gh-101100: Fix Sphinx warnings in library/random.rst (#112981)

Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
This commit is contained in:
Hugo van Kemenade 2023-12-28 21:29:12 +02:00 committed by GitHub
parent fba324154e
commit 8e5d70f4b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 44 additions and 16 deletions

View File

@ -34,10 +34,8 @@ instance of the :class:`random.Random` class. You can instantiate your own
instances of :class:`Random` to get generators that don't share state.
Class :class:`Random` can also be subclassed if you want to use a different
basic generator of your own devising: in that case, override the :meth:`~Random.random`,
:meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods.
Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this
allows :meth:`randrange` to produce selections over an arbitrarily large range.
basic generator of your own devising: see the documentation on that class for
more details.
The :mod:`random` module also provides the :class:`SystemRandom` class which
uses the system function :func:`os.urandom` to generate random numbers
@ -88,7 +86,7 @@ Bookkeeping functions
.. versionchanged:: 3.11
The *seed* must be one of the following types:
*NoneType*, :class:`int`, :class:`float`, :class:`str`,
``None``, :class:`int`, :class:`float`, :class:`str`,
:class:`bytes`, or :class:`bytearray`.
.. function:: getstate()
@ -412,6 +410,37 @@ Alternative Generator
``None``, :class:`int`, :class:`float`, :class:`str`,
:class:`bytes`, or :class:`bytearray`.
Subclasses of :class:`!Random` should override the following methods if they
wish to make use of a different basic generator:
.. method:: Random.seed(a=None, version=2)
Override this method in subclasses to customise the :meth:`~random.seed`
behaviour of :class:`!Random` instances.
.. method:: Random.getstate()
Override this method in subclasses to customise the :meth:`~random.getstate`
behaviour of :class:`!Random` instances.
.. method:: Random.setstate(state)
Override this method in subclasses to customise the :meth:`~random.setstate`
behaviour of :class:`!Random` instances.
.. method:: Random.random()
Override this method in subclasses to customise the :meth:`~random.random`
behaviour of :class:`!Random` instances.
Optionally, a custom generator subclass can also supply the following method:
.. method:: Random.getrandbits(k)
Override this method in subclasses to customise the
:meth:`~random.getrandbits` behaviour of :class:`!Random` instances.
.. class:: SystemRandom([seed])
Class that uses the :func:`os.urandom` function for generating random numbers
@ -445,30 +474,30 @@ Examples
Basic examples::
>>> random() # Random float: 0.0 <= x < 1.0
>>> random() # Random float: 0.0 <= x < 1.0
0.37444887175646646
>>> uniform(2.5, 10.0) # Random float: 2.5 <= x <= 10.0
>>> uniform(2.5, 10.0) # Random float: 2.5 <= x <= 10.0
3.1800146073117523
>>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
>>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
5.148957571865031
>>> randrange(10) # Integer from 0 to 9 inclusive
>>> randrange(10) # Integer from 0 to 9 inclusive
7
>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
26
>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'
>>> deck = 'ace two three four'.split()
>>> shuffle(deck) # Shuffle a list
>>> shuffle(deck) # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']
>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]
Simulations::
@ -572,14 +601,14 @@ Simulation of arrival times and service deliveries for a multiserver queue::
including simulation, sampling, shuffling, and cross-validation.
`Economics Simulation
<https://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb>`_
<https://nbviewer.org/url/norvig.com/ipython/Economics.ipynb>`_
a simulation of a marketplace by
`Peter Norvig <https://norvig.com/bio.html>`_ that shows effective
use of many of the tools and distributions provided by this module
(gauss, uniform, sample, betavariate, choice, triangular, and randrange).
`A Concrete Introduction to Probability (using Python)
<https://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb>`_
<https://nbviewer.org/url/norvig.com/ipython/Probability.ipynb>`_
a tutorial by `Peter Norvig <https://norvig.com/bio.html>`_ covering
the basics of probability theory, how to write simulations, and
how to perform data analysis using Python.

View File

@ -71,7 +71,6 @@ Doc/library/profile.rst
Doc/library/pyclbr.rst
Doc/library/pydoc.rst
Doc/library/pyexpat.rst
Doc/library/random.rst
Doc/library/readline.rst
Doc/library/resource.rst
Doc/library/select.rst