bpo-36324: Add inv_cdf() to statistics.NormalDist() (GH-12377)

This commit is contained in:
Raymond Hettinger 2019-03-18 20:17:14 -07:00 committed by GitHub
parent faddaedd05
commit 714c60d7ac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 182 additions and 0 deletions

View File

@ -569,6 +569,18 @@ of applications in statistics.
compute the probability that a random variable *X* will be less than or
equal to *x*. Mathematically, it is written ``P(X <= x)``.
.. method:: NormalDist.inv_cdf(p)
Compute the inverse cumulative distribution function, also known as the
`quantile function <https://en.wikipedia.org/wiki/Quantile_function>`_
or the `percent-point
<https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/>`_
function. Mathematically, it is written ``x : P(X <= x) = p``.
Finds the value *x* of the random variable *X* such that the
probability of the variable being less than or equal to that value
equals the given probability *p*.
.. method:: NormalDist.overlap(other)
Compute the `overlapping coefficient (OVL)
@ -628,6 +640,16 @@ rounding to the nearest whole number:
>>> round(fraction * 100.0, 1)
18.4
Find the `quartiles <https://en.wikipedia.org/wiki/Quartile>`_ and `deciles
<https://en.wikipedia.org/wiki/Decile>`_ for the SAT scores:
.. doctest::
>>> [round(sat.inv_cdf(p)) for p in (0.25, 0.50, 0.75)]
[928, 1060, 1192]
>>> [round(sat.inv_cdf(p / 10)) for p in range(1, 10)]
[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]
What percentage of men and women will have the same height in `two normally
distributed populations with known means and standard deviations
<http://www.usablestats.com/lessons/normal>`_?

View File

@ -745,6 +745,101 @@ class NormalDist:
raise StatisticsError('cdf() not defined when sigma is zero')
return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0))))
def inv_cdf(self, p):
''' Inverse cumulative distribution function: x : P(X <= x) = p
Finds the value of the random variable such that the probability of the
variable being less than or equal to that value equals the given probability.
This function is also called the percent-point function or quantile function.
'''
if (p <= 0.0 or p >= 1.0):
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
if self.sigma <= 0.0:
raise StatisticsError('cdf() not defined when sigma at or below zero')
# There is no closed-form solution to the inverse CDF for the normal
# distribution, so we use a rational approximation instead:
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
# (3): 477484. doi:10.2307/2347330. JSTOR 2347330.
q = p - 0.5
if fabs(q) <= 0.425:
a0 = 3.38713_28727_96366_6080e+0
a1 = 1.33141_66789_17843_7745e+2
a2 = 1.97159_09503_06551_4427e+3
a3 = 1.37316_93765_50946_1125e+4
a4 = 4.59219_53931_54987_1457e+4
a5 = 6.72657_70927_00870_0853e+4
a6 = 3.34305_75583_58812_8105e+4
a7 = 2.50908_09287_30122_6727e+3
b1 = 4.23133_30701_60091_1252e+1
b2 = 6.87187_00749_20579_0830e+2
b3 = 5.39419_60214_24751_1077e+3
b4 = 2.12137_94301_58659_5867e+4
b5 = 3.93078_95800_09271_0610e+4
b6 = 2.87290_85735_72194_2674e+4
b7 = 5.22649_52788_52854_5610e+3
r = 0.180625 - q * q
num = (q * (((((((a7 * r + a6) * r + a5) * r + a4) * r + a3)
* r + a2) * r + a1) * r + a0))
den = ((((((((b7 * r + b6) * r + b5) * r + b4) * r + b3)
* r + b2) * r + b1) * r + 1.0))
x = num / den
return self.mu + (x * self.sigma)
r = p if q <= 0.0 else 1.0 - p
r = sqrt(-log(r))
if r <= 5.0:
c0 = 1.42343_71107_49683_57734e+0
c1 = 4.63033_78461_56545_29590e+0
c2 = 5.76949_72214_60691_40550e+0
c3 = 3.64784_83247_63204_60504e+0
c4 = 1.27045_82524_52368_38258e+0
c5 = 2.41780_72517_74506_11770e-1
c6 = 2.27238_44989_26918_45833e-2
c7 = 7.74545_01427_83414_07640e-4
d1 = 2.05319_16266_37758_82187e+0
d2 = 1.67638_48301_83803_84940e+0
d3 = 6.89767_33498_51000_04550e-1
d4 = 1.48103_97642_74800_74590e-1
d5 = 1.51986_66563_61645_71966e-2
d6 = 5.47593_80849_95344_94600e-4
d7 = 1.05075_00716_44416_84324e-9
r = r - 1.6
num = ((((((((c7 * r + c6) * r + c5) * r + c4) * r + c3)
* r + c2) * r + c1) * r + c0))
den = ((((((((d7 * r + d6) * r + d5) * r + d4) * r + d3)
* r + d2) * r + d1) * r + 1.0))
else:
e0 = 6.65790_46435_01103_77720e+0
e1 = 5.46378_49111_64114_36990e+0
e2 = 1.78482_65399_17291_33580e+0
e3 = 2.96560_57182_85048_91230e-1
e4 = 2.65321_89526_57612_30930e-2
e5 = 1.24266_09473_88078_43860e-3
e6 = 2.71155_55687_43487_57815e-5
e7 = 2.01033_43992_92288_13265e-7
f1 = 5.99832_20655_58879_37690e-1
f2 = 1.36929_88092_27358_05310e-1
f3 = 1.48753_61290_85061_48525e-2
f4 = 7.86869_13114_56132_59100e-4
f5 = 1.84631_83175_10054_68180e-5
f6 = 1.42151_17583_16445_88870e-7
f7 = 2.04426_31033_89939_78564e-15
r = r - 5.0
num = ((((((((e7 * r + e6) * r + e5) * r + e4) * r + e3)
* r + e2) * r + e1) * r + e0))
den = ((((((((f7 * r + f6) * r + f5) * r + f4) * r + f3)
* r + f2) * r + f1) * r + 1.0))
x = num / den
if q < 0.0:
x = -x
return self.mu + (x * self.sigma)
def overlap(self, other):
'''Compute the overlapping coefficient (OVL) between two normal distributions.

