mirror of https://github.com/python/cpython
Tweak the comments and formatting.
This commit is contained in:
parent
8f66a4a3db
commit
778d5cc4fb
|
@ -311,60 +311,35 @@ FUNC1(tanh, tanh, 0,
|
||||||
<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
|
<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
|
||||||
enhanced with the exact partials sum and roundoff from Mark
|
enhanced with the exact partials sum and roundoff from Mark
|
||||||
Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
|
Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
|
||||||
|
See those links for more details, proofs and other references.
|
||||||
|
|
||||||
See both of those for more details, proofs and other references.
|
Note 1: IEEE 754R floating point semantics are assumed,
|
||||||
|
but the current implementation does not re-establish special
|
||||||
|
value semantics across iterations (i.e. handling -Inf + Inf).
|
||||||
|
|
||||||
Note 1: IEEE 754 floating point format and semantics are assumed, but not
|
Note 2: No provision is made for intermediate overflow handling;
|
||||||
explicitly maintained. The following rules may not apply:
|
therefore, sum([1e+308, 1e-308, 1e+308]) returns result 1e+308 while
|
||||||
|
sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
|
||||||
|
overflow of the first partial sum.
|
||||||
|
|
||||||
1. if the summands include a NaN, return a NaN,
|
Note 3: Aggressively optimizing compilers can potentially eliminate the
|
||||||
|
residual values needed for accurate summation. For instance, the statements
|
||||||
|
"hi = x + y; lo = y - (hi - x);" could be mis-transformed to
|
||||||
|
"hi = x + y; lo = 0.0;" which defeats the computation of residuals.
|
||||||
|
|
||||||
2. if the summands include infinities of both signs, raise ValueError,
|
Note 4: A similar implementation is in Modules/cmathmodule.c.
|
||||||
|
Be sure to update both when making changes.
|
||||||
|
|
||||||
3. if the summands include infinities of only one sign, return infinity
|
Note 5: The signature of math.sum() differs from __builtin__.sum()
|
||||||
with that sign,
|
because the start argument doesn't make sense in the context of
|
||||||
|
accurate summation. Since the partials table is collapsed before
|
||||||
4. otherwise (all summands are finite) if the result is infinite, raise
|
returning a result, sum(seq2, start=sum(seq1)) may not equal the
|
||||||
OverflowError. The result can never be a NaN if all summands are
|
accurate result returned by sum(itertools.chain(seq1, seq2)).
|
||||||
finite.
|
|
||||||
|
|
||||||
Note 2: the implementation below not include the intermediate overflow
|
|
||||||
handling from Mark Dickinson's msum(). Therefore, sum([1e+308, 1e-308,
|
|
||||||
1e+308]) returns result 1e+308, however sum([1e+308, 1e+308, 1e-308])
|
|
||||||
raises an OverflowError due to intermediate overflow of the first
|
|
||||||
partial sum.
|
|
||||||
|
|
||||||
Note 3: aggressively optimizing compilers may eliminate the roundoff
|
|
||||||
expressions critical for accurate summation. For example, the compiler
|
|
||||||
may optimize the following expressions
|
|
||||||
|
|
||||||
hi = x + y;
|
|
||||||
lo = y - (hi - x);
|
|
||||||
to
|
|
||||||
hi = x + y;
|
|
||||||
lo = 0.0;
|
|
||||||
|
|
||||||
defeating the whole purpose. Using volatile variables and/or explicit
|
|
||||||
assignment of critical subexpressions to a volatile variable should
|
|
||||||
remedy the problem
|
|
||||||
|
|
||||||
volatile double v; // Deter compiler from algebraically optimizing
|
|
||||||
// this critical, intermediate value away
|
|
||||||
hi = x + y;
|
|
||||||
v = hi - x;
|
|
||||||
lo = y - v;
|
|
||||||
|
|
||||||
by forcing the compiler to compute the value for v. This may also help
|
|
||||||
when subexpression are not computed with the full double precision.
|
|
||||||
|
|
||||||
Note 4. the same summation functions may be in ./cmathmodule.c. Make
|
|
||||||
sure to update both when making changes.
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#define NUM_PARTIALS 32 /* initial partials array size, on stack */
|
#define NUM_PARTIALS 32 /* initial partials array size, on stack */
|
||||||
|
|
||||||
/* Extend the partials array p[] by doubling its size.
|
/* Extend the partials array p[] by doubling its size. */
|
||||||
*/
|
|
||||||
static int /* non-zero on error */
|
static int /* non-zero on error */
|
||||||
_sum_realloc(double **p_ptr, Py_ssize_t n,
|
_sum_realloc(double **p_ptr, Py_ssize_t n,
|
||||||
double *ps, Py_ssize_t *m_ptr)
|
double *ps, Py_ssize_t *m_ptr)
|
||||||
|
@ -419,8 +394,9 @@ _sum_realloc(double **p_ptr, Py_ssize_t n,
|
||||||
non-zero, non-special, non-overlapping and strictly increasing in
|
non-zero, non-special, non-overlapping and strictly increasing in
|
||||||
magnitude, but possibly not all having the same sign.
|
magnitude, but possibly not all having the same sign.
|
||||||
|
|
||||||
Depends on IEEE 754 arithmetic guarantees.
