bpo-29882: Add an efficient popcount method for integers (#771)

* bpo-29882: Add an efficient popcount method for integers

* Update 'sign bit' and versionadded in docs

* Add entry to whatsnew document

* Doc: use positive example, mention population count

* Minor cleanups of the core code

* Move popcount_digit closer to where it's used

* Use z instead of self after conversion

* Add 'absolute value' and 'population count' to docstring

* Fix clinic error about missing summary line

* Ensure popcount_digit is portable with 64-bit ints

Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
This commit is contained in:
Niklas Fiekas 2020-05-29 18:28:02 +02:00 committed by GitHub
parent 364b5ead15
commit 8bd216dfed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 135 additions and 2 deletions

View File

@ -478,6 +478,27 @@ class`. In addition, it provides a few more methods:
.. versionadded:: 3.1 .. versionadded:: 3.1
.. method:: int.bit_count()
Return the number of ones in the binary representation of the absolute
value of the integer. This is also known as the population count.
Example::
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
Equivalent to::
def bit_count(self):
return bin(self).count("1")
.. versionadded:: 3.10
.. method:: int.to_bytes(length, byteorder, \*, signed=False) .. method:: int.to_bytes(length, byteorder, \*, signed=False)
Return an array of bytes representing an integer. Return an array of bytes representing an integer.

View File

@ -70,6 +70,9 @@ Summary -- Release highlights
New Features New Features
============ ============
* The :class:`int` type has a new method :meth:`int.bit_count`, returning the
number of ones in the binary expansion of a given integer, also known
as the population count. (Contributed by Niklas Fiekas in :issue:`29882`.)
Other Language Changes Other Language Changes

View File

@ -669,7 +669,7 @@ plain ol' Python and is guaranteed to be available.
True True
>>> real_tests = [t for t in tests if len(t.examples) > 0] >>> real_tests = [t for t in tests if len(t.examples) > 0]
>>> len(real_tests) # objects that actually have doctests >>> len(real_tests) # objects that actually have doctests
13 14
>>> for t in real_tests: >>> for t in real_tests:
... print('{} {}'.format(len(t.examples), t.name)) ... print('{} {}'.format(len(t.examples), t.name))
... ...
@ -682,6 +682,7 @@ plain ol' Python and is guaranteed to be available.
1 builtins.hex 1 builtins.hex
1 builtins.int 1 builtins.int
3 builtins.int.as_integer_ratio 3 builtins.int.as_integer_ratio
2 builtins.int.bit_count
2 builtins.int.bit_length 2 builtins.int.bit_length
5 builtins.memoryview.hex 5 builtins.memoryview.hex
1 builtins.oct 1 builtins.oct

View File

@ -1016,6 +1016,17 @@ class LongTest(unittest.TestCase):
self.assertEqual((a+1).bit_length(), i+1) self.assertEqual((a+1).bit_length(), i+1)
self.assertEqual((-a-1).bit_length(), i+1) self.assertEqual((-a-1).bit_length(), i+1)
def test_bit_count(self):
for a in range(-1000, 1000):
self.assertEqual(a.bit_count(), bin(a).count("1"))
for exp in [10, 17, 63, 64, 65, 1009, 70234, 1234567]:
a = 2**exp
self.assertEqual(a.bit_count(), 1)
self.assertEqual((a - 1).bit_count(), exp)
self.assertEqual((a ^ 63).bit_count(), 7)
self.assertEqual(((a - 1) ^ 510).bit_count(), exp - 8)
def test_round(self): def test_round(self):
# check round-half-even algorithm. For round to nearest ten; # check round-half-even algorithm. For round to nearest ten;
# rounding map is invariant under adding multiples of 20 # rounding map is invariant under adding multiples of 20

View File

@ -0,0 +1,2 @@
Add :meth:`int.bit_count()`, counting the number of ones in the binary
representation of an integer. Patch by Niklas Fiekas.

