gh-115532: Add kernel density estimation to the statistics module (gh-115863)

This commit is contained in:
Raymond Hettinger 2024-02-25 17:46:47 -06:00 committed by GitHub
parent 6a3236fe2e
commit 6d34eb0e36
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 285 additions and 41 deletions

View File

@ -76,6 +76,7 @@ or sample.
:func:`fmean` Fast, floating point arithmetic mean, with optional weighting.
:func:`geometric_mean` Geometric mean of data.
:func:`harmonic_mean` Harmonic mean of data.
:func:`kde` Estimate the probability density distribution of the data.
:func:`median` Median (middle value) of data.
:func:`median_low` Low median of data.
:func:`median_high` High median of data.
@ -259,6 +260,54 @@ However, for reading convenience, most of the examples show sorted sequences.
.. versionchanged:: 3.10
Added support for *weights*.
.. function:: kde(data, h, kernel='normal')
`Kernel Density Estimation (KDE)
<https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf>`_:
Create a continuous probability density function from discrete samples.
The basic idea is to smooth the data using `a kernel function
<https://en.wikipedia.org/wiki/Kernel_(statistics)>`_.
to help draw inferences about a population from a sample.
The degree of smoothing is controlled by the scaling parameter *h*
which is called the bandwidth. Smaller values emphasize local
features while larger values give smoother results.
The *kernel* determines the relative weights of the sample data
points. Generally, the choice of kernel shape does not matter
as much as the more influential bandwidth smoothing parameter.
Kernels that give some weight to every sample point include
*normal* or *gauss*, *logistic*, and *sigmoid*.
Kernels that only give weight to sample points within the bandwidth
include *rectangular* or *uniform*, *triangular*, *parabolic* or
*epanechnikov*, *quartic* or *biweight*, *triweight*, and *cosine*.
A :exc:`StatisticsError` will be raised if the *data* sequence is empty.
`Wikipedia has an example
<https://en.wikipedia.org/wiki/Kernel_density_estimation#Example>`_
where we can use :func:`kde` to generate and plot a probability
density function estimated from a small sample:
.. doctest::
>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> f_hat = kde(sample, h=1.5)
>>> xarr = [i/100 for i in range(-750, 1100)]
>>> yarr = [f_hat(x) for x in xarr]
The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:
.. image:: kde_example.png
:alt: Scatter plot of the estimated probability density function.
.. versionadded:: 3.13
.. function:: median(data)
Return the median (middle value) of numeric data, using the common "mean of
@ -1095,46 +1144,6 @@ The final prediction goes to the largest posterior. This is known as the
'female'
Kernel density estimation
*************************
It is possible to estimate a continuous probability density function
from a fixed number of discrete samples.
The basic idea is to smooth the data using `a kernel function such as a
normal distribution, triangular distribution, or uniform distribution
<https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use>`_.
The degree of smoothing is controlled by a scaling parameter, ``h``,
which is called the *bandwidth*.
.. testcode::
def kde_normal(sample, h):
"Create a continuous probability density function from a sample."
# Smooth the sample with a normal distribution kernel scaled by h.
kernel_h = NormalDist(0.0, h).pdf
n = len(sample)
def pdf(x):
return sum(kernel_h(x - x_i) for x_i in sample) / n
return pdf
`Wikipedia has an example
<https://en.wikipedia.org/wiki/Kernel_density_estimation#Example>`_
where we can use the ``kde_normal()`` recipe to generate and plot
a probability density function estimated from a small sample:
.. doctest::
>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> f_hat = kde_normal(sample, h=1.5)
>>> xarr = [i/100 for i in range(-750, 1100)]
>>> yarr = [f_hat(x) for x in xarr]
The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:
.. image:: kde_example.png
:alt: Scatter plot of the estimated probability density function.
..
# This modelines must appear within the last ten lines of the file.
kate: indent-width 3; remove-trailing-space on; replace-tabs on; encoding utf-8;

View File

@ -476,6 +476,14 @@ sqlite3
for filtering database objects to dump.
(Contributed by Mariusz Felisiak in :gh:`91602`.)
statistics
----------
* Add :func:`statistics.kde` for kernel density estimation.
This makes it possible to estimate a continuous probability density function
from a fixed number of discrete samples.
(Contributed by Raymond Hettinger in :gh:`115863`.)
subprocess
----------

