mirror of https://github.com/python/cpython
Patch # 1507 by Mark Dickinson. Make complex(x, -0) retain the sign of
the imaginary part (as long as it's not complex). Backport candidate?
This commit is contained in:
parent
b61a1f5219
commit
715ec1818d
|
@ -9,6 +9,7 @@ warnings.filterwarnings(
|
|||
)
|
||||
|
||||
from random import random
|
||||
from math import atan2
|
||||
|
||||
# These tests ensure that complex math does the right thing
|
||||
|
||||
|
@ -225,6 +226,18 @@ class ComplexTest(unittest.TestCase):
|
|||
self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
|
||||
self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
|
||||
|
||||
# check that the sign of a zero in the real or imaginary part
|
||||
# is preserved when constructing from two floats. (These checks
|
||||
# are harmless on systems without support for signed zeros.)
|
||||
def split_zeros(x):
|
||||
"""Function that produces different results for 0. and -0."""
|
||||
return atan2(x, -1.)
|
||||
|
||||
self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
|
||||
self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
|
||||
self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
|
||||
self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
|
||||
|
||||
c = 3.14 + 1j
|
||||
self.assert_(complex(c) is c)
|
||||
del c
|
||||
|
|
|
@ -897,6 +897,8 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|||
PyNumberMethods *nbr, *nbi = NULL;
|
||||
Py_complex cr, ci;
|
||||
int own_r = 0;
|
||||
int cr_is_complex = 0;
|
||||
int ci_is_complex = 0;
|
||||
static PyObject *complexstr;
|
||||
static char *kwlist[] = {"real", "imag", 0};
|
||||
|
||||
|
@ -977,6 +979,7 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|||
retaining its real & imag parts here, and the return
|
||||
value is (properly) of the builtin complex type. */
|
||||
cr = ((PyComplexObject*)r)->cval;
|
||||
cr_is_complex = 1;
|
||||
if (own_r) {
|
||||
Py_DECREF(r);
|
||||
}
|
||||
|
@ -985,7 +988,6 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|||
/* The "real" part really is entirely real, and contributes
|
||||
nothing in the imaginary direction.
|
||||
Just treat it as a double. */
|
||||
cr.imag = 0.0;
|
||||
tmp = PyNumber_Float(r);
|
||||
if (own_r) {
|
||||
/* r was a newly created complex number, rather
|
||||
|
@ -1005,15 +1007,14 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|||
}
|
||||
if (i == NULL) {
|
||||
ci.real = 0.0;
|
||||
ci.imag = 0.0;
|
||||
}
|
||||
else if (PyComplex_Check(i))
|
||||
else if (PyComplex_Check(i)) {
|
||||
ci = ((PyComplexObject*)i)->cval;
|
||||
else {
|
||||
ci_is_complex = 1;
|
||||
} else {
|
||||
/* The "imag" part really is entirely imaginary, and
|
||||
contributes nothing in the real direction.
|
||||
Just treat it as a double. */
|
||||
ci.imag = 0.0;
|
||||
tmp = (*nbi->nb_float)(i);
|
||||
if (tmp == NULL)
|
||||
return NULL;
|
||||
|
@ -1021,11 +1022,16 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|||
Py_DECREF(tmp);
|
||||
}
|
||||
/* If the input was in canonical form, then the "real" and "imag"
|
||||
parts are real numbers, so that ci.real and cr.imag are zero.
|
||||
parts are real numbers, so that ci.imag and cr.imag are zero.
|
||||
We need this correction in case they were not real numbers. */
|
||||
cr.real -= ci.imag;
|
||||
cr.imag += ci.real;
|
||||
return complex_subtype_from_c_complex(type, cr);
|
||||
|
||||
if (ci_is_complex) {
|
||||
cr.real -= ci.imag;
|
||||
}
|
||||
if (cr_is_complex) {
|
||||
ci.real += cr.imag;
|
||||
}
|
||||
return complex_subtype_from_doubles(type, cr.real, ci.real);
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(complex_doc,
|
||||
|
|
Loading…
Reference in New Issue