mirror of https://github.com/python/cpython
Tweak the comments and formatting.
This commit is contained in:
parent
8f66a4a3db
commit
778d5cc4fb
|
@ -311,61 +311,36 @@ FUNC1(tanh, tanh, 0,
|
|||
<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
|
||||
enhanced with the exact partials sum and roundoff from Mark
|
||||
Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
|
||||
See those links for more details, proofs and other references.
|
||||
|
||||
See both of those for more details, proofs and other references.
|
||||
Note 1: IEEE 754R floating point semantics are assumed,
|
||||
but the current implementation does not re-establish special
|
||||
value semantics across iterations (i.e. handling -Inf + Inf).
|
||||
|
||||
Note 1: IEEE 754 floating point format and semantics are assumed, but not
|
||||
explicitly maintained. The following rules may not apply:
|
||||
Note 2: No provision is made for intermediate overflow handling;
|
||||
therefore, sum([1e+308, 1e-308, 1e+308]) returns result 1e+308 while
|
||||
sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
|
||||
overflow of the first partial sum.
|
||||
|
||||
1. if the summands include a NaN, return a NaN,
|
||||
Note 3: Aggressively optimizing compilers can potentially eliminate the
|
||||
residual values needed for accurate summation. For instance, the statements
|
||||
"hi = x + y; lo = y - (hi - x);" could be mis-transformed to
|
||||
"hi = x + y; lo = 0.0;" which defeats the computation of residuals.
|
||||
|
||||
2. if the summands include infinities of both signs, raise ValueError,
|
||||
Note 4: A similar implementation is in Modules/cmathmodule.c.
|
||||
Be sure to update both when making changes.
|
||||
|
||||
3. if the summands include infinities of only one sign, return infinity
|
||||
with that sign,
|
||||
|
||||
4. otherwise (all summands are finite) if the result is infinite, raise
|
||||
OverflowError. The result can never be a NaN if all summands are
|
||||
finite.
|
||||
|
||||
Note 2: the implementation below not include the intermediate overflow
|
||||
handling from Mark Dickinson's msum(). Therefore, sum([1e+308, 1e-308,
|
||||
1e+308]) returns result 1e+308, however sum([1e+308, 1e+308, 1e-308])
|
||||
raises an OverflowError due to intermediate overflow of the first
|
||||
partial sum.
|
||||
|
||||
Note 3: aggressively optimizing compilers may eliminate the roundoff
|
||||
expressions critical for accurate summation. For example, the compiler
|
||||
may optimize the following expressions
|
||||
|
||||
hi = x + y;
|
||||
lo = y - (hi - x);
|
||||
to
|
||||
hi = x + y;
|
||||
lo = 0.0;
|
||||
|
||||
defeating the whole purpose. Using volatile variables and/or explicit
|
||||
assignment of critical subexpressions to a volatile variable should
|
||||
remedy the problem
|
||||
|
||||
volatile double v; // Deter compiler from algebraically optimizing
|
||||
// this critical, intermediate value away
|
||||
hi = x + y;
|
||||
v = hi - x;
|
||||
lo = y - v;
|
||||
|
||||
by forcing the compiler to compute the value for v. This may also help
|
||||
when subexpression are not computed with the full double precision.
|
||||
|
||||
Note 4. the same summation functions may be in ./cmathmodule.c. Make
|
||||
sure to update both when making changes.
|
||||
Note 5: The signature of math.sum() differs from __builtin__.sum()
|
||||
because the start argument doesn't make sense in the context of
|
||||
accurate summation. Since the partials table is collapsed before
|
||||
returning a result, sum(seq2, start=sum(seq1)) may not equal the
|
||||
accurate result returned by sum(itertools.chain(seq1, seq2)).
|
||||
*/
|
||||
|
||||
#define NUM_PARTIALS 32 /* initial partials array size, on stack */
|
||||
|
||||
/* Extend the partials array p[] by doubling its size.
|
||||
*/
|
||||
static int /* non-zero on error */
|
||||
/* Extend the partials array p[] by doubling its size. */
|
||||
static int /* non-zero on error */
|
||||
_sum_realloc(double **p_ptr, Py_ssize_t n,
|
||||
double *ps, Py_ssize_t *m_ptr)
|
||||
{
|
||||
|
@ -383,7 +358,7 @@ _sum_realloc(double **p_ptr, Py_ssize_t n,
|
|||
else
|
||||
v = PyMem_Realloc(p, sizeof(double) * m);
|
||||
}
|
||||
if (v == NULL) { /* size overflow or no memory */
|
||||
if (v == NULL) { /* size overflow or no memory */
|
||||
PyErr_SetString(PyExc_MemoryError, "math sum partials");
|
||||
return 1;
|
||||
}
|
||||
|
@ -419,8 +394,9 @@ _sum_realloc(double **p_ptr, Py_ssize_t n,
|
|||
non-zero, non-special, non-overlapping and strictly increasing in
|
||||
magnitude, but possibly not all having the same sign.
