mirror of https://github.com/python/cpython
Further integration of the documentation for the sqlite3 module. There's still
quite some content to move over from the pysqlite manual, but it's a start now.
This commit is contained in:
parent
e3c958c33b
commit
82560ebb8d
|
@ -86,8 +86,8 @@ int, long, float, str (UTF-8 encoded), unicode or buffer.
|
|||
A \class{Connection} instance has the following attributes and methods:
|
||||
|
||||
\begin{memberdesc}{isolation_level}
|
||||
Get or set the current isolation level. None for autocommit mode or one
|
||||
of "DEFERRED", "IMMEDIATE" or "EXLUSIVE". See `5. Controlling
|
||||
Get or set the current isolation level. None for autocommit mode or one
|
||||
of "DEFERRED", "IMMEDIATE" or "EXLUSIVE". See `5. Controlling
|
||||
Transactions`_ for a more detailed explanation.
|
||||
\end{memberdesc}
|
||||
|
||||
|
@ -96,4 +96,136 @@ A \class{Connection} instance has the following attributes and methods:
|
|||
This is a custom cursor class which must extend \class{sqlite3.Cursor}.
|
||||
\end{methoddesc}
|
||||
|
||||
TODO: execute*
|
||||
\begin{methoddesc}{execute}{sql, \optional{parameters}}
|
||||
This is a nonstandard shortcut that creates an intermediate cursor object by
|
||||
calling the cursor method, then calls the cursor's execute method with the
|
||||
parameters given.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{executemany}{sql, \optional{parameters}}
|
||||
This is a nonstandard shortcut that creates an intermediate cursor object by
|
||||
calling the cursor method, then calls the cursor's executemany method with the
|
||||
parameters given.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{executescript}{sql_script}
|
||||
This is a nonstandard shortcut that creates an intermediate cursor object by
|
||||
calling the cursor method, then calls the cursor's executescript method with the
|
||||
parameters given.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{memberdesc}{row_factory}
|
||||
You can change this attribute to a callable that accepts the cursor and
|
||||
the original row as tuple and will return the real result row. This
|
||||
way, you can implement more advanced ways of returning results, like
|
||||
ones that can also access columns by name.
|
||||
|
||||
Example:
|
||||
|
||||
\verbatiminput{sqlite3/row_factory.py}
|
||||
|
||||
If the standard tuple types don't suffice for you, and you want name-based
|
||||
access to columns, you should consider setting \member{row_factory} to the
|
||||
highly-optimized pysqlite2.dbapi2.Row type. It provides both
|
||||
index-based and case-insensitive name-based access to columns with almost
|
||||
no memory overhead. Much better than your own custom dictionary-based
|
||||
approach or even a db_row based solution.
|
||||
\end{memberdesc}
|
||||
|
||||
\begin{memberdesc}{text_factory}
|
||||
Using this attribute you can control what objects pysqlite returns for the
|
||||
TEXT data type. By default, this attribute is set to ``unicode`` and
|
||||
pysqlite will return Unicode objects for TEXT. If you want to return
|
||||
bytestrings instead, you can set it to ``str``.
|
||||
|
||||
For efficiency reasons, there's also a way to return Unicode objects only
|
||||
for non-ASCII data, and bytestrings otherwise. To activate it, set this
|
||||
attribute to ``pysqlite2.dbapi2.OptimizedUnicode``.
|
||||
|
||||
You can also set it to any other callable that accepts a single bytestring
|
||||
parameter and returns the result object.
|
||||
|
||||
See the following example code for illustration:
|
||||
|
||||
\verbatiminput{sqlite3/text_factory.py}
|
||||
\end{memberdesc}
|
||||
|
||||
\begin{memberdesc}{total_changes}
|
||||
Returns the total number of database rows that have be modified, inserted,
|
||||
or deleted since the database connection was opened.
|
||||
\end{memberdesc}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Cursor Objects \label{Cursor-Objects}}
|
||||
|
||||
A \class{Cursor} instance has the following attributes and methods:
|
||||
|
||||
\begin{methoddesc}{execute}{sql, \optional{parameters}}
|
||||
|
||||
Executes a SQL statement. The SQL statement may be parametrized (i. e.
