mirror of https://github.com/python/cpython
bpo-37798: Test both Python and C versions in test_statistics.py (GH-15453)
This commit is contained in:
parent
edd21129dd
commit
8ad22a4226
|
@ -18,6 +18,7 @@ from test import support
|
|||
|
||||
from decimal import Decimal
|
||||
from fractions import Fraction
|
||||
from test import support
|
||||
|
||||
|
||||
# Module to be tested.
|
||||
|
@ -178,6 +179,23 @@ class _DoNothing:
|
|||
# We prefer this for testing numeric values that may not be exactly equal,
|
||||
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
|
||||
|
||||
py_statistics = support.import_fresh_module('statistics', blocked=['_statistics'])
|
||||
c_statistics = support.import_fresh_module('statistics', fresh=['_statistics'])
|
||||
|
||||
|
||||
class TestModules(unittest.TestCase):
|
||||
func_names = ['_normal_dist_inv_cdf']
|
||||
|
||||
def test_py_functions(self):
|
||||
for fname in self.func_names:
|
||||
self.assertEqual(getattr(py_statistics, fname).__module__, 'statistics')
|
||||
|
||||
@unittest.skipUnless(c_statistics, 'requires _statistics')
|
||||
def test_c_functions(self):
|
||||
for fname in self.func_names:
|
||||
self.assertEqual(getattr(c_statistics, fname).__module__, '_statistics')
|
||||
|
||||
|
||||
class NumericTestCase(unittest.TestCase):
|
||||
"""Unit test class for numeric work.
|
||||
|
||||
|
@ -2314,7 +2332,7 @@ class TestQuantiles(unittest.TestCase):
|
|||
quantiles([10, None, 30], n=4) # data is non-numeric
|
||||
|
||||
|
||||
class TestNormalDist(unittest.TestCase):
|
||||
class TestNormalDist:
|
||||
|
||||
# General note on precision: The pdf(), cdf(), and overlap() methods
|
||||
# depend on functions in the math libraries that do not make
|
||||
|
@ -2324,35 +2342,35 @@ class TestNormalDist(unittest.TestCase):
|
|||
# implementing our own implementations from scratch.
|
||||
|
||||
def test_slots(self):
|
||||
nd = statistics.NormalDist(300, 23)
|
||||
nd = self.module.NormalDist(300, 23)
|
||||
with self.assertRaises(TypeError):
|
||||
vars(nd)
|
||||
self.assertEqual(tuple(nd.__slots__), ('_mu', '_sigma'))
|
||||
|
||||
def test_instantiation_and_attributes(self):
|
||||
nd = statistics.NormalDist(500, 17)
|
||||
nd = self.module.NormalDist(500, 17)
|
||||
self.assertEqual(nd.mean, 500)
|
||||
self.assertEqual(nd.stdev, 17)
|
||||
self.assertEqual(nd.variance, 17**2)
|
||||
|
||||
# default arguments
|
||||
nd = statistics.NormalDist()
|
||||
nd = self.module.NormalDist()
|
||||
self.assertEqual(nd.mean, 0)
|
||||
self.assertEqual(nd.stdev, 1)
|
||||
self.assertEqual(nd.variance, 1**2)
|
||||
|
||||
# error case: negative sigma
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
statistics.NormalDist(500, -10)
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
self.module.NormalDist(500, -10)
|
||||
|
||||
# verify that subclass type is honored
|
||||
class NewNormalDist(statistics.NormalDist):
|
||||
class NewNormalDist(self.module.NormalDist):
|
||||
pass
|
||||
nnd = NewNormalDist(200, 5)
|
||||
self.assertEqual(type(nnd), NewNormalDist)
|
||||
|
||||
def test_alternative_constructor(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
data = [96, 107, 90, 92, 110]
|
||||
# list input
|
||||
self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9))
|
||||
|
@ -2361,9 +2379,9 @@ class TestNormalDist(unittest.TestCase):
|
|||
# iterator input
|
||||
self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9))
|
||||
# error cases
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
NormalDist.from_samples([]) # empty input
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
NormalDist.from_samples([10]) # only one input
|
||||
|
||||
# verify that subclass type is honored
|
||||
|
@ -2373,7 +2391,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertEqual(type(nnd), NewNormalDist)
|
||||
|
||||
def test_sample_generation(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
mu, sigma = 10_000, 3.0
|
||||
X = NormalDist(mu, sigma)
|
||||
n = 1_000
|
||||
|
@ -2381,7 +2399,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertEqual(len(data), n)
|
||||
self.assertEqual(set(map(type, data)), {float})
|
||||
# mean(data) expected to fall within 8 standard deviations
|
||||
xbar = statistics.mean(data)
|
||||
xbar = self.module.mean(data)
|
||||
self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8)
|
||||
|
||||
# verify that seeding makes reproducible sequences
|
||||
|
@ -2395,7 +2413,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertNotEqual(data1, data2)
|
||||
|
||||
def test_pdf(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
X = NormalDist(100, 15)
|
||||
# Verify peak around center
|
||||
self.assertLess(X.pdf(99), X.pdf(100))
|
||||
|
@ -2426,7 +2444,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertAlmostEqual(Z.pdf(-x / 100.0), px, places=4)
|
||||
# Error case: variance is zero
|
||||
Y = NormalDist(100, 0)
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
Y.pdf(90)
|
||||
# Special values
|
||||
self.assertEqual(X.pdf(float('-Inf')), 0.0)
|
||||
|
@ -2434,7 +2452,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertTrue(math.isnan(X.pdf(float('NaN'))))
|
||||
|
||||
def test_cdf(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
X = NormalDist(100, 15)
|
||||
cdfs = [X.cdf(x) for x in range(1, 200)]
|
||||
self.assertEqual(set(map(type, cdfs)), {float})
|
||||
|
@ -2456,7 +2474,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertAlmostEqual(Z.cdf(-z), 1.0 - cum_prob, places=5)
|
||||
# Error case: variance is zero
|
||||
Y = NormalDist(100, 0)
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
Y.cdf(90)
|
||||
# Special values
|
||||
self.assertEqual(X.cdf(float('-Inf')), 0.0)
