mirror of https://github.com/python/cpython
bpo-36324: Add inv_cdf() to statistics.NormalDist() (GH-12377)
This commit is contained in:
parent
faddaedd05
commit
714c60d7ac
|
@ -569,6 +569,18 @@ of applications in statistics.
|
|||
compute the probability that a random variable *X* will be less than or
|
||||
equal to *x*. Mathematically, it is written ``P(X <= x)``.
|
||||
|
||||
.. method:: NormalDist.inv_cdf(p)
|
||||
|
||||
Compute the inverse cumulative distribution function, also known as the
|
||||
`quantile function <https://en.wikipedia.org/wiki/Quantile_function>`_
|
||||
or the `percent-point
|
||||
<https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/>`_
|
||||
function. Mathematically, it is written ``x : P(X <= x) = p``.
|
||||
|
||||
Finds the value *x* of the random variable *X* such that the
|
||||
probability of the variable being less than or equal to that value
|
||||
equals the given probability *p*.
|
||||
|
||||
.. method:: NormalDist.overlap(other)
|
||||
|
||||
Compute the `overlapping coefficient (OVL)
|
||||
|
@ -628,6 +640,16 @@ rounding to the nearest whole number:
|
|||
>>> round(fraction * 100.0, 1)
|
||||
18.4
|
||||
|
||||
Find the `quartiles <https://en.wikipedia.org/wiki/Quartile>`_ and `deciles
|
||||
<https://en.wikipedia.org/wiki/Decile>`_ for the SAT scores:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> [round(sat.inv_cdf(p)) for p in (0.25, 0.50, 0.75)]
|
||||
[928, 1060, 1192]
|
||||
>>> [round(sat.inv_cdf(p / 10)) for p in range(1, 10)]
|
||||
[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]
|
||||
|
||||
What percentage of men and women will have the same height in `two normally
|
||||
distributed populations with known means and standard deviations
|
||||
<http://www.usablestats.com/lessons/normal>`_?
|
||||
|
|
|
@ -745,6 +745,101 @@ class NormalDist:
|
|||
raise StatisticsError('cdf() not defined when sigma is zero')
|
||||
return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0))))
|
||||
|
||||
def inv_cdf(self, p):
|
||||
''' Inverse cumulative distribution function: x : P(X <= x) = p
|
||||
|
||||
Finds the value of the random variable such that the probability of the
|
||||
variable being less than or equal to that value equals the given probability.
|
||||
|
||||
This function is also called the percent-point function or quantile function.
|
||||
|
||||
'''
|
||||
if (p <= 0.0 or p >= 1.0):
|
||||
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
|
||||
if self.sigma <= 0.0:
|
||||
raise StatisticsError('cdf() not defined when sigma at or below zero')
|
||||
|
||||
# There is no closed-form solution to the inverse CDF for the normal
|
||||
# distribution, so we use a rational approximation instead:
|
||||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||||
|
||||
q = p - 0.5
|
||||
if fabs(q) <= 0.425:
|
||||
a0 = 3.38713_28727_96366_6080e+0
|
||||
a1 = 1.33141_66789_17843_7745e+2
|
||||
a2 = 1.97159_09503_06551_4427e+3
|
||||
a3 = 1.37316_93765_50946_1125e+4
|
||||
a4 = 4.59219_53931_54987_1457e+4
|
||||
a5 = 6.72657_70927_00870_0853e+4
|
||||
a6 = 3.34305_75583_58812_8105e+4
|
||||
a7 = 2.50908_09287_30122_6727e+3
|
||||
b1 = 4.23133_30701_60091_1252e+1
|
||||
b2 = 6.87187_00749_20579_0830e+2
|
||||
b3 = 5.39419_60214_24751_1077e+3
|
||||
b4 = 2.12137_94301_58659_5867e+4
|
||||
b5 = 3.93078_95800_09271_0610e+4
|
||||
b6 = 2.87290_85735_72194_2674e+4
|
||||
b7 = 5.22649_52788_52854_5610e+3
|
||||
r = 0.180625 - q * q
|
||||
num = (q * (((((((a7 * r + a6) * r + a5) * r + a4) * r + a3)
|
||||
* r + a2) * r + a1) * r + a0))
|
||||
den = ((((((((b7 * r + b6) * r + b5) * r + b4) * r + b3)
|
||||
* r + b2) * r + b1) * r + 1.0))
|
||||
x = num / den
|
||||
return self.mu + (x * self.sigma)
|
||||
|
||||
r = p if q <= 0.0 else 1.0 - p
|
||||
r = sqrt(-log(r))
|
||||
if r <= 5.0:
|
||||
c0 = 1.42343_71107_49683_57734e+0
|
||||
c1 = 4.63033_78461_56545_29590e+0
|
||||
c2 = 5.76949_72214_60691_40550e+0
|
||||
c3 = 3.64784_83247_63204_60504e+0
|
||||
c4 = 1.27045_82524_52368_38258e+0
|
||||
c5 = 2.41780_72517_74506_11770e-1
|
||||
c6 = 2.27238_44989_26918_45833e-2
|
||||
c7 = 7.74545_01427_83414_07640e-4
|
||||
d1 = 2.05319_16266_37758_82187e+0
|
||||
d2 = 1.67638_48301_83803_84940e+0
|
||||
d3 = 6.89767_33498_51000_04550e-1
|
||||
d4 = 1.48103_97642_74800_74590e-1
