mirror of https://github.com/python/cpython
Simplify vector_norm() by eliminating special cases in the main loop (GH-9006)
The *max* value is no longer treated as a special case in the main loop. Besides making the main loop simpler and branchless, this also lets us relax the input restriction of *vec* to contain only non-negative values.
This commit is contained in:
parent
aada63b20e
commit
745c0f3980
|
@ -2032,14 +2032,14 @@ math_fmod_impl(PyObject *module, double x, double y)
|
|||
}
|
||||
|
||||
/*
|
||||
Given an *n* length *vec* of non-negative values
|
||||
where *max* is the largest value in the vector, compute:
|
||||
Given an *n* length *vec* of values and a value *max*, compute:
|
||||
|
||||
max * sqrt(sum((x / max) ** 2 for x in vec))
|
||||
|
||||
The value of the *max* variable must be present in *vec*
|
||||
or should equal to 0.0 when n==0. Likewise, *max* will
|
||||
be INF if an infinity is present in the vec.
|
||||
The value of the *max* variable must be non-negative and
|
||||
at least equal to the absolute value of the largest magnitude
|
||||
entry in the vector. If n==0, then *max* should be 0.0.
|
||||
If an infinity is present in the vec, *max* should be INF.
|
||||
|
||||
The *found_nan* variable indicates whether some member of
|
||||
the *vec* is a NaN.
|
||||
|
@ -2053,16 +2053,19 @@ The *csum* variable tracks the cumulative sum and *frac* tracks
|
|||
the cumulative fractional errors at each step. Since this
|
||||
variant assumes that |csum| >= |x| at each step, we establish
|
||||
the precondition by starting the accumulation from 1.0 which
|
||||
represents an entry equal to *max*. This also provides a nice
|
||||
side benefit in that it lets us skip over a *max* entry (which
|
||||
is swapped into *last*) saving us one iteration through the loop.
|
||||
represents the largest possible value of (x/max)**2.
|
||||
|
||||
After the loop is finished, the initial 1.0 is subtracted out
|
||||
for a net zero effect on the final sum. Since *csum* will be
|
||||
greater than 1.0, the subtraction of 1.0 will not cause
|
||||
fractional digits to be dropped from *csum*.
|
||||
|
||||
*/
|
||||
|
||||
static inline double
|
||||
vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
||||
{
|
||||
double x, csum = 1.0, oldcsum, frac = 0.0, last;
|
||||
double x, csum = 1.0, oldcsum, frac = 0.0;
|
||||
Py_ssize_t i;
|
||||
|
||||
if (Py_IS_INFINITY(max)) {
|
||||
|
@ -2071,27 +2074,20 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
|||
if (found_nan) {
|
||||
return Py_NAN;
|
||||
}
|
||||
if (max == 0.0) {
|
||||
return 0.0;
|
||||
if (max == 0.0 || n == 1) {
|
||||
return max;
|
||||
}
|
||||
assert(n > 0);
|
||||
last = vec[n-1];
|
||||
for (i=0 ; i < n-1 ; i++) {
|
||||
for (i=0 ; i < n ; i++) {
|
||||
x = vec[i];
|
||||
assert(Py_IS_FINITE(x) && x >= 0.0 && x <= max);
|
||||
if (x == max) {
|
||||
x = last;
|
||||
last = max;
|
||||
}
|
||||
assert(Py_IS_FINITE(x) && fabs(x) <= max);
|
||||
x /= max;
|
||||
x = x*x;
|
||||
assert(csum >= x);
|
||||
oldcsum = csum;
|
||||
csum += x;
|
||||
assert(csum >= x);
|
||||
frac += (oldcsum - csum) + x;
|
||||
}
|
||||
assert(last == max);
|
||||
return max * sqrt(csum + frac);
|
||||
return max * sqrt(csum - 1.0 + frac);
|
||||
}
|
||||
|
||||
#define NUM_STACK_ELEMS 16
|
||||
|
|
Loading…
Reference in New Issue