|
||||
placeholders instead of SQL literals). The sqlite3 module supports two kinds of
|
||||
placeholders: question marks (qmark style) and named placeholders (named
|
||||
style).
|
||||
|
||||
This example shows how to use parameters with qmark style:
|
||||
|
||||
\verbatiminput{sqlite3/execute_1.py}
|
||||
|
||||
This example shows how to use the named style:
|
||||
|
||||
\verbatiminput{sqlite3/execute_2.py}
|
||||
|
||||
\method{execute} will only execute a single SQL statement. If you try to
|
||||
execute more than one statement with it, it will raise a Warning. Use
|
||||
\method{executescript} if want to execute multiple SQL statements with one
|
||||
call.
|
||||
\end{methoddesc}
|
||||
|
||||
|
||||
\begin{methoddesc}{executemany}{sql, seq_of_parameters}
|
||||
Executes a SQL command against all parameter sequences or mappings found in the
|
||||
sequence \var{sql}. The \module{sqlite3} module also allows
|
||||
to use an iterator yielding parameters instead of a sequence.
|
||||
|
||||
\verbatiminput{sqlite3/executemany_1.py}
|
||||
|
||||
Here's a shorter example using a generator:
|
||||
|
||||
\verbatiminput{sqlite3/executemany_2.py}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{executescript}{sql_script}
|
||||
|
||||
This is a nonstandard convenience method for executing multiple SQL statements
|
||||
at once. It issues a COMMIT statement before, then executes the SQL script it
|
||||
gets as a parameter.
|
||||
|
||||
\var{sql_script} can be a bytestring or a Unicode string.
|
||||
|
||||
Example:
|
||||
|
||||
\verbatiminput{sqlite3/executescript.py}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{memberdesc}{rowcount}
|
||||
Although the Cursors of the \module{sqlite3} module implement this
|
||||
attribute, the database engine's own support for the determination of "rows
|
||||
affected"/"rows selected" is quirky.
|
||||
|
||||
For \code{SELECT} statements, \member{rowcount} is always None because we cannot
|
||||
determine the number of rows a query produced until all rows were fetched.
|
||||
|
||||
For \code{DELETE} statements, SQLite reports \member{rowcount} as 0 if you make a
|
||||
\code{DELETE FROM table} without any condition.
|
||||
|
||||
For \method{executemany} statements, pysqlite sums up the number of
|
||||
modifications into \member{rowcount}.
|
||||
|
||||
As required by the Python DB API Spec, the \member{rowcount} attribute "is -1
|
||||
in case no executeXX() has been performed on the cursor or the rowcount
|
||||
of the last operation is not determinable by the interface".
|
||||
\end{memberdesc}
|
||||
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
import sqlite3
|
||||
import datetime, time
|
||||
|
||||
def adapt_datetime(ts):
|
||||
return time.mktime(ts.timetuple())
|
||||
|
||||
sqlite3.register_adapter(datetime.datetime, adapt_datetime)
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
|
||||
now = datetime.datetime.now()
|
||||
cur.execute("select ?", (now,))
|
||||
print cur.fetchone()[0]
|
|
@ -0,0 +1,17 @@
|
|||
import sqlite3
|
||||
|
||||
class Point(object):
|
||||
def __init__(self, x, y):
|
||||
self.x, self.y = x, y
|
||||
|
||||
def __conform__(self, protocol):
|
||||
if protocol is sqlite3.PrepareProtocol:
|
||||
return "%f;%f" % (self.x, self.y)
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
|
||||
p = Point(4.0, -3.2)
|
||||
cur.execute("select ?", (p,))
|
||||
print cur.fetchone()[0]
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
import sqlite3
|
||||
|
||||
class Point(object):
|
||||
def __init__(self, x, y):
|
||||
self.x, self.y = x, y
|
||||
|
||||
def adapt_point(point):
|
||||
return "%f;%f" % (point.x, point.y)
|
||||
|
||||
sqlite3.register_adapter(Point, adapt_point)
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
|
||||
p = Point(4.0, -3.2)
|
||||
cur.execute("select ?", (p,))
|
||||
print cur.fetchone()[0]
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
import sqlite3
|
||||
|
||||
def collate_reverse(string1, string2):
|
||||
return -cmp(string1, string2)
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
con.create_collation("reverse", collate_reverse)
|
||||
|
||||
cur = con.cursor()
|
||||
cur.execute("create table test(x)")
|
||||
cur.executemany("insert into test(x) values (?)", [("a",), ("b",)])
|
||||
cur.execute("select x from test order by x collate reverse")
|
||||
for row in cur:
|
||||
print row
|
||||
con.close()
|
|
@ -0,0 +1,30 @@
|
|||
# A minimal SQLite shell for experiments
|
||||
|
||||
import sqlite3
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
con.isolation_level = None
|
||||
cur = con.cursor()
|
||||
|
||||
buffer = ""
|
||||
|
||||
print "Enter your SQL commands to execute in sqlite3."
