuration file, or before
any commands on the command line. If set in a configuration file, it can be
overridden from the command line; setting it to an empty string on the command
line causes the default to be used. This should never be set in a configuration
file provided with a package.
This new option can be used to add any number of packages to the list of
packages searched for command implementations; multiple package names should be
separated by commas. When not specified, the search is only performed in the
:mod:`distutils.command` package. When :file:`setup.py` is run with the option
``--command-packages distcmds,buildcmds``, however, the packages
:mod:`distutils.command`, :mod:`distcmds`, and :mod:`buildcmds` will be searched
in that order. New commands are expected to be implemented in modules of the
same name as the command by classes sharing the same name. Given the example
command line option above, the command :command:`bdist_openpkg` could be
implemented by the class :class:`distcmds.bdist_openpkg.bdist_openpkg` or
:class:`buildcmds.bdist_openpkg.bdist_openpkg`.
Adding new distribution types
=============================
Commands that create distributions (files in the :file:`dist/` directory) need
to add ``(command, filename)`` pairs to ``self.distribution.dist_files`` so that
:command:`upload` can upload it to PyPI. The *filename* in the pair contains no
path information, only the name of the file itself. In dry-run mode, pairs
should still be added to represent what would have been created.

View File

@ -1,49 +0,0 @@
.. _distutils-index:
##############################################
Distributing Python Modules (Legacy version)
##############################################
:Authors: Greg Ward, Anthony Baxter
:Email: distutils-sig@python.org
.. seealso::
:ref:`distributing-index`
The up to date module distribution documentations
.. note::
The entire ``distutils`` package has been deprecated and will be
removed in Python 3.12. This documentation is retained as a
reference only, and will be removed with the package. See the
:ref:`What's New <distutils-deprecated>` entry for more information.
.. include:: ./_setuptools_disclaimer.rst
.. note::
This guide only covers the basic tools for building and distributing
extensions that are provided as part of this version of Python. Third party
tools offer easier to use and more secure alternatives. Refer to the `quick
recommendations section <https://packaging.python.org/guides/tool-recommendations/>`__
in the Python Packaging User Guide for more information.
This document describes the Python Distribution Utilities ("Distutils") from
the module developer's point of view, describing the underlying capabilities
that ``setuptools`` builds on to allow Python developers to make Python modules
and extensions readily available to a wider audience.
.. toctree::
:maxdepth: 2
:numbered:
introduction.rst
setupscript.rst
configfile.rst
sourcedist.rst
builtdist.rst
examples.rst
extending.rst
commandref.rst
apiref.rst

View File

@ -1,203 +0,0 @@
.. _distutils-intro:
****************************
An Introduction to Distutils
****************************
.. include:: ./_setuptools_disclaimer.rst
This document covers using the Distutils to distribute your Python modules,
concentrating on the role of developer/distributor: if you're looking for
information on installing Python modules, you should refer to the
:ref:`install-index` chapter.
.. _distutils-concepts:
Concepts & Terminology
======================
Using the Distutils is quite simple, both for module developers and for
users/administrators installing third-party modules. As a developer, your
responsibilities (apart from writing solid, well-documented and well-tested
code, of course!) are:
* write a setup script (:file:`setup.py` by convention)
* (optional) write a setup configuration file
* create a source distribution
* (optional) create one or more built (binary) distributions
Each of these tasks is covered in this document.
Not all module developers have access to a multitude of platforms, so it's not
always feasible to expect them to create a multitude of built distributions. It
is hoped that a class of intermediaries, called *packagers*, will arise to
address this need. Packagers will take source distributions released by module
developers, build them on one or more platforms, and release the resulting built
distributions. Thus, users on the most popular platforms will be able to
install most popular Python module distributions in the most natural way for
their platform, without having to run a single setup script or compile a line of
code.
.. _distutils-simple-example:
A Simple Example
================
The setup script is usually quite simple, although since it's written in Python,
there are no arbitrary limits to what you can do with it, though you should be
careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run
multiple times in the course of building and installing your module
distribution.
If all you want to do is distribute a module called :mod:`foo`, contained in a
file :file:`foo.py`, then your setup script can be as simple as this::
from distutils.core import setup
setup(name='foo',
version='1.0',
py_modules=['foo'],
)
Some observations:
* most information that you supply to the Distutils is supplied as keyword
arguments to the :func:`setup` function
* those keyword arguments fall into two categories: package metadata (name,
version number) and information about what's in the package (a list of pure
Python modules, in this case)
* modules are specified by module name, not filename (the same will hold true
for packages and extensions)
* it's recommended that you supply a little more metadata, in particular your
name, email address and a URL for the project (see section :ref:`setup-script`
for an example)
To create a source distribution for this module, you would create a setup
script, :file:`setup.py`, containing the above code, and run this command from a
terminal::
python setup.py sdist
For Windows, open a command prompt window (:menuselection:`Start -->
Accessories`) and change the command to::
setup.py sdist
:command:`sdist` will create an archive file (e.g., tarball on Unix, ZIP file on Windows)
containing your setup script :file:`setup.py`, and your module :file:`foo.py`.
The archive file will be named :file:`foo-1.0.tar.gz` (or :file:`.zip`), and
will unpack into a directory :file:`foo-1.0`.
If an end-user wishes to install your :mod:`foo` module, all they have to do is
download :file:`foo-1.0.tar.gz` (or :file:`.zip`), unpack it, and---from the
:file:`foo-1.0` directory---run ::
python setup.py install
which will ultimately copy :file:`foo.py` to the appropriate directory for
third-party modules in their Python installation.
This simple example demonstrates some fundamental concepts of the Distutils.
First, both developers and installers have the same basic user interface, i.e.
the setup script. The difference is which Distutils *commands* they use: the
:command:`sdist` command is almost exclusively for module developers, while
:command:`install` is more often for installers (although most developers will
want to install their own code occasionally).
Other useful built distribution formats are RPM, implemented by the
:command:`bdist_rpm` command, Solaris :program:`pkgtool`
(:command:`bdist_pkgtool`), and HP-UX :program:`swinstall`
(:command:`bdist_sdux`). For example, the following command will create an RPM
file called :file:`foo-1.0.noarch.rpm`::
python setup.py bdist_rpm
(The :command:`bdist_rpm` command uses the :command:`rpm` executable, therefore
this has to be run on an RPM-based system such as Red Hat Linux, SuSE Linux, or
Mandrake Linux.)
You can find out what distribution formats are available at any time by running
::
python setup.py bdist --help-formats
.. _python-terms:
General Python terminology
==========================
If you're reading this document, you probably have a good idea of what modules,
extensions, and so forth are. Nevertheless, just to be sure that everyone is
operating from a common starting point, we offer the following glossary of
common Python terms:
module
the basic unit of code reusability in Python: a block of code imported by some
other code. Three types of modules concern us here: pure Python modules,
extension modules, and packages.
pure Python module
a module written in Python and contained in a single :file:`.py` file (and
possibly associated :file:`.pyc` files). Sometimes referred to as a
"pure module."
extension module
a module written in the low-level language of the Python implementation: C/C++
for Python, Java for Jython. Typically contained in a single dynamically
loadable pre-compiled file, e.g. a shared object (:file:`.so`) file for Python
extensions on Unix, a DLL (given the :file:`.pyd` extension) for Python
extensions on Windows, or a Java class file for Jython extensions. (Note that
currently, the Distutils only handles C/C++ extensions for Python.)
package
a module that contains other modules; typically contained in a directory in the
filesystem and distinguished from other directories by the presence of a file
:file:`__init__.py`.
root package
the root of the hierarchy of packages. (This isn't really a package, since it
doesn't have an :file:`__init__.py` file. But we have to call it something.)
The vast majority of the standard library is in the root package, as are many
small, standalone third-party modules that don't belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in
many directories: in fact, every directory listed in ``sys.path`` contributes
modules to the root package.
.. _distutils-term:
Distutils-specific terminology
==============================
The following terms apply more specifically to the domain of distributing Python
modules using the Distutils:
module distribution
a collection of Python modules distributed together as a single downloadable
resource and meant to be installed *en masse*. Examples of some well-known
module distributions are NumPy, SciPy, Pillow,
or mxBase. (This would be called a *package*, except that term is
already taken in the Python context: a single module distribution may contain
zero, one, or many Python packages.)
pure module distribution
a module distribution that contains only pure Python modules and packages.
Sometimes referred to as a "pure distribution."
non-pure module distribution
a module distribution that contains at least one extension module. Sometimes
referred to as a "non-pure distribution."
distribution root
the top-level directory of your source tree (or source distribution); the
directory where :file:`setup.py` exists. Generally :file:`setup.py` will be
run from this directory.

