mirror of https://github.com/python/cpython
bpo-29962: add math.remainder (#950)
* Implement math.remainder. * Fix markup for arguments; use double spaces after period. * Mark up function reference in what's new entry. * Add comment explaining the calculation in the final branch. * Fix out-of-order entry in whatsnew. * Add comment explaining why it's good enough to compare m with c, in spite of possible rounding error.
This commit is contained in:
parent
a0157b5f11
commit
a0ce375e10
|
@ -175,6 +175,27 @@ Number-theoretic and representation functions
|
|||
of *x* and are floats.
|
||||
|
||||
|
||||
.. function:: remainder(x, y)
|
||||
|
||||
Return the IEEE 754-style remainder of *x* with respect to *y*. For
|
||||
finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
|
||||
where ``n`` is the closest integer to the exact value of the quotient ``x /
|
||||
y``. If ``x / y`` is exactly halfway between two consecutive integers, the
|
||||
nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
|
||||
y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
|
||||
|
||||
Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
|
||||
*x* for any finite *x*, and ``remainder(x, 0)`` and
|
||||
``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
|
||||
If the result of the remainder operation is zero, that zero will have
|
||||
the same sign as *x*.
|
||||
|
||||
On platforms using IEEE 754 binary floating-point, the result of this
|
||||
operation is always exactly representable: no rounding error is introduced.
|
||||
|
||||
.. versionadded:: 3.7
|
||||
|
||||
|
||||
.. function:: trunc(x)
|
||||
|
||||
Return the :class:`~numbers.Real` value *x* truncated to an
|
||||
|
|
|
@ -110,6 +110,12 @@ Added another argument *monetary* in :meth:`format_string` of :mod:`locale`.
|
|||
If *monetary* is true, the conversion uses monetary thousands separator and
|
||||
grouping strings. (Contributed by Garvit in :issue:`10379`.)
|
||||
|
||||
math
|
||||
----
|
||||
|
||||
New :func:`~math.remainder` function, implementing the IEEE 754-style remainder
|
||||
operation. (Contributed by Mark Dickinson in :issue:`29962`.)
|
||||
|
||||
os
|
||||
--
|
||||
|
||||
|
|
|
@ -1000,6 +1000,135 @@ class MathTests(unittest.TestCase):
|
|||
self.ftest('radians(-45)', math.radians(-45), -math.pi/4)
|
||||
self.ftest('radians(0)', math.radians(0), 0)
|
||||
|
||||
@requires_IEEE_754
|
||||
def testRemainder(self):
|
||||
from fractions import Fraction
|
||||
|
||||
def validate_spec(x, y, r):
|
||||
"""
|
||||
Check that r matches remainder(x, y) according to the IEEE 754
|
||||
specification. Assumes that x, y and r are finite and y is nonzero.
|
||||
"""
|
||||
fx, fy, fr = Fraction(x), Fraction(y), Fraction(r)
|
||||
# r should not exceed y/2 in absolute value
|
||||
self.assertLessEqual(abs(fr), abs(fy/2))
|
||||
# x - r should be an exact integer multiple of y
|
||||
n = (fx - fr) / fy
|
||||
self.assertEqual(n, int(n))
|
||||
if abs(fr) == abs(fy/2):
|
||||
# If |r| == |y/2|, n should be even.
|
||||
self.assertEqual(n/2, int(n/2))