|
||||
|
||||
Depends on IEEE 754 arithmetic guarantees.
|
||||
*/
|
||||
Depends on IEEE 754 arithmetic guarantees and half-even rounding.
|
||||
*/
|
||||
|
||||
static PyObject*
|
||||
math_sum(PyObject *self, PyObject *seq)
|
||||
{
|
||||
|
@ -434,8 +410,7 @@ math_sum(PyObject *self, PyObject *seq)
|
|||
|
||||
PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
|
||||
|
||||
for(;;) { /* for x in iterable */
|
||||
/* some invariants */
|
||||
for(;;) { /* for x in iterable */
|
||||
assert(0 <= n && n <= m);
|
||||
assert((m == NUM_PARTIALS && p == ps) ||
|
||||
(m > NUM_PARTIALS && p != NULL));
|
||||
|
@ -444,28 +419,27 @@ math_sum(PyObject *self, PyObject *seq)
|
|||
if (item == NULL) {
|
||||
if (PyErr_Occurred())
|
||||
goto _sum_error;
|
||||
else
|
||||
break;
|
||||
break;
|
||||
}
|
||||
x = PyFloat_AsDouble(item);
|
||||
Py_DECREF(item);
|
||||
if (PyErr_Occurred())
|
||||
goto _sum_error;
|
||||
|
||||
for (i = j = 0; j < n; j++) { /* for y in partials */
|
||||
for (i = j = 0; j < n; j++) { /* for y in partials */
|
||||
y = p[j];
|
||||
hi = x + y;
|
||||
lo = fabs(x) < fabs(y)
|
||||
? x - (hi - y) /* volatile */
|
||||
: y - (hi - x); /* volatile */
|
||||
? x - (hi - y)
|
||||
: y - (hi - x);
|
||||
if (lo != 0.0)
|
||||
p[i++] = lo;
|
||||
x = hi;
|
||||
}
|
||||
/* ps[i:] = [x] */
|
||||
n = i;
|
||||
|
||||
n = i; /* ps[i:] = [x] */
|
||||
if (x != 0.0) {
|
||||
/* if non-finite, reset partials, effectively
|
||||
/* If non-finite, reset partials, effectively
|
||||
adding subsequent items without roundoff
|
||||
and yielding correct non-finite results,
|
||||
provided IEEE 754 rules are observed */
|
||||
|
@ -476,27 +450,27 @@ math_sum(PyObject *self, PyObject *seq)
|
|||
p[n++] = x;
|
||||
}
|
||||
}
|
||||
assert(n <= m);
|
||||
|
||||
if (n > 0) {
|
||||
hi = p[--n];
|
||||
if (Py_IS_FINITE(hi)) {
|
||||
/* sum_exact(ps, hi) from the top, stop
|
||||
as soon as the sum becomes inexact */
|
||||
/* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
|
||||
while (n > 0) {
|
||||
x = p[--n];
|
||||
y = hi;
|
||||
hi = x + y;
|
||||
assert(fabs(x) < fabs(y));
|
||||
lo = x - (hi - y); /* volatile */
|
||||
lo = x - (hi - y);
|
||||
if (lo != 0.0)
|
||||
break;
|
||||
}
|
||||
/* round correctly if necessary */
|
||||
/* Little dance to allow half-even rounding across multiple partials.
|
||||
Needed so that sum([1e-16, 1, 1e16]) will round-up to two instead
|
||||
of down to zero (the 1e16 makes the 1 slightly closer to two). */
|
||||
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
||||
(lo > 0.0 && p[n-1] > 0.0))) {
|
||||
y = lo * 2.0;
|
||||
x = hi + y; /* volatile */
|
||||
x = hi + y;
|
||||
if (y == (x - hi))
|
||||
hi = x;
|
||||
}
|
||||
|
@ -513,7 +487,6 @@ math_sum(PyObject *self, PyObject *seq)
|
|||
|
||||
_sum_error:
|
||||
PyFPE_END_PROTECT(hi)
|
||||
|
||||
Py_DECREF(iter);
|
||||
if (p != ps)
|
||||
PyMem_Free(p);
|
||||
|
@ -523,11 +496,9 @@ _sum_error:
|
|||
#undef NUM_PARTIALS
|
||||
|
||||
PyDoc_STRVAR(math_sum_doc,
|
||||
"sum(sequence)\n\n\
|
||||
Return the full precision sum of a sequence of numbers.\n\
|
||||
When the sequence is empty, return zero.\n\n\
|
||||
For accurate results, IEEE 754 floating point format\n\
|
||||
and semantics and floating point radix 2 are required.");
|
||||
"sum(iterable)\n\n\
|
||||
Return an accurate floating point sum of values in the iterable.\n\
|
||||
Assumes IEEE-754 floating point arithmetic.");
|
||||
|
||||
static PyObject *
|
||||
math_trunc(PyObject *self, PyObject *number)
|
||||
|
|
Loading…
Reference in New Issue