View File

@ -1,16 +0,0 @@
:orphan:
.. _package-index:
*******************************
The Python Package Index (PyPI)
*******************************
The `Python Package Index (PyPI)`_ stores metadata describing distributions
packaged with distutils and other publishing tools, as well the distribution
archives themselves.
References to up to date PyPI documentation can be found at
:ref:`publishing-python-packages`.
.. _Python Package Index (PyPI): https://pypi.org

View File

@ -1,713 +0,0 @@
.. _setup-script:
************************
Writing the Setup Script
************************
.. include:: ./_setuptools_disclaimer.rst
The setup script is the centre of all activity in building, distributing, and
installing modules using the Distutils. The main purpose of the setup script is
to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in section
:ref:`distutils-simple-example` above, the setup script consists mainly of a call to
:func:`setup`, and most information supplied to the Distutils by the module
developer is supplied as keyword arguments to :func:`setup`.
Here's a slightly more involved example, which we'll follow for the next couple
of sections: the Distutils' own setup script. (Keep in mind that although the
Distutils are included with Python 1.6 and later, they also have an independent
existence so that Python 1.5.2 users can use them to install other module
distributions. The Distutils' own setup script, shown here, is used to install
the package into Python 1.5.2.) ::
#!/usr/bin/env python
from distutils.core import setup
setup(name='Distutils',
version='1.0',
description='Python Distribution Utilities',
author='Greg Ward',
author_email='gward@python.net',
url='https://www.python.org/sigs/distutils-sig/',
packages=['distutils', 'distutils.command'],
)
There are only two differences between this and the trivial one-file
distribution presented in section :ref:`distutils-simple-example`: more metadata, and the
specification of pure Python modules by package, rather than by module. This is
important since the Distutils consist of a couple of dozen modules split into
(so far) two packages; an explicit list of every module would be tedious to
generate and difficult to maintain. For more information on the additional
meta-data, see section :ref:`meta-data`.
Note that any pathnames (files or directories) supplied in the setup script
should be written using the Unix convention, i.e. slash-separated. The
Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the
pathname. This makes your setup script portable across operating systems, which
of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated.
This, of course, only applies to pathnames given to Distutils functions. If
you, for example, use standard Python functions such as :func:`glob.glob` or
:func:`os.listdir` to specify files, you should be careful to write portable
code instead of hardcoding path separators::
glob.glob(os.path.join('mydir', 'subdir', '*.html'))
os.listdir(os.path.join('mydir', 'subdir'))
.. _listing-packages:
Listing whole packages
======================
The ``packages`` option tells the Distutils to process (build, distribute,
install, etc.) all pure Python modules found in each package mentioned in the
``packages`` list. In order to do this, of course, there has to be a
correspondence between package names and directories in the filesystem. The
default correspondence is the most obvious one, i.e. package :mod:`distutils` is
found in the directory :file:`distutils` relative to the distribution root.
Thus, when you say ``packages = ['foo']`` in your setup script, you are
promising that the Distutils will find a file :file:`foo/__init__.py` (which
might be spelled differently on your system, but you get the idea) relative to
the directory where your setup script lives. If you break this promise, the
Distutils will issue a warning but still process the broken package anyway.
If you use a different convention to lay out your source directory, that's no
problem: you just have to supply the ``package_dir`` option to tell the
Distutils about your convention. For example, say you keep all Python source
under :file:`lib`, so that modules in the "root package" (i.e., not in any
package at all) are in :file:`lib`, modules in the :mod:`foo` package are in
:file:`lib/foo`, and so forth. Then you would put ::
package_dir = {'': 'lib'}
in your setup script. The keys to this dictionary are package names, and an
empty package name stands for the root package. The values are directory names
relative to your distribution root. In this case, when you say ``packages =
['foo']``, you are promising that the file :file:`lib/foo/__init__.py` exists.
Another possible convention is to put the :mod:`foo` package right in
:file:`lib`, the :mod:`foo.bar` package in :file:`lib/bar`, etc. This would be
written in the setup script as ::
package_dir = {'foo': 'lib'}
A ``package: dir`` entry in the ``package_dir`` dictionary implicitly
applies to all packages below *package*, so the :mod:`foo.bar` case is
automatically handled here. In this example, having ``packages = ['foo',
'foo.bar']`` tells the Distutils to look for :file:`lib/__init__.py` and
:file:`lib/bar/__init__.py`. (Keep in mind that although ``package_dir``
applies recursively, you must explicitly list all packages in
``packages``: the Distutils will *not* recursively scan your source tree
looking for any directory with an :file:`__init__.py` file.)
.. _listing-modules:
Listing individual modules
==========================
For a small module distribution, you might prefer to list all modules rather
than listing packages---especially the case of a single module that goes in the
"root package" (i.e., no package at all). This simplest case was shown in
section :ref:`distutils-simple-example`; here is a slightly more involved example::
py_modules = ['mod1', 'pkg.mod2']
This describes two modules, one of them in the "root" package, the other in the
:mod:`pkg` package. Again, the default package/directory layout implies that
these two modules can be found in :file:`mod1.py` and :file:`pkg/mod2.py`, and
that :file:`pkg/__init__.py` exists as well. And again, you can override the
package/directory correspondence using the ``package_dir`` option.
.. _describing-extensions:
Describing extension modules
============================
Just as writing Python extension modules is a bit more complicated than writing
pure Python modules, describing them to the Distutils is a bit more complicated.
Unlike pure modules, it's not enough just to list modules or packages and expect
the Distutils to go out and find the right files; you have to specify the
extension name, source file(s), and any compile/link requirements (include
directories, libraries to link with, etc.).
.. XXX read over this section
All of this is done through another keyword argument to :func:`setup`, the
``ext_modules`` option. ``ext_modules`` is just a list of
:class:`~distutils.core.Extension` instances, each of which describes a
single extension module.
Suppose your distribution includes a single extension, called :mod:`foo` and
implemented by :file:`foo.c`. If no additional instructions to the
compiler/linker are needed, describing this extension is quite simple::
Extension('foo', ['foo.c'])