|
||||
|
||||
# triples (x, y, remainder(x, y)) in hexadecimal form.
|
||||
testcases = [
|
||||
# Remainders modulo 1, showing the ties-to-even behaviour.
|
||||
'-4.0 1 -0.0',
|
||||
'-3.8 1 0.8',
|
||||
'-3.0 1 -0.0',
|
||||
'-2.8 1 -0.8',
|
||||
'-2.0 1 -0.0',
|
||||
'-1.8 1 0.8',
|
||||
'-1.0 1 -0.0',
|
||||
'-0.8 1 -0.8',
|
||||
'-0.0 1 -0.0',
|
||||
' 0.0 1 0.0',
|
||||
' 0.8 1 0.8',
|
||||
' 1.0 1 0.0',
|
||||
' 1.8 1 -0.8',
|
||||
' 2.0 1 0.0',
|
||||
' 2.8 1 0.8',
|
||||
' 3.0 1 0.0',
|
||||
' 3.8 1 -0.8',
|
||||
' 4.0 1 0.0',
|
||||
|
||||
# Reductions modulo 2*pi
|
||||
'0x0.0p+0 0x1.921fb54442d18p+2 0x0.0p+0',
|
||||
'0x1.921fb54442d18p+0 0x1.921fb54442d18p+2 0x1.921fb54442d18p+0',
|
||||
'0x1.921fb54442d17p+1 0x1.921fb54442d18p+2 0x1.921fb54442d17p+1',
|
||||
'0x1.921fb54442d18p+1 0x1.921fb54442d18p+2 0x1.921fb54442d18p+1',
|
||||
'0x1.921fb54442d19p+1 0x1.921fb54442d18p+2 -0x1.921fb54442d17p+1',
|
||||
'0x1.921fb54442d17p+2 0x1.921fb54442d18p+2 -0x0.0000000000001p+2',
|
||||
'0x1.921fb54442d18p+2 0x1.921fb54442d18p+2 0x0p0',
|
||||
'0x1.921fb54442d19p+2 0x1.921fb54442d18p+2 0x0.0000000000001p+2',
|
||||
'0x1.2d97c7f3321d1p+3 0x1.921fb54442d18p+2 0x1.921fb54442d14p+1',
|
||||
'0x1.2d97c7f3321d2p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d18p+1',
|
||||
'0x1.2d97c7f3321d3p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1',
|
||||
'0x1.921fb54442d17p+3 0x1.921fb54442d18p+2 -0x0.0000000000001p+3',
|
||||
'0x1.921fb54442d18p+3 0x1.921fb54442d18p+2 0x0p0',
|
||||
'0x1.921fb54442d19p+3 0x1.921fb54442d18p+2 0x0.0000000000001p+3',
|
||||
'0x1.f6a7a2955385dp+3 0x1.921fb54442d18p+2 0x1.921fb54442d14p+1',
|
||||
'0x1.f6a7a2955385ep+3 0x1.921fb54442d18p+2 0x1.921fb54442d18p+1',
|
||||
'0x1.f6a7a2955385fp+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1',
|
||||
'0x1.1475cc9eedf00p+5 0x1.921fb54442d18p+2 0x1.921fb54442d10p+1',
|
||||
'0x1.1475cc9eedf01p+5 0x1.921fb54442d18p+2 -0x1.921fb54442d10p+1',
|
||||
|
||||
# Symmetry with respect to signs.
|
||||
' 1 0.c 0.4',
|
||||
'-1 0.c -0.4',
|
||||
' 1 -0.c 0.4',
|
||||
'-1 -0.c -0.4',
|
||||
' 1.4 0.c -0.4',
|
||||
'-1.4 0.c 0.4',
|
||||
' 1.4 -0.c -0.4',
|
||||
'-1.4 -0.c 0.4',
|
||||
|
||||
# Huge modulus, to check that the underlying algorithm doesn't
|
||||
# rely on 2.0 * modulus being representable.
|
||||
'0x1.dp+1023 0x1.4p+1023 0x0.9p+1023',
|
||||
'0x1.ep+1023 0x1.4p+1023 -0x0.ap+1023',
|
||||
'0x1.fp+1023 0x1.4p+1023 -0x0.9p+1023',
|
||||
]
|
||||
|
||||
for case in testcases:
|
||||
with self.subTest(case=case):
|
||||
x_hex, y_hex, expected_hex = case.split()
|
||||
x = float.fromhex(x_hex)
|
||||
y = float.fromhex(y_hex)
|
||||
expected = float.fromhex(expected_hex)
|
||||
validate_spec(x, y, expected)
|
||||
actual = math.remainder(x, y)
|
||||
# Cheap way of checking that the floats are
|
||||
# as identical as we need them to be.
|
||||
self.assertEqual(actual.hex(), expected.hex())
