Give the pickle special methods a signature.

This commit is contained in:
Georg Brandl 2008-07-04 17:22:53 +00:00
parent 4e47680060
commit 66ef83bd9d
1 changed files with 101 additions and 102 deletions

View File

@ -396,6 +396,8 @@ conversions can be made by the class's :meth:`__setstate__` method.
The pickle protocol
-------------------
.. currentmodule:: None
This section describes the "pickling protocol" that defines the interface
between the pickler/unpickler and the objects that are being serialized. This
protocol provides a standard way for you to define, customize, and control how
@ -410,52 +412,48 @@ environment slightly safer from untrusted pickle data streams; see section
Pickling and unpickling normal class instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. index::
single: __getinitargs__() (copy protocol)
single: __init__() (instance constructor)
.. method:: object.__getinitargs__()
When a pickled class instance is unpickled, its :meth:`__init__` method is
normally *not* invoked. If it is desirable that the :meth:`__init__` method be
called on unpickling, an old-style class can define a method
:meth:`__getinitargs__`, which should return a *tuple* containing the arguments
to be passed to the class constructor (:meth:`__init__` for example). The
:meth:`__getinitargs__` method is called at pickle time; the tuple it returns is
incorporated in the pickle for the instance.
When a pickled class instance is unpickled, its :meth:`__init__` method is
normally *not* invoked. If it is desirable that the :meth:`__init__` method
be called on unpickling, an old-style class can define a method
:meth:`__getinitargs__`, which should return a *tuple* containing the
arguments to be passed to the class constructor (:meth:`__init__` for
example). The :meth:`__getinitargs__` method is called at pickle time; the
tuple it returns is incorporated in the pickle for the instance.
.. index:: single: __getnewargs__() (copy protocol)
.. method:: object.__getnewargs__()
New-style types can provide a :meth:`__getnewargs__` method that is used for
protocol 2. Implementing this method is needed if the type establishes some
internal invariants when the instance is created, or if the memory allocation is
affected by the values passed to the :meth:`__new__` method for the type (as it
is for tuples and strings). Instances of a :term:`new-style class` :class:`C`
are created using ::
New-style types can provide a :meth:`__getnewargs__` method that is used for
protocol 2. Implementing this method is needed if the type establishes some
internal invariants when the instance is created, or if the memory allocation
is affected by the values passed to the :meth:`__new__` method for the type
(as it is for tuples and strings). Instances of a :term:`new-style class`
``C`` are created using ::
obj = C.__new__(C, *args)
where *args* is the result of calling :meth:`__getnewargs__` on the original
object; if there is no :meth:`__getnewargs__`, an empty tuple is assumed.
where *args* is the result of calling :meth:`__getnewargs__` on the original
object; if there is no :meth:`__getnewargs__`, an empty tuple is assumed.
.. method:: object.__getstate__()
.. index::
single: __getstate__() (copy protocol)
single: __setstate__() (copy protocol)
single: __dict__ (instance attribute)
Classes can further influence how their instances are pickled; if the class
defines the method :meth:`__getstate__`, it is called and the return state is
pickled as the contents for the instance, instead of the contents of the
instance's dictionary. If there is no :meth:`__getstate__` method, the
instance's :attr:`__dict__` is pickled.
Classes can further influence how their instances are pickled; if the class
defines the method :meth:`__getstate__`, it is called and the return state is
pickled as the contents for the instance, instead of the contents of the
instance's dictionary. If there is no :meth:`__getstate__` method, the
instance's :attr:`__dict__` is pickled.
.. method:: object.__setstate__()
Upon unpickling, if the class also defines the method :meth:`__setstate__`, it
is called with the unpickled state. [#]_ If there is no :meth:`__setstate__`
method, the pickled state must be a dictionary and its items are assigned to the
new instance's dictionary. If a class defines both :meth:`__getstate__` and
:meth:`__setstate__`, the state object needn't be a dictionary and these methods
can do what they want. [#]_
Upon unpickling, if the class also defines the method :meth:`__setstate__`,
it is called with the unpickled state. [#]_ If there is no
:meth:`__setstate__` method, the pickled state must be a dictionary and its
items are assigned to the new instance's dictionary. If a class defines both
:meth:`__getstate__` and :meth:`__setstate__`, the state object needn't be a
dictionary and these methods can do what they want. [#]_
.. warning::
.. warning::
For :term:`new-style class`\es, if :meth:`__getstate__` returns a false
value, the :meth:`__setstate__` method will not be called.
@ -464,75 +462,76 @@ can do what they want. [#]_
Pickling and unpickling extension types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. index::
single: __reduce__() (pickle protocol)
single: __reduce_ex__() (pickle protocol)
single: __safe_for_unpickling__ (pickle protocol)
.. method:: object.__reduce__()
When the :class:`Pickler` encounters an object of a type it knows nothing about
--- such as an extension type --- it looks in two places for a hint of how to
pickle it. One alternative is for the object to implement a :meth:`__reduce__`
method. If provided, at pickling time :meth:`__reduce__` will be called with no
arguments, and it must return either a string or a tuple.
When the :class:`Pickler` encounters an object of a type it knows nothing
about --- such as an extension type --- it looks in two places for a hint of
how to pickle it. One alternative is for the object to implement a
:meth:`__reduce__` method. If provided, at pickling time :meth:`__reduce__`
will be called with no arguments, and it must return either a string or a
tuple.
If a string is returned, it names a global variable whose contents are pickled
as normal. The string returned by :meth:`__reduce__` should be the object's
local name relative to its module; the pickle module searches the module