The :class:`Extension` class can be imported from :mod:`distutils.core` along
with :func:`setup`. Thus, the setup script for a module distribution that
contains only this one extension and nothing else might be::
from distutils.core import setup, Extension
setup(name='foo',
version='1.0',
ext_modules=[Extension('foo', ['foo.c'])],
)
The :class:`Extension` class (actually, the underlying extension-building
machinery implemented by the :command:`build_ext` command) supports a great deal
of flexibility in describing Python extensions, which is explained in the
following sections.
Extension names and packages
----------------------------
The first argument to the :class:`~distutils.core.Extension` constructor is
always the name of the extension, including any package names. For example, ::
Extension('foo', ['src/foo1.c', 'src/foo2.c'])
describes an extension that lives in the root package, while ::
Extension('pkg.foo', ['src/foo1.c', 'src/foo2.c'])
describes the same extension in the :mod:`pkg` package. The source files and
resulting object code are identical in both cases; the only difference is where
in the filesystem (and therefore where in Python's namespace hierarchy) the
resulting extension lives.
If you have a number of extensions all in the same package (or all under the
same base package), use the ``ext_package`` keyword argument to
:func:`setup`. For example, ::
setup(...,
ext_package='pkg',
ext_modules=[Extension('foo', ['foo.c']),
Extension('subpkg.bar', ['bar.c'])],
)
will compile :file:`foo.c` to the extension :mod:`pkg.foo`, and :file:`bar.c` to
:mod:`pkg.subpkg.bar`.
Extension source files
----------------------
The second argument to the :class:`~distutils.core.Extension` constructor is
a list of source
files. Since the Distutils currently only support C, C++, and Objective-C
extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++ source files: :file:`.cc` and
:file:`.cpp` seem to be recognized by both Unix and Windows compilers.)
However, you can also include SWIG interface (:file:`.i`) files in the list; the
:command:`build_ext` command knows how to deal with SWIG extensions: it will run
SWIG on the interface file and compile the resulting C/C++ file into your
extension.
.. XXX SWIG support is rough around the edges and largely untested!
This warning notwithstanding, options to SWIG can be currently passed like
this::
setup(...,
ext_modules=[Extension('_foo', ['foo.i'],
swig_opts=['-modern', '-I../include'])],
py_modules=['foo'],
)
Or on the commandline like this::
> python setup.py build_ext --swig-opts="-modern -I../include"
On some platforms, you can include non-source files that are processed by the
compiler and included in your extension. Currently, this just means Windows
message text (:file:`.mc`) files and resource definition (:file:`.rc`) files for
Visual C++. These will be compiled to binary resource (:file:`.res`) files and
linked into the executable.
Preprocessor options
--------------------
Three optional arguments to :class:`~distutils.core.Extension` will help if
you need to specify include directories to search or preprocessor macros to
define/undefine: ``include_dirs``, ``define_macros``, and ``undef_macros``.
For example, if your extension requires header files in the :file:`include`
directory under your distribution root, use the ``include_dirs`` option::
Extension('foo', ['foo.c'], include_dirs=['include'])
You can specify absolute directories there; if you know that your extension will
only be built on Unix systems with X11R6 installed to :file:`/usr`, you can get
away with ::
Extension('foo', ['foo.c'], include_dirs=['/usr/include/X11'])
You should avoid this sort of non-portable usage if you plan to distribute your
code: it's probably better to write C code like ::
#include <X11/Xlib.h>
If you need to include header files from some other Python extension, you can
take advantage of the fact that header files are installed in a consistent way
by the Distutils :command:`install_headers` command. For example, the Numerical
Python header files are installed (on a standard Unix installation) to
:file:`/usr/local/include/python1.5/Numerical`. (The exact location will differ
according to your platform and Python installation.) Since the Python include
directory---\ :file:`/usr/local/include/python1.5` in this case---is always
included in the search path when building Python extensions, the best approach
is to write C code like ::
#include <Numerical/arrayobject.h>
If you must put the :file:`Numerical` include directory right into your header
search path, though, you can find that directory using the Distutils
:mod:`distutils.sysconfig` module::
from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), 'Numerical')
setup(...,
Extension(..., include_dirs=[incdir]),
)
Even though this is quite portable---it will work on any Python installation,
regardless of platform---it's probably easier to just write your C code in the
sensible way.
You can define and undefine pre-processor macros with the ``define_macros`` and
``undef_macros`` options. ``define_macros`` takes a list of ``(name, value)``
tuples, where ``name`` is the name of the macro to define (a string) and
``value`` is its value: either a string or ``None``. (Defining a macro ``FOO``
to ``None`` is the equivalent of a bare ``#define FOO`` in your C source: with
most compilers, this sets ``FOO`` to the string ``1``.) ``undef_macros`` is
just a list of macros to undefine.
For example::
Extension(...,
define_macros=[('NDEBUG', '1'),
('HAVE_STRFTIME', None)],
undef_macros=['HAVE_FOO', 'HAVE_BAR'])
is the equivalent of having this at the top of every C source file::
#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR
Library options
---------------
You can also specify the libraries to link against when building your extension,
and the directories to search for those libraries. The ``libraries`` option is
a list of libraries to link against, ``library_dirs`` is a list of directories
to search for libraries at link-time, and ``runtime_library_dirs`` is a list of
directories to search for shared (dynamically loaded) libraries at run-time.
For example, if you need to link against libraries known to be in the standard
library search path on target systems ::
Extension(...,
libraries=['gdbm', 'readline'])
If you need to link with libraries in a non-standard location, you'll have to
include the location in ``library_dirs``::
Extension(...,
library_dirs=['/usr/X11R6/lib'],
libraries=['X11', 'Xt'])
(Again, this sort of non-portable construct should be avoided if you intend to
distribute your code.)
.. XXX Should mention clib libraries here or somewhere else!
Other options
-------------
There are still some other options which can be used to handle special cases.
The ``optional`` option is a boolean; if it is true,
a build failure in the extension will not abort the build process, but
instead simply not install the failing extension.
The ``extra_objects`` option is a list of object files to be passed to the
linker. These files must not have extensions, as the default extension for the
compiler is used.
``extra_compile_args`` and ``extra_link_args`` can be used to
specify additional command line options for the respective compiler and linker
command lines.
