Move itertools module from the sandbox and into production.

This commit is contained in:
Raymond Hettinger 2003-02-01 00:10:11 +00:00
parent 506be287aa
commit 96ef8115dd
8 changed files with 2027 additions and 0 deletions

View File

@ -125,6 +125,7 @@ and how to embed it in other applications.
\input{libheapq}
\input{libarray}
\input{libsets}
\input{libitertools}
\input{libcfgparser}
\input{libfileinput}
\input{libxreadlines}

325
Doc/lib/libitertools.tex Normal file
View File

@ -0,0 +1,325 @@
\section{\module{itertools} ---
Functions creating iterators for efficient looping}
\declaremodule{standard}{itertools}
\modulesynopsis{Functions creating iterators for efficient looping.}
\moduleauthor{Raymond Hettinger}{python@rcn.com}
\sectionauthor{Raymond Hettinger}{python@rcn.com}
\versionadded{2.3}
This module implements a number of iterator building blocks inspired
by constructs from the Haskell and SML programming languages. Each
has been recast in a form suitable for Python.
With the advent of iterators and generators in Python 2.3, each of
these tools can be expressed easily and succinctly in pure python.
Rather duplicating what can already be done, this module emphasizes
providing value in other ways:
\begin{itemize}
\item Instead of constructing an over-specialized toolset, this module
provides basic building blocks that can be readily combined.
For instance, SML provides a tabulation tool: \code{tabulate(\var{f})}
which produces a sequence \code{f(0), f(1), ...}. This toolbox
takes a different approach of providing \function{imap()} and
\function{count()} which can be combined to form
\code{imap(\var{f}, count())} and produce an equivalent result.
\item Some tools were dropped because they offer no advantage over their
pure python counterparts or because their behavior was too
surprising.
For instance, SML provides a tool: \code{cycle(\var{seq})} which
loops over the sequence elements and then starts again when the
sequence is exhausted. The surprising behavior is the need for
significant auxiliary storage (unusual for iterators). Also, it
is trivially implemented in python with almost no performance
penalty.
\item Another source of value comes from standardizing a core set of tools
to avoid the readability and reliability problems that arise when many
different individuals create their own slightly varying implementations
each with their own quirks and naming conventions.
\item Whether cast in pure python form or C code, tools that use iterators
are more memory efficient (and faster) than their list based counterparts.
Adopting the principles of just-in-time manufacturing, they create
data when and where needed instead of consuming memory with the
computer equivalent of ``inventory''.
\end{itemize}
\begin{seealso}
\seetext{The Standard ML Basis Library,
\citetitle[http://www.standardml.org/Basis/]
{The Standard ML Basis Library}.}
\seetext{Haskell, A Purely Functional Language,
\citetitle[http://www.haskell.org/definition/]
{Definition of Haskell and the Standard Libraries}.}
\end{seealso}
\subsection{Itertool functions \label{itertools-functions}}
The following module functions all construct and return iterators.
Some provide streams of infinite length, so they should only be accessed
by functions or loops that truncate the stream.
\begin{funcdesc}{count}{\optional{n}}
Make an iterator that returns consecutive integers starting with \var{n}.
Does not currently support python long integers. Often used as an
argument to \function{imap()} to generate consecutive data points.
Also, used in \function{izip()} to add sequence numbers. Equivalent to:
\begin{verbatim}
def count(n=0):
cnt = n
while True:
yield cnt
cnt += 1
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{dropwhile}{predicate, iterable}
Make an iterator that drops elements from the iterable as long as
the predicate is true; afterwards, returns every element. Note,
the iterator does not produce \emph{any} output until the predicate
is true, so it may have a lengthy start-up time. Equivalent to:
\begin{verbatim}
def dropwhile(predicate, iterable):
iterable = iter(iterable)
while True:
x = iterable.next()
if predicate(x): continue # drop when predicate is true
yield x
break
while True:
yield iterable.next()
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{ifilter}{predicate, iterable \optional{, invert}}
Make an iterator that filters elements from iterable returning only
those for which the predicate is \code{True}. If
\var{invert} is \code{True}, then reverse the process and pass through
only those elements for which the predicate is \code{False}.
If \var{predicate} is \code{None}, return the items that are true
(or false if \var{invert} has been set). Equivalent to:
\begin{verbatim}
def ifilter(predicate, iterable, invert=False):
iterable = iter(iterable)
while True:
x = iterable.next()
if predicate is None:
b = bool(x)
else:
b = bool(predicate(x))
if not invert and b or invert and not b:
yield x
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{imap}{function, *iterables}
Make an iterator that computes the function using arguments from
each of the iterables. If \var{function} is set to \code{None}, then
\function{imap()} returns the arguments as a tuple. Like