namespace to determine the object's module.
If a string is returned, it names a global variable whose contents are
pickled as normal. The string returned by :meth:`__reduce__` should be the
object's local name relative to its module; the pickle module searches the
module namespace to determine the object's module.
When a tuple is returned, it must be between two and five elements long.
Optional elements can either be omitted, or ``None`` can be provided as their
value. The contents of this tuple are pickled as normal and used to
reconstruct the object at unpickling time. The semantics of each element are:
When a tuple is returned, it must be between two and five elements long.
Optional elements can either be omitted, or ``None`` can be provided as their
value. The contents of this tuple are pickled as normal and used to
reconstruct the object at unpickling time. The semantics of each element
are:
* A callable object that will be called to create the initial version of the
object. The next element of the tuple will provide arguments for this callable,
and later elements provide additional state information that will subsequently
be used to fully reconstruct the pickled data.
* A callable object that will be called to create the initial version of the
object. The next element of the tuple will provide arguments for this
callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled data.
In the unpickling environment this object must be either a class, a callable
registered as a "safe constructor" (see below), or it must have an attribute
:attr:`__safe_for_unpickling__` with a true value. Otherwise, an
:exc:`UnpicklingError` will be raised in the unpickling environment. Note that
as usual, the callable itself is pickled by name.
In the unpickling environment this object must be either a class, a
callable registered as a "safe constructor" (see below), or it must have an
attribute :attr:`__safe_for_unpickling__` with a true value. Otherwise, an
:exc:`UnpicklingError` will be raised in the unpickling environment. Note
that as usual, the callable itself is pickled by name.
* A tuple of arguments for the callable object.
* A tuple of arguments for the callable object.
.. versionchanged:: 2.5
Formerly, this argument could also be ``None``.
* Optionally, the object's state, which will be passed to the object's
:meth:`__setstate__` method as described in section :ref:`pickle-inst`. If the
object has no :meth:`__setstate__` method, then, as above, the value must be a
dictionary and it will be added to the object's :attr:`__dict__`.
* Optionally, the object's state, which will be passed to the object's
:meth:`__setstate__` method as described in section :ref:`pickle-inst`. If
the object has no :meth:`__setstate__` method, then, as above, the value
must be a dictionary and it will be added to the object's :attr:`__dict__`.
* Optionally, an iterator (and not a sequence) yielding successive list items.
These list items will be pickled, and appended to the object using either
``obj.append(item)`` or ``obj.extend(list_of_items)``. This is primarily used
for list subclasses, but may be used by other classes as long as they have
:meth:`append` and :meth:`extend` methods with the appropriate signature.
(Whether :meth:`append` or :meth:`extend` is used depends on which pickle
protocol version is used as well as the number of items to append, so both must
be supported.)
* Optionally, an iterator (and not a sequence) yielding successive list
items. These list items will be pickled, and appended to the object using
either ``obj.append(item)`` or ``obj.extend(list_of_items)``. This is
primarily used for list subclasses, but may be used by other classes as
long as they have :meth:`append` and :meth:`extend` methods with the
appropriate signature. (Whether :meth:`append` or :meth:`extend` is used
depends on which pickle protocol version is used as well as the number of
items to append, so both must be supported.)
* Optionally, an iterator (not a sequence) yielding successive dictionary items,
which should be tuples of the form ``(key, value)``. These items will be
pickled and stored to the object using ``obj[key] = value``. This is primarily
used for dictionary subclasses, but may be used by other classes as long as they
implement :meth:`__setitem__`.
* Optionally, an iterator (not a sequence) yielding successive dictionary
items, which should be tuples of the form ``(key, value)``. These items
will be pickled and stored to the object using ``obj[key] = value``. This
is primarily used for dictionary subclasses, but may be used by other
classes as long as they implement :meth:`__setitem__`.
It is sometimes useful to know the protocol version when implementing
:meth:`__reduce__`. This can be done by implementing a method named
:meth:`__reduce_ex__` instead of :meth:`__reduce__`. :meth:`__reduce_ex__`, when
it exists, is called in preference over :meth:`__reduce__` (you may still
provide :meth:`__reduce__` for backwards compatibility). The
:meth:`__reduce_ex__` method will be called with a single integer argument, the
protocol version.
.. method:: object.__reduce_ex__(protocol)
The :class:`object` class implements both :meth:`__reduce__` and
:meth:`__reduce_ex__`; however, if a subclass overrides :meth:`__reduce__` but
not :meth:`__reduce_ex__`, the :meth:`__reduce_ex__` implementation detects this
and calls :meth:`__reduce__`.
It is sometimes useful to know the protocol version when implementing
:meth:`__reduce__`. This can be done by implementing a method named
:meth:`__reduce_ex__` instead of :meth:`__reduce__`. :meth:`__reduce_ex__`,
when it exists, is called in preference over :meth:`__reduce__` (you may
still provide :meth:`__reduce__` for backwards compatibility). The
:meth:`__reduce_ex__` method will be called with a single integer argument,
the protocol version.
The :class:`object` class implements both :meth:`__reduce__` and
:meth:`__reduce_ex__`; however, if a subclass overrides :meth:`__reduce__`
but not :meth:`__reduce_ex__`, the :meth:`__reduce_ex__` implementation
detects this and calls :meth:`__reduce__`.
An alternative to implementing a :meth:`__reduce__` method on the object to be
pickled, is to register the callable with the :mod:`copy_reg` module. This