``export_symbols`` is only useful on Windows. It can contain a list of
symbols (functions or variables) to be exported. This option is not needed when
building compiled extensions: Distutils will automatically add ``initmodule``
to the list of exported symbols.
The ``depends`` option is a list of files that the extension depends on
(for example header files). The build command will call the compiler on the
sources to rebuild extension if any on this files has been modified since the
previous build.
Relationships between Distributions and Packages
================================================
A distribution may relate to packages in three specific ways:
#. It can require packages or modules.
#. It can provide packages or modules.
#. It can obsolete packages or modules.
These relationships can be specified using keyword arguments to the
:func:`distutils.core.setup` function.
Dependencies on other Python modules and packages can be specified by supplying
the *requires* keyword argument to :func:`setup`. The value must be a list of
strings. Each string specifies a package that is required, and optionally what
versions are sufficient.
To specify that any version of a module or package is required, the string
should consist entirely of the module or package name. Examples include
``'mymodule'`` and ``'xml.parsers.expat'``.
If specific versions are required, a sequence of qualifiers can be supplied in
parentheses. Each qualifier may consist of a comparison operator and a version
number. The accepted comparison operators are::
< > ==
<= >= !=
These can be combined by using multiple qualifiers separated by commas (and
optional whitespace). In this case, all of the qualifiers must be matched; a
logical AND is used to combine the evaluations.
Let's look at a bunch of examples:
+-------------------------+----------------------------------------------+
| Requires Expression | Explanation |
+=========================+==============================================+
| ``==1.0`` | Only version ``1.0`` is compatible |
+-------------------------+----------------------------------------------+
| ``>1.0, !=1.5.1, <2.0`` | Any version after ``1.0`` and before ``2.0`` |
| | is compatible, except ``1.5.1`` |
+-------------------------+----------------------------------------------+
Now that we can specify dependencies, we also need to be able to specify what we
provide that other distributions can require. This is done using the *provides*
keyword argument to :func:`setup`. The value for this keyword is a list of
strings, each of which names a Python module or package, and optionally
identifies the version. If the version is not specified, it is assumed to match
that of the distribution.
Some examples:
+---------------------+----------------------------------------------+
| Provides Expression | Explanation |
+=====================+==============================================+
| ``mypkg`` | Provide ``mypkg``, using the distribution |
| | version |
+---------------------+----------------------------------------------+
| ``mypkg (1.1)`` | Provide ``mypkg`` version 1.1, regardless of |
| | the distribution version |
+---------------------+----------------------------------------------+
A package can declare that it obsoletes other packages using the *obsoletes*
keyword argument. The value for this is similar to that of the *requires*
keyword: a list of strings giving module or package specifiers. Each specifier
consists of a module or package name optionally followed by one or more version
qualifiers. Version qualifiers are given in parentheses after the module or
package name.
The versions identified by the qualifiers are those that are obsoleted by the
distribution being described. If no qualifiers are given, all versions of the
named module or package are understood to be obsoleted.
.. _distutils-installing-scripts:
Installing Scripts
==================
So far we have been dealing with pure and non-pure Python modules, which are
usually not run by themselves but imported by scripts.
Scripts are files containing Python source code, intended to be started from the
command line. Scripts don't require Distutils to do anything very complicated.
The only clever feature is that if the first line of the script starts with
``#!`` and contains the word "python", the Distutils will adjust the first line
to refer to the current interpreter location. By default, it is replaced with
the current interpreter location. The :option:`!--executable` (or :option:`!-e`)
option will allow the interpreter path to be explicitly overridden.
The ``scripts`` option simply is a list of files to be handled in this
way. From the PyXML setup script::
setup(...,
scripts=['scripts/xmlproc_parse', 'scripts/xmlproc_val']
)
.. versionchanged:: 3.1
All the scripts will also be added to the ``MANIFEST`` file if no template is
provided. See :ref:`manifest`.
.. _distutils-installing-package-data:
Installing Package Data
=======================
Often, additional files need to be installed into a package. These files are
often data that's closely related to the package's implementation, or text files
containing documentation that might be of interest to programmers using the
package. These files are called :dfn:`package data`.
Package data can be added to packages using the ``package_data`` keyword
argument to the :func:`setup` function. The value must be a mapping from
package name to a list of relative path names that should be copied into the
package. The paths are interpreted as relative to the directory containing the
package (information from the ``package_dir`` mapping is used if appropriate);
that is, the files are expected to be part of the package in the source
directories. They may contain glob patterns as well.
The path names may contain directory portions; any necessary directories will be
created in the installation.
For example, if a package should contain a subdirectory with several data files,
the files can be arranged like this in the source tree::
setup.py
src/
mypkg/
__init__.py
module.py
data/
tables.dat
spoons.dat
forks.dat
The corresponding call to :func:`setup` might be::
setup(...,
packages=['mypkg'],
package_dir={'mypkg': 'src/mypkg'},
package_data={'mypkg': ['data/*.dat']},
)
.. versionchanged:: 3.1
All the files that match ``package_data`` will be added to the ``MANIFEST``
file if no template is provided. See :ref:`manifest`.
.. _distutils-additional-files:
Installing Additional Files
===========================
The ``data_files`` option can be used to specify additional files needed
by the module distribution: configuration files, message catalogs, data files,
anything which doesn't fit in the previous categories.
``data_files`` specifies a sequence of (*directory*, *files*) pairs in the
following way::
setup(...,
data_files=[('bitmaps', ['bm/b1.gif', 'bm/b2.gif']),
('config', ['cfg/data.cfg'])],
)
Each (*directory*, *files*) pair in the sequence specifies the installation
directory and the files to install there.
Each file name in *files* is interpreted relative to the :file:`setup.py`
script at the top of the package source distribution. Note that you can
specify the directory where the data files will be installed, but you cannot
rename the data files themselves.
The *directory* should be a relative path. It is interpreted relative to the