View File

@ -112,6 +112,7 @@ __all__ = [
'fmean',
'geometric_mean',
'harmonic_mean',
'kde',
'linear_regression',
'mean',
'median',
@ -137,7 +138,7 @@ from decimal import Decimal
from itertools import count, groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod
from math import isfinite, isinf
from math import isfinite, isinf, pi, cos, cosh
from functools import reduce
from operator import itemgetter
from collections import Counter, namedtuple, defaultdict
@ -802,6 +803,171 @@ def multimode(data):
return [value for value, count in counts.items() if count == maxcount]
def kde(data, h, kernel='normal'):
"""Kernel Density Estimation: Create a continuous probability
density function from discrete samples.
The basic idea is to smooth the data using a kernel function
to help draw inferences about a population from a sample.
The degree of smoothing is controlled by the scaling parameter h
which is called the bandwidth. Smaller values emphasize local
features while larger values give smoother results.
The kernel determines the relative weights of the sample data
points. Generally, the choice of kernel shape does not matter
as much as the more influential bandwidth smoothing parameter.
Kernels that give some weight to every sample point:
normal or gauss
logistic
sigmoid
Kernels that only give weight to sample points within
the bandwidth:
rectangular or uniform
triangular
parabolic or epanechnikov
quartic or biweight
triweight
cosine
A StatisticsError will be raised if the data sequence is empty.
Example
-------
Given a sample of six data points, construct a continuous
function that estimates the underlying probability density:
>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> f_hat = kde(sample, h=1.5)
Compute the area under the curve:
>>> sum(f_hat(x) for x in range(-20, 20))
1.0
Plot the estimated probability density function at
evenly spaced points from -6 to 10:
>>> for x in range(-6, 11):
... density = f_hat(x)
... plot = ' ' * int(density * 400) + 'x'
... print(f'{x:2}: {density:.3f} {plot}')
...
-6: 0.002 x
-5: 0.009 x
-4: 0.031 x
-3: 0.070 x
-2: 0.111 x
-1: 0.125 x
0: 0.110 x
1: 0.086 x
2: 0.068 x
3: 0.059 x
4: 0.066 x
5: 0.082 x
6: 0.082 x
7: 0.058 x
8: 0.028 x
9: 0.009 x
10: 0.002 x
References
----------
Kernel density estimation and its application:
https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
Kernel functions in common use:
https://en.wikipedia.org/wiki/Kernel_(statistics)#kernel_functions_in_common_use
Interactive graphical demonstration and exploration:
https://demonstrations.wolfram.com/KernelDensityEstimation/
"""
n = len(data)
if not n:
raise StatisticsError('Empty data sequence')
if not isinstance(data[0], (int, float)):
raise TypeError('Data sequence must contain ints or floats')
if h <= 0.0:
raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
match kernel:
case 'normal' | 'gauss':
c = 1 / sqrt(2 * pi)
K = lambda t: c * exp(-1/2 * t * t)
support = None
case 'logistic':
# 1.0 / (exp(t) + 2.0 + exp(-t))
K = lambda t: 1/2 / (1.0 + cosh(t))
support = None
case 'sigmoid':
# (2/pi) / (exp(t) + exp(-t))
c = 1 / pi
K = lambda t: c / cosh(t)
support = None
case 'rectangular' | 'uniform':
K = lambda t: 1/2
support = 1.0
case 'triangular':
K = lambda t: 1.0 - abs(t)
support = 1.0
case 'parabolic' | 'epanechnikov':
K = lambda t: 3/4 * (1.0 - t * t)
support = 1.0
case 'quartic' | 'biweight':
K = lambda t: 15/16 * (1.0 - t * t) ** 2
support = 1.0
case 'triweight':
K = lambda t: 35/32 * (1.0 - t * t) ** 3
support = 1.0
case 'cosine':
c1 = pi / 4
c2 = pi / 2
K = lambda t: c1 * cos(c2 * t)
support = 1.0
case _:
raise StatisticsError(f'Unknown kernel name: {kernel!r}')
if support is None:
def pdf(x):
return sum(K((x - x_i) / h) for x_i in data) / (n * h)
else:
sample = sorted(data)
bandwidth = h * support
def pdf(x):
i = bisect_left(sample, x - bandwidth)
j = bisect_right(sample, x + bandwidth)
supported = sample[i : j]
return sum(K((x - x_i) / h) for x_i in supported) / (n * h)
pdf.__doc__ = f'PDF estimate with {kernel=!r} and {h=!r}'
return pdf
# Notes on methods for computing quantiles
# ----------------------------------------
#

View File

@ -2353,6 +2353,66 @@ class TestGeometricMean(unittest.TestCase):
self.assertAlmostEqual(actual_mean, expected_mean, places=5)
class TestKDE(unittest.TestCase):
def test_kde(self):
kde = statistics.kde
StatisticsError = statistics.StatisticsError
kernels = ['normal', 'gauss', 'logistic', 'sigmoid', 'rectangular',
'uniform', 'triangular', 'parabolic', 'epanechnikov',
'quartic', 'biweight', 'triweight', 'cosine']
sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
# The approximate integral of a PDF should be close to 1.0
def integrate(func, low, high, steps=10_000):
"Numeric approximation of a definite function integral."
dx = (high - low) / steps
midpoints = (low + (i + 1/2) * dx for i in range(steps))
return sum(map(func, midpoints)) * dx
for kernel in kernels:
with self.subTest(kernel=kernel):
f_hat = kde(sample, h=1.5, kernel=kernel)
area = integrate(f_hat, -20, 20)
self.assertAlmostEqual(area, 1.0, places=4)
# Check error cases
with self.assertRaises(StatisticsError):
kde([], h=1.0) # Empty dataset
with self.assertRaises(TypeError):
kde(['abc', 'def'], 1.5) # Non-numeric data
with self.assertRaises(TypeError):
kde(iter(sample), 1.5) # Data is not a sequence
with self.assertRaises(StatisticsError):
kde(sample, h=0.0) # Zero bandwidth
with self.assertRaises(StatisticsError):
kde(sample, h=0.0) # Negative bandwidth
with self.assertRaises(TypeError):
kde(sample, h='str') # Wrong bandwidth type
with self.assertRaises(StatisticsError):
kde(sample, h=1.0, kernel='bogus') # Invalid kernel
# Test name and docstring of the generated function
h = 1.5
kernel = 'cosine'
f_hat = kde(sample, h, kernel)
self.assertEqual(f_hat.__name__, 'pdf')
self.assertIn(kernel, f_hat.__doc__)
self.assertIn(str(h), f_hat.__doc__)
# Test closed interval for the support boundaries.
# In particular, 'uniform' should non-zero at the boundaries.
f_hat = kde([0], 1.0, 'uniform')
self.assertEqual(f_hat(-1.0), 1/2)
self.assertEqual(f_hat(1.0), 1/2)
class TestQuantiles(unittest.TestCase):
def test_specific_cases(self):

View File

@ -0,0 +1 @@
Add kernel density estimation to the statistics module.