|
||||
print "Enter a blank line to exit."
|
||||
|
||||
while True:
|
||||
line = raw_input()
|
||||
if line == "":
|
||||
break
|
||||
buffer += line
|
||||
if sqlite3.complete_statement(buffer):
|
||||
try:
|
||||
buffer = buffer.strip()
|
||||
cur.execute(buffer)
|
||||
|
||||
if buffer.lstrip().upper().startswith("SELECT"):
|
||||
print cur.fetchall()
|
||||
except sqlite3.Error, e:
|
||||
print "An error occured:", e.args[0]
|
||||
buffer = ""
|
||||
|
||||
con.close()
|
|
@ -0,0 +1,3 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
|
@ -0,0 +1,3 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
|
@ -0,0 +1,47 @@
|
|||
import sqlite3
|
||||
|
||||
class Point(object):
|
||||
def __init__(self, x, y):
|
||||
self.x, self.y = x, y
|
||||
|
||||
def __repr__(self):
|
||||
return "(%f;%f)" % (self.x, self.y)
|
||||
|
||||
def adapt_point(point):
|
||||
return "%f;%f" % (point.x, point.y)
|
||||
|
||||
def convert_point(s):
|
||||
x, y = map(float, s.split(";"))
|
||||
return Point(x, y)
|
||||
|
||||
# Register the adapter
|
||||
sqlite3.register_adapter(Point, adapt_point)
|
||||
|
||||
# Register the converter
|
||||
sqlite3.register_converter("point", convert_point)
|
||||
|
||||
p = Point(4.0, -3.2)
|
||||
|
||||
#########################
|
||||
# 1) Using declared types
|
||||
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
|
||||
cur = con.cursor()
|
||||
cur.execute("create table test(p point)")
|
||||
|
||||
cur.execute("insert into test(p) values (?)", (p,))
|
||||
cur.execute("select p from test")
|
||||
print "with declared types:", cur.fetchone()[0]
|
||||
cur.close()
|
||||
con.close()
|
||||
|
||||
#######################
|
||||
# 1) Using column names
|
||||
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
|
||||
cur = con.cursor()
|
||||
cur.execute("create table test(p)")
|
||||
|
||||
cur.execute("insert into test(p) values (?)", (p,))
|
||||
cur.execute('select p as "p [point]" from test')
|
||||
print "with column names:", cur.fetchone()[0]
|
||||
cur.close()
|
||||
con.close()
|
|
@ -0,0 +1,15 @@
|
|||
import sqlite3
|
||||
|
||||
class CountCursorsConnection(sqlite3.Connection):
|
||||
def __init__(self, *args, **kwargs):
|
||||
sqlite3.Connection.__init__(self, *args, **kwargs)
|
||||
self.numcursors = 0
|
||||
|
||||
def cursor(self, *args, **kwargs):
|
||||
self.numcursors += 1
|
||||
return sqlite3.Connection.cursor(self, *args, **kwargs)
|
||||
|
||||
con = sqlite3.connect(":memory:", factory=CountCursorsConnection)
|
||||
cur1 = con.cursor()
|
||||
cur2 = con.cursor()