installation prefix (Python's ``sys.prefix`` for system installations;
``site.USER_BASE`` for user installations). Distutils allows *directory* to be
an absolute installation path, but this is discouraged since it is
incompatible with the wheel packaging format. No directory information from
*files* is used to determine the final location of the installed file; only
the name of the file is used.
You can specify the ``data_files`` options as a simple sequence of files
without specifying a target directory, but this is not recommended, and the
:command:`install` command will print a warning in this case. To install data
files directly in the target directory, an empty string should be given as the
directory.
.. versionchanged:: 3.1
All the files that match ``data_files`` will be added to the ``MANIFEST``
file if no template is provided. See :ref:`manifest`.
.. _meta-data:
Additional meta-data
====================
The setup script may include additional meta-data beyond the name and version.
This information includes:
+----------------------+---------------------------+-----------------+--------+
| Meta-Data | Description | Value | Notes |
+======================+===========================+=================+========+
| ``name`` | name of the package | short string | \(1) |
+----------------------+---------------------------+-----------------+--------+
| ``version`` | version of this release | short string | (1)(2) |
+----------------------+---------------------------+-----------------+--------+
| ``author`` | package author's name | short string | \(3) |
+----------------------+---------------------------+-----------------+--------+
| ``author_email`` | email address of the | email address | \(3) |
| | package author | | |
+----------------------+---------------------------+-----------------+--------+
| ``maintainer`` | package maintainer's name | short string | \(3) |
+----------------------+---------------------------+-----------------+--------+
| ``maintainer_email`` | email address of the | email address | \(3) |
| | package maintainer | | |
+----------------------+---------------------------+-----------------+--------+
| ``url`` | home page for the package | URL | \(1) |
+----------------------+---------------------------+-----------------+--------+
| ``description`` | short, summary | short string | |
| | description of the | | |
| | package | | |
+----------------------+---------------------------+-----------------+--------+
| ``long_description`` | longer description of the | long string | \(4) |
| | package | | |
+----------------------+---------------------------+-----------------+--------+
| ``download_url`` | location where the | URL | |
| | package may be downloaded | | |
+----------------------+---------------------------+-----------------+--------+
| ``classifiers`` | a list of classifiers | list of strings | (6)(7) |
+----------------------+---------------------------+-----------------+--------+
| ``platforms`` | a list of platforms | list of strings | (6)(8) |
+----------------------+---------------------------+-----------------+--------+
| ``keywords`` | a list of keywords | list of strings | (6)(8) |
+----------------------+---------------------------+-----------------+--------+
| ``license`` | license for the package | short string | \(5) |
+----------------------+---------------------------+-----------------+--------+
Notes:
(1)
These fields are required.
(2)
It is recommended that versions take the form *major.minor[.patch[.sub]]*.
(3)
Either the author or the maintainer must be identified. If maintainer is
provided, distutils lists it as the author in :file:`PKG-INFO`.
(4)
The ``long_description`` field is used by PyPI when you publish a package,
to build its project page.
(5)
The ``license`` field is a text indicating the license covering the
package where the license is not a selection from the "License" Trove
classifiers. See the ``Classifier`` field. Notice that
there's a ``licence`` distribution option which is deprecated but still
acts as an alias for ``license``.
(6)
This field must be a list.
(7)
The valid classifiers are listed on
`PyPI <https://pypi.org/classifiers>`_.
(8)
To preserve backward compatibility, this field also accepts a string. If
you pass a comma-separated string ``'foo, bar'``, it will be converted to
``['foo', 'bar']``, Otherwise, it will be converted to a list of one
string.
'short string'
A single line of text, not more than 200 characters.
'long string'
Multiple lines of plain text in reStructuredText format (see
http://docutils.sourceforge.net/).
'list of strings'
See below.
Encoding the version information is an art in itself. Python packages generally
adhere to the version format *major.minor[.patch][sub]*. The major number is 0
for initial, experimental releases of software. It is incremented for releases
that represent major milestones in a package. The minor number is incremented
when important new features are added to the package. The patch number
increments when bug-fix releases are made. Additional trailing version
information is sometimes used to indicate sub-releases. These are
"a1,a2,...,aN" (for alpha releases, where functionality and API may change),
"b1,b2,...,bN" (for beta releases, which only fix bugs) and "pr1,pr2,...,prN"
(for final pre-release release testing). Some examples:
0.1.0
the first, experimental release of a package
1.0.1a2
the second alpha release of the first patch version of 1.0
``classifiers`` must be specified in a list::
setup(...,
classifiers=[
'Development Status :: 4 - Beta',
'Environment :: Console',
'Environment :: Web Environment',
'Intended Audience :: End Users/Desktop',
'Intended Audience :: Developers',
'Intended Audience :: System Administrators',
'License :: OSI Approved :: Python Software Foundation License',
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Programming Language :: Python',
'Topic :: Communications :: Email',
'Topic :: Office/Business',
'Topic :: Software Development :: Bug Tracking',
],
)
.. versionchanged:: 3.7
:class:`~distutils.core.setup` now warns when ``classifiers``, ``keywords``
or ``platforms`` fields are not specified as a list or a string.
.. _debug-setup-script:
Debugging the setup script
==========================
Sometimes things go wrong, and the setup script doesn't do what the developer
wants.
Distutils catches any exceptions when running the setup script, and print a
simple error message before the script is terminated. The motivation for this
behaviour is to not confuse administrators who don't know much about Python and
are trying to install a package. If they get a big long traceback from deep
inside the guts of Distutils, they may think the package or the Python
installation is broken because they don't read all the way down to the bottom
and see that it's a permission problem.
On the other hand, this doesn't help the developer to find the cause of the
failure. For this purpose, the :envvar:`DISTUTILS_DEBUG` environment variable can be set
to anything except an empty string, and distutils will now print detailed
information about what it is doing, dump the full traceback when an exception
occurs, and print the whole command line when an external program (like a C
compiler) fails.