\function{map()} but stops when the shortest iterable is exhausted
instead of filling in \code{None} for shorter iterables. The reason
for the difference is that infinite iterator arguments are typically
an error for \function{map()} (because the output is fully evaluated)
but represent a common and useful way of supplying arguments to
\function{imap()}.
Equivalent to:
\begin{verbatim}
def imap(function, *iterables):
iterables = map(iter, iterables)
while True:
args = [i.next() for i in iterables]
if function is None:
yield tuple(args)
else:
yield function(*args)
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}}
Make an iterator that returns selected elements from the iterable.
If \var{start} is non-zero, then elements from the iterable are skipped
until start is reached. Afterward, elements are returned consecutively
unless \var{step} is set higher than one which results in items being
skipped. If \var{stop} is specified, then iteration stops at the
specified element position; otherwise, it continues indefinitely or
until the iterable is exhausted. Unlike regular slicing,
\function{islice()} does not support negative values for \var{start},
\var{stop}, or \var{step}. Can be used to extract related fields
from data where the internal structure has been flattened (for
example, a multi-line report may list a name field on every
third line). Equivalent to:
\begin{verbatim}
def islice(iterable, *args):
iterable = iter(iterable)
s = slice(*args)
next = s.start or 0
stop = s.stop
step = s.step or 1
cnt = 0
while True:
while cnt < next:
dummy = iterable.next()
cnt += 1
if cnt >= stop:
break
yield iterable.next()
cnt += 1
next += step
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{izip}{*iterables}
Make an iterator that aggregates elements from each of the iterables.
Like \function{zip()} except that it returns an iterator instead of
a list. Used for lock-step iteration over several iterables at a
time. Equivalent to:
\begin{verbatim}
def izip(*iterables):
iterables = map(iter, iterables)
while True:
result = [i.next() for i in iterables]
yield tuple(result)
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{repeat}{obj}
Make an iterator that returns \var{obj} over and over again.
Used as argument to \function{imap()} for invariant parameters
to the called function. Also used with function{izip()} to create
an invariant part of a tuple record. Equivalent to:
\begin{verbatim}
def repeat(x):
while True:
yield x
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{starmap}{function, iterable}
Make an iterator that computes the function using arguments tuples
obtained from the iterable. Used instead of \function{imap()} when
argument parameters are already grouped in tuples from a single iterable
(the data has been ``pre-zipped''). The difference between
\function{imap()} and \function{starmap} parallels the distinction
between \code{function(a,b)} and \code{function(*c)}.
Equivalent to:
\begin{verbatim}
def starmap(function, iterable):
iterable = iter(iterable)
while True:
yield function(*iterable.next())
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{takewhile}{predicate, iterable}
Make an iterator that returns elements from the iterable as long as
the predicate is true. Equivalent to:
\begin{verbatim}
def takewhile(predicate, iterable):
iterable = iter(iterable)
while True:
x = iterable.next()
if predicate(x):
yield x
else:
break
\end{verbatim}
\end{funcdesc}
\begin{funcdesc}{times}{n, \optional{object}}
Make an iterator that returns \var{object} \var{n} times.
\var{object} defaults to \code{None}. Used for looping a specific
number of times without creating a number object on each pass.
Equivalent to:
\begin{verbatim}
def times(n, object=None):
if n<0 : raise ValueError
for i in xrange(n):
yield object
\end{verbatim}
\end{funcdesc}
\subsection{Examples \label{itertools-example}}
The following examples show common uses for each tool and
demonstrate ways they can be combined.
\begin{verbatim}
>>> for i in times(3):
... print "Hello"
...
Hello
Hello
Hello
>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
... print 'Check %d is for $%.2f' % (checknum, amount)
...
Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14
>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
... print cube
...
1
8
27
>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
'', 'martin', '', 'walter', '', 'samuele']
>>> for name in islice(reportlines, 3, len(reportlines), 2):
... print name.title()
...
Alex
Laura
Martin
Walter
Samuele
\end{verbatim}
This section has further examples of how itertools can be combined.
Note that \function{enumerate()} and \method{iteritems()} already
have highly efficient implementations in Python. They are only
included here to illustrate how higher level tools can be created
from building blocks.
\begin{verbatim}
>>> def enumerate(iterable):
... return izip(count(), iterable)
>>> def tabulate(function):
... "Return function(0), function(1), ..."
... return imap(function, count())
>>> def iteritems(mapping):
... return izip(mapping.iterkeys(), mapping.itervalues())
>>> def nth(iterable, n):
... "Returns the nth item"
... return islice(iterable, n, n+1).next()
\end{verbatim}