View File

@ -138,6 +138,31 @@ int_bit_length(PyObject *self, PyObject *Py_UNUSED(ignored))
return int_bit_length_impl(self); return int_bit_length_impl(self);
} }
PyDoc_STRVAR(int_bit_count__doc__,
"bit_count($self, /)\n"
"--\n"
"\n"
"Number of ones in the binary representation of the absolute value of self.\n"
"\n"
"Also known as the population count.\n"
"\n"
">>> bin(13)\n"
"\'0b1101\'\n"
">>> (13).bit_count()\n"
"3");
#define INT_BIT_COUNT_METHODDEF \
{"bit_count", (PyCFunction)int_bit_count, METH_NOARGS, int_bit_count__doc__},
static PyObject *
int_bit_count_impl(PyObject *self);
static PyObject *
int_bit_count(PyObject *self, PyObject *Py_UNUSED(ignored))
{
return int_bit_count_impl(self);
}
PyDoc_STRVAR(int_as_integer_ratio__doc__, PyDoc_STRVAR(int_as_integer_ratio__doc__,
"as_integer_ratio($self, /)\n" "as_integer_ratio($self, /)\n"
"--\n" "--\n"
@ -308,4 +333,4 @@ skip_optional_kwonly:
exit: exit:
return return_value; return return_value;
} }
/*[clinic end generated code: output=63b8274fc784d617 input=a9049054013a1b77]*/ /*[clinic end generated code: output=4257cfdb155efd00 input=a9049054013a1b77]*/

View File

@ -5304,6 +5304,75 @@ int_bit_length_impl(PyObject *self)
return NULL; return NULL;
} }
static int
popcount_digit(digit d)
{
/* 32bit SWAR popcount. */
uint32_t u = d;
u -= (u >> 1) & 0x55555555U;
u = (u & 0x33333333U) + ((u >> 2) & 0x33333333U);
u = (u + (u >> 4)) & 0x0f0f0f0fU;
return (uint32_t)(u * 0x01010101U) >> 24;
}
/*[clinic input]
int.bit_count
Number of ones in the binary representation of the absolute value of self.
Also known as the population count.
>>> bin(13)
'0b1101'
>>> (13).bit_count()
3
[clinic start generated code]*/
static PyObject *
int_bit_count_impl(PyObject *self)
/*[clinic end generated code: output=2e571970daf1e5c3 input=7e0adef8e8ccdf2e]*/
{
assert(self != NULL);
assert(PyLong_Check(self));
PyLongObject *z = (PyLongObject *)self;
Py_ssize_t ndigits = Py_ABS(Py_SIZE(z));
Py_ssize_t bit_count = 0;
/* Each digit has up to PyLong_SHIFT ones, so the accumulated bit count
from the first PY_SSIZE_T_MAX/PyLong_SHIFT digits can't overflow a
Py_ssize_t. */
Py_ssize_t ndigits_fast = Py_MIN(ndigits, PY_SSIZE_T_MAX/PyLong_SHIFT);
for (Py_ssize_t i = 0; i < ndigits_fast; i++) {
bit_count += popcount_digit(z->ob_digit[i]);
}
PyObject *result = PyLong_FromSsize_t(bit_count);
if (result == NULL) {
return NULL;
}
/* Use Python integers if bit_count would overflow. */
for (Py_ssize_t i = ndigits_fast; i < ndigits; i++) {
PyObject *x = PyLong_FromLong(popcount_digit(z->ob_digit[i]));
if (x == NULL) {
goto error;
}
PyObject *y = long_add((PyLongObject *)result, (PyLongObject *)x);
Py_DECREF(x);
if (y == NULL) {
goto error;
}
Py_DECREF(result);
result = y;
}
return result;
error:
Py_DECREF(result);
return NULL;
}
/*[clinic input] /*[clinic input]
int.as_integer_ratio int.as_integer_ratio
@ -5460,6 +5529,7 @@ static PyMethodDef long_methods[] = {
{"conjugate", long_long_meth, METH_NOARGS, {"conjugate", long_long_meth, METH_NOARGS,
"Returns self, the complex conjugate of any int."}, "Returns self, the complex conjugate of any int."},
INT_BIT_LENGTH_METHODDEF INT_BIT_LENGTH_METHODDEF
INT_BIT_COUNT_METHODDEF
INT_TO_BYTES_METHODDEF INT_TO_BYTES_METHODDEF
INT_FROM_BYTES_METHODDEF INT_FROM_BYTES_METHODDEF
INT_AS_INTEGER_RATIO_METHODDEF INT_AS_INTEGER_RATIO_METHODDEF