View File

@ -1,245 +0,0 @@
.. _source-dist:
******************************
Creating a Source Distribution
******************************
.. include:: ./_setuptools_disclaimer.rst
As shown in section :ref:`distutils-simple-example`, you use the :command:`sdist` command
to create a source distribution. In the simplest case, ::
python setup.py sdist
(assuming you haven't specified any :command:`sdist` options in the setup script
or config file), :command:`sdist` creates the archive of the default format for
the current platform. The default format is a gzip'ed tar file
(:file:`.tar.gz`) on Unix, and ZIP file on Windows.
You can specify as many formats as you like using the :option:`!--formats`
option, for example::
python setup.py sdist --formats=gztar,zip
to create a gzipped tarball and a zip file. The available formats are:
+-----------+-------------------------+-------------+
| Format | Description | Notes |
+===========+=========================+=============+
| ``zip`` | zip file (:file:`.zip`) | (1),(3) |
+-----------+-------------------------+-------------+
| ``gztar`` | gzip'ed tar file | \(2) |
| | (:file:`.tar.gz`) | |
+-----------+-------------------------+-------------+
| ``bztar`` | bzip2'ed tar file | \(5) |
| | (:file:`.tar.bz2`) | |
+-----------+-------------------------+-------------+
| ``xztar`` | xz'ed tar file | \(5) |
| | (:file:`.tar.xz`) | |
+-----------+-------------------------+-------------+
| ``ztar`` | compressed tar file | (4),(5) |
| | (:file:`.tar.Z`) | |
+-----------+-------------------------+-------------+
| ``tar`` | tar file (:file:`.tar`) | \(5) |
+-----------+-------------------------+-------------+
.. versionchanged:: 3.5
Added support for the ``xztar`` format.
Notes:
(1)
default on Windows
(2)
default on Unix
(3)
requires either external :program:`zip` utility or :mod:`zipfile` module (part
of the standard Python library since Python 1.6)
(4)
requires the :program:`compress` program. Notice that this format is now
pending for deprecation and will be removed in the future versions of Python.
(5)
deprecated by `PEP 527 <https://peps.python.org/pep-0527/>`_;
`PyPI <https://pypi.org>`_ only accepts ``.zip`` and ``.tar.gz`` files.
When using any ``tar`` format (``gztar``, ``bztar``, ``xztar``, ``ztar`` or
``tar``), under Unix you can specify the ``owner`` and ``group`` names
that will be set for each member of the archive.
For example, if you want all files of the archive to be owned by root::
python setup.py sdist --owner=root --group=root
.. _manifest:
Specifying the files to distribute
==================================
If you don't supply an explicit list of files (or instructions on how to
generate one), the :command:`sdist` command puts a minimal default set into the
source distribution:
* all Python source files implied by the ``py_modules`` and
``packages`` options
* all C source files mentioned in the ``ext_modules`` or
``libraries`` options
.. XXX getting C library sources currently broken---no
:meth:`get_source_files` method in :file:`build_clib.py`!
* scripts identified by the ``scripts`` option
See :ref:`distutils-installing-scripts`.
* anything that looks like a test script: :file:`test/test\*.py` (currently, the
Distutils don't do anything with test scripts except include them in source
distributions, but in the future there will be a standard for testing Python
module distributions)
* Any of the standard README files (:file:`README`, :file:`README.txt`,
or :file:`README.rst`), :file:`setup.py` (or whatever you called your setup
script), and :file:`setup.cfg`.
* all files that matches the ``package_data`` metadata.
See :ref:`distutils-installing-package-data`.
* all files that matches the ``data_files`` metadata.
See :ref:`distutils-additional-files`.
Sometimes this is enough, but usually you will want to specify additional files
to distribute. The typical way to do this is to write a *manifest template*,
called :file:`MANIFEST.in` by default. The manifest template is just a list of
instructions for how to generate your manifest file, :file:`MANIFEST`, which is
the exact list of files to include in your source distribution. The
:command:`sdist` command processes this template and generates a manifest based
on its instructions and what it finds in the filesystem.
If you prefer to roll your own manifest file, the format is simple: one filename
per line, regular files (or symlinks to them) only. If you do supply your own
:file:`MANIFEST`, you must specify everything: the default set of files
described above does not apply in this case.
.. versionchanged:: 3.1
An existing generated :file:`MANIFEST` will be regenerated without
:command:`sdist` comparing its modification time to the one of
:file:`MANIFEST.in` or :file:`setup.py`.
.. versionchanged:: 3.1.3
:file:`MANIFEST` files start with a comment indicating they are generated.
Files without this comment are not overwritten or removed.
.. versionchanged:: 3.2.2
:command:`sdist` will read a :file:`MANIFEST` file if no :file:`MANIFEST.in`
exists, like it used to do.
.. versionchanged:: 3.7
:file:`README.rst` is now included in the list of distutils standard READMEs.
The manifest template has one command per line, where each command specifies a
set of files to include or exclude from the source distribution. For an
example, again we turn to the Distutils' own manifest template:
.. code-block:: none
include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build
The meanings should be fairly clear: include all files in the distribution root
matching :file:`\*.txt`, all files anywhere under the :file:`examples` directory
matching :file:`\*.txt` or :file:`\*.py`, and exclude all directories matching
:file:`examples/sample?/build`. All of this is done *after* the standard
include set, so you can exclude files from the standard set with explicit
instructions in the manifest template. (Or, you can use the
:option:`!--no-defaults` option to disable the standard set entirely.) There are
several other commands available in the manifest template mini-language; see
section :ref:`sdist-cmd`.
The order of commands in the manifest template matters: initially, we have the
list of default files as described above, and each command in the template adds
to or removes from that list of files. Once we have fully processed the
manifest template, we remove files that should not be included in the source
distribution:
* all files in the Distutils "build" tree (default :file:`build/`)
* all files in directories named :file:`RCS`, :file:`CVS`, :file:`.svn`,
:file:`.hg`, :file:`.git`, :file:`.bzr` or :file:`_darcs`
Now we have our complete list of files, which is written to the manifest for
future reference, and then used to build the source distribution archive(s).
You can disable the default set of included files with the
:option:`!--no-defaults` option, and you can disable the standard exclude set
with :option:`!--no-prune`.
Following the Distutils' own manifest template, let's trace how the
:command:`sdist` command builds the list of files to include in the Distutils
source distribution:
#. include all Python source files in the :file:`distutils` and
:file:`distutils/command` subdirectories (because packages corresponding to
those two directories were mentioned in the ``packages`` option in the
setup script---see section :ref:`setup-script`)
#. include :file:`README.txt`, :file:`setup.py`, and :file:`setup.cfg` (standard
files)
#. include :file:`test/test\*.py` (standard files)
#. include :file:`\*.txt` in the distribution root (this will find
:file:`README.txt` a second time, but such redundancies are weeded out later)
#. include anything matching :file:`\*.txt` or :file:`\*.py` in the sub-tree
under :file:`examples`,
#. exclude all files in the sub-trees starting at directories matching
:file:`examples/sample?/build`\ ---this may exclude files included by the
previous two steps, so it's important that the ``prune`` command in the manifest
template comes after the ``recursive-include`` command
#. exclude the entire :file:`build` tree, and any :file:`RCS`, :file:`CVS`,
:file:`.svn`, :file:`.hg`, :file:`.git`, :file:`.bzr` and :file:`_darcs`
directories
Just like in the setup script, file and directory names in the manifest template
should always be slash-separated; the Distutils will take care of converting
them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.
.. _manifest-options:
Manifest-related options
========================
The normal course of operations for the :command:`sdist` command is as follows:
* if the manifest file (:file:`MANIFEST` by default) exists and the first line
does not have a comment indicating it is generated from :file:`MANIFEST.in`,
then it is used as is, unaltered
* if the manifest file doesn't exist or has been previously automatically
generated, read :file:`MANIFEST.in` and create the manifest
* if neither :file:`MANIFEST` nor :file:`MANIFEST.in` exist, create a manifest
with just the default file set
* use the list of files now in :file:`MANIFEST` (either just generated or read
in) to create the source distribution archive(s)
There are a couple of options that modify this behaviour. First, use the
:option:`!--no-defaults` and :option:`!--no-prune` to disable the standard
"include" and "exclude" sets.
Second, you might just want to (re)generate the manifest, but not create a source
distribution::
python setup.py sdist --manifest-only
:option:`!-o` is a shortcut for :option:`!--manifest-only`.