158
Lib/test/test_itertools.py Normal file
View File

@ -0,0 +1,158 @@
import unittest
from test import test_support
from itertools import *
class TestBasicOps(unittest.TestCase):
def test_count(self):
self.assertEqual(zip('abc',count()), [('a', 0), ('b', 1), ('c', 2)])
self.assertEqual(zip('abc',count(3)), [('a', 3), ('b', 4), ('c', 5)])
self.assertRaises(TypeError, count, 2, 3)
def test_ifilter(self):
def isEven(x):
return x%2==0
self.assertEqual(list(ifilter(isEven, range(6))), [0,2,4])
self.assertEqual(list(ifilter(isEven, range(6), True)), [1,3,5])
self.assertEqual(list(ifilter(None, [0,1,0,2,0])), [1,2])
self.assertRaises(TypeError, ifilter)
self.assertRaises(TypeError, ifilter, 3)
self.assertRaises(TypeError, ifilter, isEven, 3)
self.assertRaises(TypeError, ifilter, isEven, [3], True, 4)
def test_izip(self):
ans = [(x,y) for x, y in izip('abc',count())]
self.assertEqual(ans, [('a', 0), ('b', 1), ('c', 2)])
self.assertRaises(TypeError, izip)
def test_repeat(self):
self.assertEqual(zip(xrange(3),repeat('a')),
[(0, 'a'), (1, 'a'), (2, 'a')])
self.assertRaises(TypeError, repeat)
def test_times(self):
self.assertEqual(list(times(3)), [None]*3)
self.assertEqual(list(times(3, True)), [True]*3)
self.assertRaises(ValueError, times, -1)
def test_imap(self):
import operator
self.assertEqual(list(imap(operator.pow, range(3), range(1,7))),
[0**1, 1**2, 2**3])
self.assertEqual(list(imap(None, 'abc', range(5))),
[('a',0),('b',1),('c',2)])
self.assertRaises(TypeError, imap)
self.assertRaises(TypeError, imap, operator.neg)
def test_starmap(self):
import operator
self.assertEqual(list(starmap(operator.pow, zip(range(3), range(1,7)))),
[0**1, 1**2, 2**3])
def test_islice(self):
for args in [ # islice(args) should agree with range(args)
(10, 20, 3),
(10, 3, 20),
(10, 20),
(10, 3),
(20,)
]:
self.assertEqual(list(islice(xrange(100), *args)), range(*args))
for args, tgtargs in [ # Stop when seqn is exhausted
((10, 110, 3), ((10, 100, 3))),
((10, 110), ((10, 100))),
((110,), (100,))
]:
self.assertEqual(list(islice(xrange(100), *args)), range(*tgtargs))
self.assertRaises(TypeError, islice, xrange(10))
self.assertRaises(TypeError, islice, xrange(10), 1, 2, 3, 4)
self.assertRaises(ValueError, islice, xrange(10), -5, 10, 1)
self.assertRaises(ValueError, islice, xrange(10), 1, -5, -1)
self.assertRaises(ValueError, islice, xrange(10), 1, 10, -1)
self.assertRaises(ValueError, islice, xrange(10), 1, 10, 0)
def test_takewhile(self):
data = [1, 3, 5, 20, 2, 4, 6, 8]
underten = lambda x: x<10
self.assertEqual(list(takewhile(underten, data)), [1, 3, 5])
def test_dropwhile(self):
data = [1, 3, 5, 20, 2, 4, 6, 8]
underten = lambda x: x<10
self.assertEqual(list(dropwhile(underten, data)), [20, 2, 4, 6, 8])
libreftest = """ Doctest for examples in the library reference, libitertools.tex
>>> for i in times(3):
... print "Hello"
...
Hello
Hello
Hello
>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
... print 'Check %d is for $%.2f' % (checknum, amount)
...
Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14
>>> import operator
>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
... print cube
...
1
8
27
>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura', '', 'martin', '', 'walter', '', 'samuele']
>>> for name in islice(reportlines, 3, len(reportlines), 2):
... print name.title()
...
Alex
Laura
Martin
Walter
Samuele
>>> def enumerate(iterable):
... return izip(count(), iterable)
>>> def tabulate(function):
... "Return function(0), function(1), ..."
... return imap(function, count())
>>> def iteritems(mapping):
... return izip(mapping.iterkeys(), mapping.itervalues())
>>> def nth(iterable, n):
... "Returns the nth item"
... return islice(iterable, n, n+1).next()
"""
__test__ = {'libreftest' : libreftest}
def test_main(verbose=None):
import test_itertools
suite = unittest.TestSuite()
for testclass in (TestBasicOps,
):
suite.addTest(unittest.makeSuite(testclass))
test_support.run_suite(suite)
test_support.run_doctest(test_itertools, verbose)
# verify reference counting
import sys
if verbose and hasattr(sys, "gettotalrefcount"):
counts = []
for i in xrange(5):
test_support.run_suite(suite)
counts.append(sys.gettotalrefcount())
print counts
if __name__ == "__main__":
test_main(verbose=True)