|
||||
print con.numcursors
|
|
@ -0,0 +1,28 @@
|
|||
# Not referenced from the documentation, but builds the database file the other
|
||||
# code snippets expect.
|
||||
|
||||
import sqlite3
|
||||
import os
|
||||
|
||||
DB_FILE = "mydb"
|
||||
|
||||
if os.path.exists(DB_FILE):
|
||||
os.remove(DB_FILE)
|
||||
|
||||
con = sqlite3.connect(DB_FILE)
|
||||
cur = con.cursor()
|
||||
cur.execute("""
|
||||
create table people
|
||||
(
|
||||
name_last varchar(20),
|
||||
age integer
|
||||
)
|
||||
""")
|
||||
|
||||
cur.execute("insert into people (name_last, age) values ('Yeltsin', 72)")
|
||||
cur.execute("insert into people (name_last, age) values ('Putin', 51)")
|
||||
|
||||
con.commit()
|
||||
|
||||
cur.close()
|
||||
con.close()
|
|
@ -0,0 +1,17 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
cur = con.cursor()
|
||||
SELECT = "select name_last, age from people order by age, name_last"
|
||||
|
||||
# 1. Iterate over the rows available from the cursor, unpacking the
|
||||
# resulting sequences to yield their elements (name_last, age):
|
||||
cur.execute(SELECT)
|
||||
for (name_last, age) in cur:
|
||||
print '%s is %d years old.' % (name_last, age)
|
||||
|
||||
# 2. Equivalently:
|
||||
cur.execute(SELECT)
|
||||
for row in cur:
|
||||
print '%s is %d years old.' % (row[0], row[1])
|
|
@ -0,0 +1,13 @@
|
|||
import sqlite3
|
||||
|
||||
# Create a connection to the database file "mydb":
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
# Get a Cursor object that operates in the context of Connection con:
|
||||
cur = con.cursor()
|
||||
|
||||
# Execute the SELECT statement:
|
||||
cur.execute("select * from people order by age")
|
||||
|
||||
# Retrieve all rows as a sequence and print that sequence:
|
||||
print cur.fetchall()
|
|
@ -0,0 +1,11 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
cur = con.cursor()
|
||||
|
||||
who = "Yeltsin"
|
||||
age = 72
|
||||
|
||||
cur.execute("select name_last, age from people where name_last=? and age=?", (who, age))
|
||||
print cur.fetchone()
|
|
@ -0,0 +1,13 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
cur = con.cursor()
|
||||
|
||||
who = "Yeltsin"
|
||||
age = 72
|
||||
|
||||
cur.execute("select name_last, age from people where name_last=:who and age=:age",
|
||||
{"who": who, "age": age})
|
||||
print cur.fetchone()
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
cur = con.cursor()
|
||||
|
||||
who = "Yeltsin"
|
||||
age = 72
|
||||
|
||||
cur.execute("select name_last, age from people where name_last=:who and age=:age",
|
||||
locals())
|
||||
print cur.fetchone()
|
||||
|
||||
|
|
@ -0,0 +1,24 @@
|
|||
import sqlite3
|
||||
|
||||
class IterChars:
|
||||
def __init__(self):
|
||||
self.count = ord('a')
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def next(self):
|
||||
if self.count > ord('z'):
|
||||
raise StopIteration
|
||||
self.count += 1
|
||||
return (chr(self.count - 1),) # this is a 1-tuple
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
cur.execute("create table characters(c)")
|
||||
|
||||
theIter = IterChars()
|
||||
cur.executemany("insert into characters(c) values (?)", theIter)
|
||||
|
||||
cur.execute("select c from characters")
|
||||
print cur.fetchall()
|
|
@ -0,0 +1,15 @@
|
|||
import sqlite3
|
||||
|
||||
def char_generator():
|
||||
import string
|
||||
for c in string.letters[:26]:
|
||||
yield (c,)
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
cur.execute("create table characters(c)")
|
||||
|
||||
cur.executemany("insert into characters(c) values (?)", char_generator())
|
||||
|
||||
cur.execute("select c from characters")
|
||||