|
||||
d5 = 1.51986_66563_61645_71966e-2
|
||||
d6 = 5.47593_80849_95344_94600e-4
|
||||
d7 = 1.05075_00716_44416_84324e-9
|
||||
r = r - 1.6
|
||||
num = ((((((((c7 * r + c6) * r + c5) * r + c4) * r + c3)
|
||||
* r + c2) * r + c1) * r + c0))
|
||||
den = ((((((((d7 * r + d6) * r + d5) * r + d4) * r + d3)
|
||||
* r + d2) * r + d1) * r + 1.0))
|
||||
else:
|
||||
e0 = 6.65790_46435_01103_77720e+0
|
||||
e1 = 5.46378_49111_64114_36990e+0
|
||||
e2 = 1.78482_65399_17291_33580e+0
|
||||
e3 = 2.96560_57182_85048_91230e-1
|
||||
e4 = 2.65321_89526_57612_30930e-2
|
||||
e5 = 1.24266_09473_88078_43860e-3
|
||||
e6 = 2.71155_55687_43487_57815e-5
|
||||
e7 = 2.01033_43992_92288_13265e-7
|
||||
f1 = 5.99832_20655_58879_37690e-1
|
||||
f2 = 1.36929_88092_27358_05310e-1
|
||||
f3 = 1.48753_61290_85061_48525e-2
|
||||
f4 = 7.86869_13114_56132_59100e-4
|
||||
f5 = 1.84631_83175_10054_68180e-5
|
||||
f6 = 1.42151_17583_16445_88870e-7
|
||||
f7 = 2.04426_31033_89939_78564e-15
|
||||
r = r - 5.0
|
||||
num = ((((((((e7 * r + e6) * r + e5) * r + e4) * r + e3)
|
||||
* r + e2) * r + e1) * r + e0))
|
||||
den = ((((((((f7 * r + f6) * r + f5) * r + f4) * r + f3)
|
||||
* r + f2) * r + f1) * r + 1.0))
|
||||
|
||||
x = num / den
|
||||
if q < 0.0:
|
||||
x = -x
|
||||
return self.mu + (x * self.sigma)
|
||||
|
||||
def overlap(self, other):
|
||||
'''Compute the overlapping coefficient (OVL) between two normal distributions.
|
||||
|
||||
|
|
|
@ -2174,6 +2174,69 @@ class TestNormalDist(unittest.TestCase):
|
|||
self.assertEqual(X.cdf(float('Inf')), 1.0)
|
||||
self.assertTrue(math.isnan(X.cdf(float('NaN'))))
|
||||
|
||||
def test_inv_cdf(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
|
||||
# Center case should be exact.
|
||||
iq = NormalDist(100, 15)
|
||||
self.assertEqual(iq.inv_cdf(0.50), iq.mean)
|
||||
|
||||
# Test versus a published table of known percentage points.
|
||||
# See the second table at the bottom of the page here:
|
||||
# http://people.bath.ac.uk/masss/tables/normaltable.pdf
|
||||
Z = NormalDist()
|
||||
pp = {5.0: (0.000, 1.645, 2.576, 3.291, 3.891,
|
||||
4.417, 4.892, 5.327, 5.731, 6.109),
|
||||
2.5: (0.674, 1.960, 2.807, 3.481, 4.056,
|
||||
4.565, 5.026, 5.451, 5.847, 6.219),
|
||||
1.0: (1.282, 2.326, 3.090, 3.719, 4.265,
|
||||
4.753, 5.199, 5.612, 5.998, 6.361)}
|
||||
for base, row in pp.items():
|
||||
for exp, x in enumerate(row, start=1):
|
||||
p = base * 10.0 ** (-exp)
|
||||
self.assertAlmostEqual(-Z.inv_cdf(p), x, places=3)
|
||||
p = 1.0 - p
|
||||
self.assertAlmostEqual(Z.inv_cdf(p), x, places=3)
|
||||
|
||||
# Match published example for MS Excel
|
||||
# https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
|
||||
self.assertAlmostEqual(NormalDist(40, 1.5).inv_cdf(0.908789), 42.000002)
|
||||
|
||||
# One million equally spaced probabilities
|
||||
n = 2**20
|
||||
for p in range(1, n):
|
||||
p /= n
|
||||
self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
|
||||
|
||||
# One hundred ever smaller probabilities to test tails out to
|
||||
# extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50
|
||||
for e in range(1, 51):
|
||||
p = 2.0 ** (-e)
|
||||
self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
|
||||
p = 1.0 - p
|
||||
self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
|
||||
|
||||
# Now apply cdf() first. At six sigmas, the round-trip
|
||||
# loses a lot of precision, so only check to 6 places.
|
||||
for x in range(10, 190):
|
||||
self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=6)
|
||||
|
||||
# Error cases:
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.inv_cdf(0.0) # p is zero
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.inv_cdf(-0.1) # p under zero
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.inv_cdf(1.0) # p is one
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.inv_cdf(1.1) # p over one
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.sigma = 0.0 # sigma is zero
|
||||
iq.inv_cdf(0.5)
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.sigma = -0.1 # sigma under zero
|
||||
iq.inv_cdf(0.5)
|
||||
|
||||
def test_overlap(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
Add method to statistics.NormalDist for computing the inverse cumulative
|
||||
normal distribution.
|
Loading…
Reference in New Issue