View File

@ -2174,6 +2174,69 @@ class TestNormalDist(unittest.TestCase):
self.assertEqual(X.cdf(float('Inf')), 1.0)
self.assertTrue(math.isnan(X.cdf(float('NaN'))))
def test_inv_cdf(self):
NormalDist = statistics.NormalDist
# Center case should be exact.
iq = NormalDist(100, 15)
self.assertEqual(iq.inv_cdf(0.50), iq.mean)
# Test versus a published table of known percentage points.
# See the second table at the bottom of the page here:
# http://people.bath.ac.uk/masss/tables/normaltable.pdf
Z = NormalDist()
pp = {5.0: (0.000, 1.645, 2.576, 3.291, 3.891,
4.417, 4.892, 5.327, 5.731, 6.109),
2.5: (0.674, 1.960, 2.807, 3.481, 4.056,
4.565, 5.026, 5.451, 5.847, 6.219),
1.0: (1.282, 2.326, 3.090, 3.719, 4.265,
4.753, 5.199, 5.612, 5.998, 6.361)}
for base, row in pp.items():
for exp, x in enumerate(row, start=1):
p = base * 10.0 ** (-exp)
self.assertAlmostEqual(-Z.inv_cdf(p), x, places=3)
p = 1.0 - p
self.assertAlmostEqual(Z.inv_cdf(p), x, places=3)
# Match published example for MS Excel
# https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
self.assertAlmostEqual(NormalDist(40, 1.5).inv_cdf(0.908789), 42.000002)
# One million equally spaced probabilities
n = 2**20
for p in range(1, n):
p /= n
self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
# One hundred ever smaller probabilities to test tails out to
# extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50
for e in range(1, 51):
p = 2.0 ** (-e)
self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
p = 1.0 - p
self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
# Now apply cdf() first. At six sigmas, the round-trip
# loses a lot of precision, so only check to 6 places.
for x in range(10, 190):
self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=6)
# Error cases:
with self.assertRaises(statistics.StatisticsError):
iq.inv_cdf(0.0) # p is zero
with self.assertRaises(statistics.StatisticsError):
iq.inv_cdf(-0.1) # p under zero
with self.assertRaises(statistics.StatisticsError):
iq.inv_cdf(1.0) # p is one
with self.assertRaises(statistics.StatisticsError):
iq.inv_cdf(1.1) # p over one
with self.assertRaises(statistics.StatisticsError):
iq.sigma = 0.0 # sigma is zero
iq.inv_cdf(0.5)
with self.assertRaises(statistics.StatisticsError):
iq.sigma = -0.1 # sigma under zero
iq.inv_cdf(0.5)
def test_overlap(self):
NormalDist = statistics.NormalDist

View File

@ -0,0 +1,2 @@
Add method to statistics.NormalDist for computing the inverse cumulative
normal distribution.