print cur.fetchall()
|
|
@ -0,0 +1,24 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
cur.executescript("""
|
||||
create table person(
|
||||
firstname,
|
||||
lastname,
|
||||
age
|
||||
);
|
||||
|
||||
create table book(
|
||||
title,
|
||||
author,
|
||||
published
|
||||
);
|
||||
|
||||
insert into book(title, author, published)
|
||||
values (
|
||||
'Dirk Gently''s Holistic Detective Agency
|
||||
'Douglas Adams',
|
||||
1987
|
||||
);
|
||||
""")
|
|
@ -0,0 +1,17 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
cur = con.cursor()
|
||||
|
||||
newPeople = (
|
||||
('Lebed' , 53),
|
||||
('Zhirinovsky' , 57),
|
||||
)
|
||||
|
||||
for person in newPeople:
|
||||
cur.execute("insert into people (name_last, age) values (?, ?)", person)
|
||||
|
||||
# The changes will not be saved unless the transaction is committed explicitly:
|
||||
con.commit()
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
import sqlite3
|
||||
import md5
|
||||
|
||||
def md5sum(t):
|
||||
return md5.md5(t).hexdigest()
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
con.create_function("md5", 1, md5sum)
|
||||
cur = con.cursor()
|
||||
cur.execute("select md5(?)", ("foo",))
|
||||
print cur.fetchone()[0]
|
|
@ -0,0 +1,20 @@
|
|||
import sqlite3
|
||||
|
||||
class MySum:
|
||||
def __init__(self):
|
||||
self.count = 0
|
||||
|
||||
def step(self, value):
|
||||
self.count += value
|
||||
|
||||
def finalize(self):
|
||||
return self.count
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
con.create_aggregate("mysum", 1, MySum)
|
||||
cur = con.cursor()
|
||||
cur.execute("create table test(i)")
|
||||
cur.execute("insert into test(i) values (1)")
|
||||
cur.execute("insert into test(i) values (2)")
|
||||
cur.execute("select mysum(i) from test")
|
||||
print cur.fetchone()[0]
|
|
@ -0,0 +1,8 @@
|
|||
import sqlite3
|
||||
import datetime
|
||||
|
||||
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
|
||||
cur = con.cursor()
|
||||
cur.execute('select ? as "x [timestamp]"', (datetime.datetime.now(),))
|
||||
dt = cur.fetchone()[0]
|
||||
print dt, type(dt)
|
|
@ -0,0 +1,20 @@
|
|||
import sqlite3
|
||||
import datetime
|
||||
|
||||
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
|
||||
cur = con.cursor()
|
||||
cur.execute("create table test(d date, ts timestamp)")
|
||||
|
||||
today = datetime.date.today()
|
||||
now = datetime.datetime.now()
|
||||
|
||||
cur.execute("insert into test(d, ts) values (?, ?)", (today, now))
|
||||
cur.execute("select d, ts from test")
|
||||
row = cur.fetchone()
|
||||
print today, "=>", row[0], type(row[0])
|
||||
print now, "=>", row[1], type(row[1])
|
||||
|
||||
cur.execute('select current_date as "d [date]", current_timestamp as "ts [timestamp]"')
|
||||
row = cur.fetchone()
|
||||
print "current_date", row[0], type(row[0])
|
||||
print "current_timestamp", row[1], type(row[1])
|
|
@ -0,0 +1,13 @@
|
|||
import sqlite3
|
||||
|
||||
def dict_factory(cursor, row):
|
||||
d = {}
|
||||
for idx, col in enumerate(cursor.description):
|
||||
d[col[0]] = row[idx]
|
||||
return d
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
con.row_factory = dict_factory
|
||||
cur = con.cursor()
|
||||
cur.execute("select 1 as a")
|
||||
print cur.fetchone()["a"]
|
|
@ -0,0 +1,12 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
con.row_factory = sqlite3.Row
|
||||
|
||||
cur = con.cursor()
|
||||
cur.execute("select name_last, age from people")
|
||||
for row in cur:
|
||||
assert row[0] == row["name_last"]
|
||||
assert row["name_last"] == row["nAmE_lAsT"]
|
||||
assert row[1] == row["age"]
|
||||
assert row[1] == row["AgE"]