|
||||
|
||||
# Test tiny subnormal modulus: there's potential for
|
||||
# getting the implementation wrong here (for example,
|
||||
# by assuming that modulus/2 is exactly representable).
|
||||
tiny = float.fromhex('1p-1074') # min +ve subnormal
|
||||
for n in range(-25, 25):
|
||||
if n == 0:
|
||||
continue
|
||||
y = n * tiny
|
||||
for m in range(100):
|
||||
x = m * tiny
|
||||
actual = math.remainder(x, y)
|
||||
validate_spec(x, y, actual)
|
||||
actual = math.remainder(-x, y)
|
||||
validate_spec(-x, y, actual)
|
||||
|
||||
# Special values.
|
||||
# NaNs should propagate as usual.
|
||||
for value in [NAN, 0.0, -0.0, 2.0, -2.3, NINF, INF]:
|
||||
self.assertIsNaN(math.remainder(NAN, value))
|
||||
self.assertIsNaN(math.remainder(value, NAN))
|
||||
|
||||
# remainder(x, inf) is x, for non-nan non-infinite x.
|
||||
for value in [-2.3, -0.0, 0.0, 2.3]:
|
||||
self.assertEqual(math.remainder(value, INF), value)
|
||||
self.assertEqual(math.remainder(value, NINF), value)
|
||||
|
||||
# remainder(x, 0) and remainder(infinity, x) for non-NaN x are invalid
|
||||
# operations according to IEEE 754-2008 7.2(f), and should raise.
|
||||
for value in [NINF, -2.3, -0.0, 0.0, 2.3, INF]:
|
||||
with self.assertRaises(ValueError):
|
||||
math.remainder(INF, value)
|
||||
with self.assertRaises(ValueError):
|
||||
math.remainder(NINF, value)
|
||||
with self.assertRaises(ValueError):
|
||||
math.remainder(value, 0.0)
|
||||
with self.assertRaises(ValueError):
|
||||
math.remainder(value, -0.0)
|
||||
|
||||
def testSin(self):
|
||||
self.assertRaises(TypeError, math.sin)
|
||||
self.ftest('sin(0)', math.sin(0), 0)
|
||||
|
@ -1286,6 +1415,12 @@ class MathTests(unittest.TestCase):
|
|||
self.fail('Failures in test_mtestfile:\n ' +
|
||||
'\n '.join(failures))
|
||||
|
||||
# Custom assertions.
|
||||
|
||||
def assertIsNaN(self, value):
|
||||
if not math.isnan(value):
|
||||
self.fail("Expected a NaN, got {!r}.".format(value))
|
||||
|
||||
|
||||
class IsCloseTests(unittest.TestCase):
|
||||
isclose = math.isclose # sublcasses should override this
|
||||
|
|
|
@ -303,6 +303,9 @@ Extension Modules
|
|||
Library
|
||||
-------
|
||||
|
||||
- bpo-29962: Add math.remainder operation, implementing remainder
|
||||
as specified in IEEE 754.
|
||||
|
||||
- bpo-29649: Improve struct.pack_into() exception messages for problems
|
||||
with the buffer size and offset. Patch by Andrew Nester.
|
||||
|
||||
|
|
|
@ -600,6 +600,102 @@ m_atan2(double y, double x)
|
|||
return atan2(y, x);
|
||||
}
|
||||
|
||||
|
||||
/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
|
||||
multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
|
||||
binary floating-point format, the result is always exact. */
|
||||
|
||||
static double
|
||||
m_remainder(double x, double y)
|
||||
{
|
||||
/* Deal with most common case first. */
|
||||
if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
|
||||
double absx, absy, c, m, r;
|
||||
|
||||
if (y == 0.0) {
|
||||
return Py_NAN;
|
||||
}
|
||||
|
||||
absx = fabs(x);
|
||||
absy = fabs(y);
|
||||
m = fmod(absx, absy);
|
||||
|
||||
/*
|
||||
Warning: some subtlety here. What we *want* to know at this point is
|
||||
whether the remainder m is less than, equal to, or greater than half
|
||||
of absy. However, we can't do that comparison directly because we
|
||||
can't be sure that 0.5*absy is representable (the mutiplication
|
||||
might incur precision loss due to underflow). So instead we compare
|
||||
m with the complement c = absy - m: m < 0.5*absy if and only if m <
|
||||
c, and so on. The catch is that absy - m might also not be
|
||||
representable, but it turns out that it doesn't matter:
|
||||
|
||||
- if m > 0.5*absy then absy - m is exactly representable, by
|
||||
Sterbenz's lemma, so m > c
|
||||
- if m == 0.5*absy then again absy - m is exactly representable
|
||||
and m == c
|
||||
- if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
|
||||
in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
|
||||
c, or (ii) absy is tiny, either subnormal or in the lowest normal
|
||||
binade. Then absy - m is exactly representable and again m < c.