View File

@ -1,8 +0,0 @@
:orphan:
***************************************
Uploading Packages to the Package Index
***************************************
References to up to date PyPI documentation can be found at
:ref:`publishing-python-packages`.

View File

@ -11,7 +11,7 @@ A C extension for CPython is a shared library (e.g. a ``.so`` file on Linux,
To be importable, the shared library must be available on :envvar:`PYTHONPATH`, To be importable, the shared library must be available on :envvar:`PYTHONPATH`,
and must be named after the module name, with an appropriate extension. and must be named after the module name, with an appropriate extension.
When using distutils, the correct filename is generated automatically. When using setuptools, the correct filename is generated automatically.
The initialization function has the signature: The initialization function has the signature:
@ -45,122 +45,12 @@ See the *"Multiple modules in one library"* section in :pep:`489` for details.
.. highlight:: c .. highlight:: c
Building C and C++ Extensions with distutils .. _setuptools-index:
============================================
.. sectionauthor:: Martin v. Löwis <martin@v.loewis.de> Building C and C++ Extensions with setuptools
=============================================
Extension modules can be built using distutils, which is included in Python. Python 3.12 and newer no longer come with distutils. Please refer to the
Since distutils also supports creation of binary packages, users don't ``setuptools`` documentation at
necessarily need a compiler and distutils to install the extension. https://setuptools.readthedocs.io/en/latest/setuptools.html
to learn more about how build and distribute C/C++ extensions with setuptools.
A distutils package contains a driver script, :file:`setup.py`. This is a plain
Python file, which, in the most simple case, could look like this:
.. code-block:: python3
from distutils.core import setup, Extension
module1 = Extension('demo',
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
ext_modules = [module1])
With this :file:`setup.py`, and a file :file:`demo.c`, running ::
python setup.py build
will compile :file:`demo.c`, and produce an extension module named ``demo`` in
the :file:`build` directory. Depending on the system, the module file will end
up in a subdirectory :file:`build/lib.system`, and may have a name like
:file:`demo.so` or :file:`demo.pyd`.
In the :file:`setup.py`, all execution is performed by calling the ``setup``
function. This takes a variable number of keyword arguments, of which the
example above uses only a subset. Specifically, the example specifies
meta-information to build packages, and it specifies the contents of the
package. Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils
documentation in :ref:`distutils-index` to learn more about the features of
distutils; this section explains building extension modules only.
It is common to pre-compute arguments to :func:`setup`, to better structure the
driver script. In the example above, the ``ext_modules`` argument to
:func:`~distutils.core.setup` is a list of extension modules, each of which is
an instance of
the :class:`~distutils.extension.Extension`. In the example, the instance
defines an extension named ``demo`` which is build by compiling a single source
file, :file:`demo.c`.
In many cases, building an extension is more complex, since additional
preprocessor defines and libraries may be needed. This is demonstrated in the
example below.
.. code-block:: python3
from distutils.core import setup, Extension
module1 = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'),
('MINOR_VERSION', '0')],
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building',
long_description = '''
This is really just a demo package.
''',
ext_modules = [module1])
In this example, :func:`~distutils.core.setup` is called with additional
meta-information, which
is recommended when distribution packages have to be built. For the extension
itself, it specifies preprocessor defines, include directories, library
directories, and libraries. Depending on the compiler, distutils passes this
information in different ways to the compiler. For example, on Unix, this may
result in the compilation commands ::
gcc -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC -DMAJOR_VERSION=1 -DMINOR_VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/temp.linux-i686-2.2/demo.o
gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -ltcl83 -o build/lib.linux-i686-2.2/demo.so
These lines are for demonstration purposes only; distutils users should trust
that distutils gets the invocations right.
.. _distributing:
Distributing your extension modules
===================================
When an extension has been successfully built, there are three ways to use it.
End-users will typically want to install the module, they do so by running ::
python setup.py install
Module maintainers should produce source packages; to do so, they run ::
python setup.py sdist
In some cases, additional files need to be included in a source distribution;
this is done through a :file:`MANIFEST.in` file; see :ref:`manifest` for details.
If the source distribution has been built successfully, maintainers can also
create binary distributions. Depending on the platform, one of the following
commands can be used to do so. ::
python setup.py bdist_rpm
python setup.py bdist_dumb

View File

@ -34,10 +34,10 @@ A Cookbook Approach
=================== ===================
There are two approaches to building extension modules on Windows, just as there There are two approaches to building extension modules on Windows, just as there
are on Unix: use the :mod:`distutils` package to control the build process, or are on Unix: use the ``setuptools`` package to control the build process, or
do things manually. The distutils approach works well for most extensions; do things manually. The setuptools approach works well for most extensions;
documentation on using :mod:`distutils` to build and package extension modules documentation on using ``setuptools`` to build and package extension modules
is available in :ref:`distutils-index`. If you find you really need to do is available in :ref:`setuptools-index`. If you find you really need to do
things manually, it may be instructive to study the project file for the things manually, it may be instructive to study the project file for the
:source:`winsound <PCbuild/winsound.vcxproj>` standard library module. :source:`winsound <PCbuild/winsound.vcxproj>` standard library module.