|
||||
|
@ -2465,7 +2483,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
|
||||
@support.skip_if_pgo_task
|
||||
def test_inv_cdf(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
|
||||
# Center case should be exact.
|
||||
iq = NormalDist(100, 15)
|
||||
|
@ -2513,15 +2531,15 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=5)
|
||||
|
||||
# Error cases:
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
iq.inv_cdf(0.0) # p is zero
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
iq.inv_cdf(-0.1) # p under zero
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
iq.inv_cdf(1.0) # p is one
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
iq.inv_cdf(1.1) # p over one
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
iq = NormalDist(100, 0) # sigma is zero
|
||||
iq.inv_cdf(0.5)
|
||||
|
||||
|
@ -2529,7 +2547,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertTrue(math.isnan(Z.inv_cdf(float('NaN'))))
|
||||
|
||||
def test_overlap(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
|
||||
# Match examples from Imman and Bradley
|
||||
for X1, X2, published_result in [
|
||||
|
@ -2586,26 +2604,26 @@ class TestNormalDist(unittest.TestCase):
|
|||
X.overlap(X, X) # too may arguments
|
||||
with self.assertRaises(TypeError):
|
||||
X.overlap(None) # right operand not a NormalDist
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
X.overlap(NormalDist(1, 0)) # right operand sigma is zero
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
NormalDist(1, 0).overlap(X) # left operand sigma is zero
|
||||
|
||||
def test_properties(self):
|
||||
X = statistics.NormalDist(100, 15)
|
||||
X = self.module.NormalDist(100, 15)
|
||||
self.assertEqual(X.mean, 100)
|
||||
self.assertEqual(X.stdev, 15)
|
||||
self.assertEqual(X.variance, 225)
|
||||
|
||||
def test_same_type_addition_and_subtraction(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
X = NormalDist(100, 12)
|
||||
Y = NormalDist(40, 5)
|
||||
self.assertEqual(X + Y, NormalDist(140, 13)) # __add__
|
||||
self.assertEqual(X - Y, NormalDist(60, 13)) # __sub__
|
||||
|
||||
def test_translation_and_scaling(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
X = NormalDist(100, 15)
|
||||
y = 10
|
||||
self.assertEqual(+X, NormalDist(100, 15)) # __pos__
|
||||
|
@ -2621,7 +2639,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
y / X
|
||||
|
||||
def test_unary_operations(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
X = NormalDist(100, 12)
|
||||
Y = +X
|
||||
self.assertIsNot(X, Y)
|
||||
|
@ -2633,7 +2651,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertEqual(X.stdev, Y.stdev)
|
||||
|
||||
def test_equality(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
NormalDist = self.module.NormalDist
|
||||
nd1 = NormalDist()
|
||||
nd2 = NormalDist(2, 4)
|
||||
nd3 = NormalDist()
|
||||
|
@ -2673,7 +2691,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertNotEqual(nd, lnd)
|
||||
|
||||
def test_pickle_and_copy(self):
|
||||
nd = statistics.NormalDist(37.5, 5.625)
|
||||
nd = self.module.NormalDist(37.5, 5.625)
|
||||
nd1 = copy.copy(nd)
|
||||
self.assertEqual(nd, nd1)
|
||||
nd2 = copy.deepcopy(nd)
|
||||
|
@ -2682,14 +2700,36 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertEqual(nd, nd3)
|
||||
|
||||
def test_hashability(self):
|
||||
ND = statistics.NormalDist
|
||||
ND = self.module.NormalDist
|
||||
s = {ND(100, 15), ND(100.0, 15.0), ND(100, 10), ND(95, 15), ND(100, 15)}
|
||||
self.assertEqual(len(s), 3)
|
||||
|
||||
def test_repr(self):
|
||||
nd = statistics.NormalDist(37.5, 5.625)
|
||||
nd = self.module.NormalDist(37.5, 5.625)
|
||||
self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')
|
||||
|
||||
# Swapping the sys.modules['statistics'] is to solving the
|
||||
# _pickle.PicklingError:
|
||||
# Can't pickle <class 'statistics.NormalDist'>:
|
||||
# it's not the same object as statistics.NormalDist
|
||||
class TestNormalDistPython(unittest.TestCase, TestNormalDist):
|
||||
module = py_statistics
|
||||
def setUp(self):
|
||||
sys.modules['statistics'] = self.module
|
||||
|
||||
def tearDown(self):
|
||||
sys.modules['statistics'] = statistics
|
||||
|
||||
|
||||
@unittest.skipUnless(c_statistics, 'requires _statistics')
|
||||
class TestNormalDistC(unittest.TestCase, TestNormalDist):
|
||||
module = c_statistics
|
||||
def setUp(self):
|
||||
sys.modules['statistics'] = self.module
|
||||
|
||||
def tearDown(self):
|
||||
sys.modules['statistics'] = statistics
|
||||
|
||||
|
||||
# === Run tests ===
|
||||
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
Update test_statistics.py to verify that the statistics module works well
|
||||
for both C and Python implementations. Patch by Dong-hee Na
|
Loading…
Reference in New Issue