|
||||
*/
|
||||
|
||||
c = absy - m;
|
||||
if (m < c) {
|
||||
r = m;
|
||||
}
|
||||
else if (m > c) {
|
||||
r = -c;
|
||||
}
|
||||
else {
|
||||
/*
|
||||
Here absx is exactly halfway between two multiples of absy,
|
||||
and we need to choose the even multiple. x now has the form
|
||||
|
||||
absx = n * absy + m
|
||||
|
||||
for some integer n (recalling that m = 0.5*absy at this point).
|
||||
If n is even we want to return m; if n is odd, we need to
|
||||
return -m.
|
||||
|
||||
So
|
||||
|
||||
0.5 * (absx - m) = (n/2) * absy
|
||||
|
||||
and now reducing modulo absy gives us:
|
||||
|
||||
| m, if n is odd
|
||||
fmod(0.5 * (absx - m), absy) = |
|
||||
| 0, if n is even
|
||||
|
||||
Now m - 2.0 * fmod(...) gives the desired result: m
|
||||
if n is even, -m if m is odd.
|
||||
|
||||
Note that all steps in fmod(0.5 * (absx - m), absy)
|
||||
will be computed exactly, with no rounding error
|
||||
introduced.
|
||||
*/
|
||||
assert(m == c);
|
||||
r = m - 2.0 * fmod(0.5 * (absx - m), absy);
|
||||
}
|
||||
return copysign(1.0, x) * r;
|
||||
}
|
||||
|
||||
/* Special values. */
|
||||
if (Py_IS_NAN(x)) {
|
||||
return x;
|
||||
}
|
||||
if (Py_IS_NAN(y)) {
|
||||
return y;
|
||||
}
|
||||
if (Py_IS_INFINITY(x)) {
|
||||
return Py_NAN;
|
||||
}
|
||||
assert(Py_IS_INFINITY(y));
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
|
||||
log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
|
||||
|
@ -1072,6 +1168,12 @@ FUNC1(log1p, m_log1p, 0,
|
|||
"log1p($module, x, /)\n--\n\n"
|
||||
"Return the natural logarithm of 1+x (base e).\n\n"
|
||||
"The result is computed in a way which is accurate for x near zero.")
|
||||
FUNC2(remainder, m_remainder,
|
||||
"remainder($module, x, y, /)\n--\n\n"
|
||||
"Difference between x and the closest integer multiple of y.\n\n"
|
||||
"Return x - n*y where n*y is the closest integer multiple of y.\n"
|
||||
"In the case where x is exactly halfway between two multiples of\n"
|
||||
"y, the nearest even value of n is used. The result is always exact.")
|
||||
FUNC1(sin, sin, 0,
|
||||
"sin($module, x, /)\n--\n\n"
|
||||
"Return the sine of x (measured in radians).")
|
||||
|
@ -2258,6 +2360,7 @@ static PyMethodDef math_methods[] = {
|
|||
MATH_MODF_METHODDEF
|
||||
MATH_POW_METHODDEF
|
||||
MATH_RADIANS_METHODDEF
|
||||
{"remainder", math_remainder, METH_VARARGS, math_remainder_doc},
|
||||
{"sin", math_sin, METH_O, math_sin_doc},
|
||||
{"sinh", math_sinh, METH_O, math_sinh_doc},
|
||||
{"sqrt", math_sqrt, METH_O, math_sqrt_doc},
|
||||
|
|
Loading…
Reference in New Issue