|
|
@ -0,0 +1,6 @@
|
|||
import sqlite3
|
||||
|
||||
# The shared cache is only available in SQLite versions 3.3.3 or later
|
||||
# See the SQLite documentaton for details.
|
||||
|
||||
sqlite3.enable_shared_cache(True)
|
|
@ -0,0 +1,22 @@
|
|||
import sqlite3
|
||||
|
||||
persons = [
|
||||
("Hugo", "Boss"),
|
||||
("Calvin", "Klein")
|
||||
]
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
|
||||
# Create the table
|
||||
con.execute("create table person(firstname, lastname)")
|
||||
|
||||
# Fill the table
|
||||
con.executemany("insert into person(firstname, lastname) values (?, ?)", persons)
|
||||
|
||||
# Print the table contents
|
||||
for row in con.execute("select firstname, lastname from person"):
|
||||
print row
|
||||
|
||||
# Using a dummy WHERE clause to not let SQLite take the shortcut table deletes.
|
||||
print "I just deleted", con.execute("delete from person where 1=1").rowcount, "rows"
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
import sqlite3
|
||||
|
||||
FIELD_MAX_WIDTH = 20
|
||||
TABLE_NAME = 'people'
|
||||
SELECT = 'select * from %s order by age, name_last' % TABLE_NAME
|
||||
|
||||
con = sqlite3.connect("mydb")
|
||||
|
||||
cur = con.cursor()
|
||||
cur.execute(SELECT)
|
||||
|
||||
# Print a header.
|
||||
for fieldDesc in cur.description:
|
||||
print fieldDesc[0].ljust(FIELD_MAX_WIDTH) ,
|
||||
print # Finish the header with a newline.
|
||||
print '-' * 78
|
||||
|
||||
# For each row, print the value of each field left-justified within
|
||||
# the maximum possible width of that field.
|
||||
fieldIndices = range(len(cur.description))
|
||||
for row in cur:
|
||||
for fieldIndex in fieldIndices:
|
||||
fieldValue = str(row[fieldIndex])
|
||||
print fieldValue.ljust(FIELD_MAX_WIDTH) ,
|
||||
|
||||
print # Finish the row with a newline.
|
|
@ -0,0 +1,43 @@
|
|||
import sqlite3
|
||||
|
||||
con = sqlite3.connect(":memory:")
|
||||
cur = con.cursor()
|
||||
|
||||
# Create the table
|
||||
con.execute("create table person(lastname, firstname)")
|
||||
|
||||
AUSTRIA = u"\xd6sterreich"
|
||||
|
||||
# by default, rows are returned as Unicode
|
||||
cur.execute("select ?", (AUSTRIA,))
|
||||
row = cur.fetchone()
|
||||
assert row[0] == AUSTRIA
|
||||
|
||||
# but we can make pysqlite always return bytestrings ...
|
||||
con.text_factory = str
|
||||
cur.execute("select ?", (AUSTRIA,))
|
||||
row = cur.fetchone()
|
||||
assert type(row[0]) == str
|
||||
# the bytestrings will be encoded in UTF-8, unless you stored garbage in the
|
||||
# database ...
|
||||
assert row[0] == AUSTRIA.encode("utf-8")
|
||||
|
||||
# we can also implement a custom text_factory ...
|
||||
# here we implement one that will ignore Unicode characters that cannot be
|
||||
# decoded from UTF-8
|
||||
con.text_factory = lambda x: unicode(x, "utf-8", "ignore")
|
||||
cur.execute("select ?", ("this is latin1 and would normally create errors" + u"\xe4\xf6\xfc".encode("latin1"),))
|
||||
row = cur.fetchone()
|
||||
assert type(row[0]) == unicode
|
||||
|
||||
# pysqlite offers a builtin optimized text_factory that will return bytestring
|
||||
# objects, if the data is in ASCII only, and otherwise return unicode objects
|
||||
con.text_factory = sqlite3.OptimizedUnicode
|
||||
cur.execute("select ?", (AUSTRIA,))
|
||||
row = cur.fetchone()
|
||||
assert type(row[0]) == unicode
|
||||
|
||||
cur.execute("select ?", ("Germany",))
|
||||
row = cur.fetchone()
|
||||
assert type(row[0]) == str
|
||||
|
Loading…
Reference in New Issue