|
Depends on IEEE 754 arithmetic guarantees and half-even rounding.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
static PyObject*
|
static PyObject*
|
||||||
math_sum(PyObject *self, PyObject *seq)
|
math_sum(PyObject *self, PyObject *seq)
|
||||||
{
|
{
|
||||||
|
@ -435,7 +411,6 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
|
PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
|
||||||
|
|
||||||
for(;;) { /* for x in iterable */
|
for(;;) { /* for x in iterable */
|
||||||
/* some invariants */
|
|
||||||
assert(0 <= n && n <= m);
|
assert(0 <= n && n <= m);
|
||||||
assert((m == NUM_PARTIALS && p == ps) ||
|
assert((m == NUM_PARTIALS && p == ps) ||
|
||||||
(m > NUM_PARTIALS && p != NULL));
|
(m > NUM_PARTIALS && p != NULL));
|
||||||
|
@ -444,7 +419,6 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
if (item == NULL) {
|
if (item == NULL) {
|
||||||
if (PyErr_Occurred())
|
if (PyErr_Occurred())
|
||||||
goto _sum_error;
|
goto _sum_error;
|
||||||
else
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
x = PyFloat_AsDouble(item);
|
x = PyFloat_AsDouble(item);
|
||||||
|
@ -456,16 +430,16 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
y = p[j];
|
y = p[j];
|
||||||
hi = x + y;
|
hi = x + y;
|
||||||
lo = fabs(x) < fabs(y)
|
lo = fabs(x) < fabs(y)
|
||||||
? x - (hi - y) /* volatile */
|
? x - (hi - y)
|
||||||
: y - (hi - x); /* volatile */
|
: y - (hi - x);
|
||||||
if (lo != 0.0)
|
if (lo != 0.0)
|
||||||
p[i++] = lo;
|
p[i++] = lo;
|
||||||
x = hi;
|
x = hi;
|
||||||
}
|
}
|
||||||
/* ps[i:] = [x] */
|
|
||||||
n = i;
|
n = i; /* ps[i:] = [x] */
|
||||||
if (x != 0.0) {
|
if (x != 0.0) {
|
||||||
/* if non-finite, reset partials, effectively
|
/* If non-finite, reset partials, effectively
|
||||||
adding subsequent items without roundoff
|
adding subsequent items without roundoff
|
||||||
and yielding correct non-finite results,
|
and yielding correct non-finite results,
|
||||||
provided IEEE 754 rules are observed */
|
provided IEEE 754 rules are observed */
|
||||||
|
@ -476,27 +450,27 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
p[n++] = x;
|
p[n++] = x;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
assert(n <= m);
|
|
||||||
|
|
||||||
if (n > 0) {
|
if (n > 0) {
|
||||||
hi = p[--n];
|
hi = p[--n];
|
||||||
if (Py_IS_FINITE(hi)) {
|
if (Py_IS_FINITE(hi)) {
|
||||||
/* sum_exact(ps, hi) from the top, stop
|
/* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
|
||||||
as soon as the sum becomes inexact */
|
|
||||||
while (n > 0) {
|
while (n > 0) {
|
||||||
x = p[--n];
|
x = p[--n];
|
||||||
y = hi;
|
y = hi;
|
||||||
hi = x + y;
|
hi = x + y;
|
||||||
assert(fabs(x) < fabs(y));
|
assert(fabs(x) < fabs(y));
|
||||||
lo = x - (hi - y); /* volatile */
|
lo = x - (hi - y);
|
||||||
if (lo != 0.0)
|
if (lo != 0.0)
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
/* round correctly if necessary */
|
/* Little dance to allow half-even rounding across multiple partials.
|
||||||
|
Needed so that sum([1e-16, 1, 1e16]) will round-up to two instead
|
||||||
|
of down to zero (the 1e16 makes the 1 slightly closer to two). */
|
||||||
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
||||||
(lo > 0.0 && p[n-1] > 0.0))) {
|
(lo > 0.0 && p[n-1] > 0.0))) {
|
||||||
y = lo * 2.0;
|
y = lo * 2.0;
|
||||||
x = hi + y; /* volatile */
|
x = hi + y;
|
||||||
if (y == (x - hi))
|
if (y == (x - hi))
|
||||||
hi = x;
|
hi = x;
|
||||||
}
|
}
|
||||||
|
@ -513,7 +487,6 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
|
|
||||||
_sum_error:
|
_sum_error:
|
||||||
PyFPE_END_PROTECT(hi)
|
PyFPE_END_PROTECT(hi)
|
||||||
|
|
||||||
Py_DECREF(iter);
|
Py_DECREF(iter);
|
||||||
if (p != ps)
|
if (p != ps)
|
||||||
PyMem_Free(p);
|
PyMem_Free(p);
|
||||||
|
@ -523,11 +496,9 @@ _sum_error:
|
||||||
#undef NUM_PARTIALS
|
#undef NUM_PARTIALS
|
||||||
|
|
||||||
PyDoc_STRVAR(math_sum_doc,
|
PyDoc_STRVAR(math_sum_doc,
|
||||||
"sum(sequence)\n\n\
|
"sum(iterable)\n\n\
|
||||||
Return the full precision sum of a sequence of numbers.\n\
|
Return an accurate floating point sum of values in the iterable.\n\
|
||||||
When the sequence is empty, return zero.\n\n\
|
Assumes IEEE-754 floating point arithmetic.");
|
||||||
For accurate results, IEEE 754 floating point format\n\
|
|
||||||
and semantics and floating point radix 2 are required.");
|
|
||||||
|
|
||||||
static PyObject *
|
static PyObject *
|
||||||
math_trunc(PyObject *self, PyObject *number)
|
math_trunc(PyObject *self, PyObject *number)
|
||||||
|
|
Loading…
Reference in New Issue