View File

@ -30,6 +30,9 @@ Core and builtins
Extension modules
-----------------
- Added an itertools module containing high speed, memory efficient
looping constructs inspired by tools from Haskell and SML.
- The SSL module now handles sockets with a timeout set correctly (SF
patch #675750, fixing SF bug #675552).

1532
Modules/itertoolsmodule.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -45,6 +45,7 @@ extern void init_hotshot(void);
extern void initxxsubtype(void);
extern void initzipimport(void);
extern void init_random(void);
extern void inititertools(void);
/* XXX tim: what's the purpose of ADDMODULE MARKER? */
/* -- ADDMODULE MARKER 1 -- */
@ -97,6 +98,7 @@ struct _inittab _PyImport_Inittab[] = {
{"_weakref", init_weakref},
{"_hotshot", init_hotshot},
{"_random", init_random},
{"itertools", inititertools},
{"xxsubtype", initxxsubtype},
{"zipimport", initzipimport},

View File

@ -323,6 +323,10 @@ SOURCE=..\Objects\iterobject.c
# End Source File
# Begin Source File
SOURCE=..\Modules\itertoolsmodule.c
# End Source File
# Begin Source File
SOURCE=..\Parser\listnode.c
# End Source File
# Begin Source File

View File

@ -324,6 +324,8 @@ class PyBuildExt(build_ext):
libraries=math_libs) )
# random number generator implemented in C
exts.append( Extension("_random", ["_randommodule.c"]) )
# fast iterator tools implemented in C
exts.append( Extension("itertools", ["itertoolsmodule.c"]) )
# operator.add() and similar goodies
exts.append( Extension('operator', ['operator.c']) )
# Python C API test module