View File

@ -23,7 +23,11 @@
The up to date module installation documentation. For regular Python The up to date module installation documentation. For regular Python
usage, you almost certainly want that document rather than this one. usage, you almost certainly want that document rather than this one.
.. include:: ../distutils/_setuptools_disclaimer.rst .. note::
This document is being retained solely until the ``setuptools`` documentation
at https://setuptools.readthedocs.io/en/latest/setuptools.html
independently covers all of the relevant information currently included here.
.. note:: .. note::

View File

@ -9,7 +9,6 @@ with a local index server, or without any index server at all.
.. toctree:: .. toctree::
distutils.rst
ensurepip.rst ensurepip.rst
venv.rst venv.rst
zipapp.rst zipapp.rst

View File

@ -1,49 +0,0 @@
:mod:`distutils` --- Building and installing Python modules
===========================================================
.. module:: distutils
:synopsis: Support for building and installing Python modules into an
existing Python installation.
.. sectionauthor:: Fred L. Drake, Jr. <fdrake@acm.org>
--------------
:mod:`distutils` is deprecated with removal planned for Python 3.12.
See the :ref:`What's New <distutils-deprecated>` entry for more information.
--------------
The :mod:`distutils` package provides support for building and installing
additional modules into a Python installation. The new modules may be either
100%-pure Python, or may be extension modules written in C, or may be
collections of Python packages which include modules coded in both Python and C.
Most Python users will *not* want to use this module directly, but instead
use the cross-version tools maintained by the Python Packaging Authority. In
particular,
`setuptools <https://setuptools.readthedocs.io/en/latest/>`__ is an
enhanced alternative to :mod:`distutils` that provides:
* support for declaring project dependencies
* additional mechanisms for configuring which files to include in source
releases (including plugins for integration with version control systems)
* the ability to declare project "entry points", which can be used as the
basis for application plugin systems
* the ability to automatically generate Windows command line executables at
installation time rather than needing to prebuild them
* consistent behaviour across all supported Python versions
The recommended `pip <https://pip.pypa.io/>`__ installer runs all
``setup.py`` scripts with ``setuptools``, even if the script itself only
imports ``distutils``. Refer to the
`Python Packaging User Guide <https://packaging.python.org>`_ for more
information.
For the benefits of packaging tool authors and users seeking a deeper
understanding of the details of the current packaging and distribution
system, the legacy :mod:`distutils` based user documentation and API
reference remain available:
* :ref:`install-index`
* :ref:`distutils-index`

View File

@ -25,7 +25,7 @@ Configuration variables
A Python distribution contains a :file:`Makefile` and a :file:`pyconfig.h` A Python distribution contains a :file:`Makefile` and a :file:`pyconfig.h`
header file that are necessary to build both the Python binary itself and header file that are necessary to build both the Python binary itself and
third-party C extensions compiled using :mod:`distutils`. third-party C extensions compiled using ``setuptools``.
:mod:`sysconfig` puts all variables found in these files in a dictionary that :mod:`sysconfig` puts all variables found in these files in a dictionary that
can be accessed using :func:`get_config_vars` or :func:`get_config_var`. can be accessed using :func:`get_config_vars` or :func:`get_config_var`.

View File

@ -64,7 +64,7 @@ Creating virtual environments
Python installation). Python installation).
When a virtual environment is active, any options that change the When a virtual environment is active, any options that change the
installation path will be ignored from all :mod:`distutils` configuration installation path will be ignored from all ``setuptools`` configuration
files to prevent projects being inadvertently installed outside of the files to prevent projects being inadvertently installed outside of the
virtual environment. virtual environment.

View File

@ -599,7 +599,7 @@ Main files of the build system
* :file:`pyconfig.h` (created by :file:`configure`); * :file:`pyconfig.h` (created by :file:`configure`);
* :file:`Modules/Setup`: C extensions built by the Makefile using * :file:`Modules/Setup`: C extensions built by the Makefile using
:file:`Module/makesetup` shell script; :file:`Module/makesetup` shell script;
* :file:`setup.py`: C extensions built using the :mod:`distutils` module. * :file:`setup.py`: C extensions built using the ``setuptools`` package.
Main build steps Main build steps
---------------- ----------------

View File

@ -1187,11 +1187,10 @@ shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
cx_Freeze cx_Freeze
--------- ---------
`cx_Freeze <https://cx-freeze.readthedocs.io/en/latest/>`_ is a :mod:`distutils` `cx_Freeze <https://cx-freeze.readthedocs.io/en/latest/>`_ is a ``distutils``
extension (see :ref:`extending-distutils`) which wraps Python scripts into extension which wraps Python scripts into executable Windows programs
executable Windows programs (:file:`{*}.exe` files). When you have done this, (:file:`{*}.exe` files). When you have done this, you can distribute your
you can distribute your application without requiring your users to install application without requiring your users to install Python.
Python.
Compiling Python on Windows Compiling Python on Windows

View File

@ -2697,7 +2697,7 @@ projects.
However, as this migration is currently still incomplete, the legacy However, as this migration is currently still incomplete, the legacy
versions of those guides remaining available as :ref:`install-index` versions of those guides remaining available as :ref:`install-index`
and :ref:`distutils-index`. and :ref:`setuptools-index`.
.. seealso:: .. seealso::

View File

@ -247,7 +247,7 @@ projects.
However, as this migration is currently still incomplete, the legacy However, as this migration is currently still incomplete, the legacy
versions of those guides remaining available as :ref:`install-index` versions of those guides remaining available as :ref:`install-index`
and :ref:`distutils-index`. and :ref:`setuptools-index`.
.. seealso:: .. seealso::