Added missing entry for invert() function.

Added table mapping abstract operations to syntax to functions, based on
a suggestion from Bob Weiner <weiner@beopen.com>.
This commit is contained in:
Fred Drake 2000-10-22 03:19:30 +00:00
parent 7ef2ba796b
commit 8c2fd49cc3
1 changed files with 60 additions and 0 deletions

View File

@ -55,6 +55,7 @@ Return the absolute value of \var{o}.
\end{funcdesc} \end{funcdesc}
\begin{funcdesc}{inv}{o} \begin{funcdesc}{inv}{o}
\funcline{invert}{o}
\funcline{__inv__}{o} \funcline{__inv__}{o}
\funcline{__invert__}{o} \funcline{__invert__}{o}
Return the inverse of \var{o}. The names \function{invert()} and Return the inverse of \var{o}. The names \function{invert()} and
@ -220,3 +221,62 @@ Example: Build a dictionary that maps the ordinals from \code{0} to
>>> vals = map(chr, keys) >>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals) >>> map(operator.setitem, [d]*len(keys), keys, vals)
\end{verbatim} \end{verbatim}
\subsection{Mapping Operators to Functions \label{operator-map}}
This table shows how abstract operations correspond to operator
symbols in the Python syntax and the functions in the
\refmodule{operator} module.
\begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function}
\lineiii{Addition}{\code{\var{a} + \var{b}}}
{\code{add(\var{a}, \var{b})}}
\lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}}
{\code{concat(\var{seq1}, \var{seq2})}}
\lineiii{Containment Test}{\code{\var{o} in \var{seq}}}
{\code{contains(\var{seq}, \var{o})}}
\lineiii{Division}{\code{\var{a} / \var{b}}}
{\code{div(\var{a}, \var{b})}}
\lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}}
{\code{and_(\var{a}, \var{b})}}
\lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}}
{\code{xor(\var{a}, \var{b})}}
\lineiii{Bitwise Inversion}{\code{\~{} \var{a}}}
{\code{invert(\var{a})}}
\lineiii{Bitwise Or}{\code{\var{a} | \var{b}}}
{\code{or_(\var{a}, \var{b})}}
\lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}}
{\code{setitem(\var{o}, \var{k}, \var{v})}}
\lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}}
{\code{delitem(\var{o}, \var{k})}}
\lineiii{Indexing}{\code{\var{o}[\var{k}]}}
{\code{getitem(\var{o}, \var{k})}}
\lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}}
{\code{lshift(\var{a}, \var{b})}}
\lineiii{Modulo}{\code{\var{a} \%\ \var{b}}}
{\code{mod(\var{a}, \var{b})}}
\lineiii{Multiplication}{\code{\var{a} * \var{b}}}
{\code{mul(\var{a}, \var{b})}}
\lineiii{Negation (Arithmetic)}{\code{- \var{a}}}
{\code{neg(\var{a})}}
\lineiii{Negation (Logical)}{\code{not \var{a}}}
{\code{not_(\var{a})}}
\lineiii{Right Shift}{\code{\var{a} >\code{>} \var{b}}}
{\code{rshift(\var{a}, \var{b})}}
\lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}}
{\code{repeat(\var{seq}, \var{i})}}
\lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}}
{\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}}
\lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}}
{\code{delslice(\var{seq}, \var{i}, \var{j})}}
\lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}}
{\code{getslice(\var{seq}, \var{i}, \var{j})}}
\lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}}
{\code{mod(\var{s}, \var{o})}}
\lineiii{Subtraction}{\code{\var{a} - \var{b}}}
{\code{sub(\var{a}, \var{b})}}
\lineiii{Truth Test}{\code{\var{o}}}
{\code{truth(\var{o})}}
\end{tableiii}