Merge heads

This commit is contained in:
Serhiy Storchaka 2014-11-10 10:21:03 +02:00
commit 5f33677219
21 changed files with 536 additions and 255 deletions

View File

@ -1680,7 +1680,7 @@ as in the following complete example::
def main():
logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', set_value=set([1, 2, 3]), snowman='\u2603'))
logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603'))
if __name__ == '__main__':
main()

View File

@ -21,8 +21,8 @@ The :mod:`functools` module defines the following functions:
.. function:: cmp_to_key(func)
Transform an old-style comparison function to a key function. Used with
tools that accept key functions (such as :func:`sorted`, :func:`min`,
Transform an old-style comparison function to a :term:`key function`. Used
with tools that accept key functions (such as :func:`sorted`, :func:`min`,
:func:`max`, :func:`heapq.nlargest`, :func:`heapq.nsmallest`,
:func:`itertools.groupby`). This function is primarily used as a transition
tool for programs being converted from Python 2 which supported the use of
@ -31,13 +31,14 @@ The :mod:`functools` module defines the following functions:
A comparison function is any callable that accept two arguments, compares them,
and returns a negative number for less-than, zero for equality, or a positive
number for greater-than. A key function is a callable that accepts one
argument and returns another value indicating the position in the desired
collation sequence.
argument and returns another value to be used as the sort key.
Example::
sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order
For sorting examples and a brief sorting tutorial, see :ref:`sortinghowto`.
.. versionadded:: 3.2

View File

@ -567,6 +567,7 @@ the last name-value pair for a given name::
The *object_pairs_hook* parameter can be used to alter this behavior.
.. highlight:: bash
.. module:: json.tool
.. _json-commandline:
@ -586,6 +587,10 @@ specified, :attr:`sys.stdin` and :attr:`sys.stdout` will be used respectively::
$ echo '{1.2:3.4}' | python -m json.tool
Expecting property name enclosed in double quotes: line 1 column 2 (char 1)
.. versionchanged:: 3.5
The output is now in the same order as the input. Use the
:option:`--sort-keys` option to sort the output of dictionaries
alphabetically by key.
Command line options
^^^^^^^^^^^^^^^^^^^^
@ -613,6 +618,12 @@ Command line options
Write the output of the *infile* to the given *outfile*. Otherwise, write it
to :attr:`sys.stdout`.
.. cmdoption:: --sort-keys
Sort the output of dictionaries alphabetically by key.
.. versionadded:: 3.5
.. cmdoption:: -h, --help
Show the help message.

View File

@ -859,7 +859,7 @@ For the simplest code, use the :func:`dump` and :func:`load` functions. ::
data = {
'a': [1, 2.0, 3, 4+6j],
'b': ("character string", b"byte string"),
'c': set([None, True, False])
'c': {None, True, False}
}
with open('data.pickle', 'wb') as f:

View File

@ -18,7 +18,7 @@ abbreviated displays of large or deeply nested containers::
>>> import reprlib
>>> reprlib.repr(set('supercalifragilisticexpialidocious'))
"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
"{'a', 'c', 'd', 'e', 'f', 'g', ...}"
The :mod:`pprint` module offers more sophisticated control over printing both
built-in and user defined objects in a way that is readable by the interpreter.

View File

@ -211,6 +211,14 @@ ipaddress
network objects from existing addresses. (Contributed by Peter Moody
and Antoine Pitrou in :issue:`16531`.)
json
----
* The output of :mod:`json.tool` command line interface is now in the same
order as the input. Use the :option:`--sort-keys` option to sort the output
of dictionaries alphabetically by key. (Contributed by Berker Peksag in
:issue:`21650`.)
os
--

View File

@ -167,9 +167,9 @@ class LocaleTime(object):
time.tzset()
except AttributeError:
pass
no_saving = frozenset(["utc", "gmt", time.tzname[0].lower()])
no_saving = frozenset({"utc", "gmt", time.tzname[0].lower()})
if time.daylight:
has_saving = frozenset([time.tzname[1].lower()])
has_saving = frozenset({time.tzname[1].lower()})
else:
has_saving = frozenset()
self.timezone = (no_saving, has_saving)

View File

@ -57,8 +57,8 @@ from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, EINVAL, \
ENOTCONN, ESHUTDOWN, EISCONN, EBADF, ECONNABORTED, EPIPE, EAGAIN, \
errorcode
_DISCONNECTED = frozenset((ECONNRESET, ENOTCONN, ESHUTDOWN, ECONNABORTED, EPIPE,
EBADF))
_DISCONNECTED = frozenset({ECONNRESET, ENOTCONN, ESHUTDOWN, ECONNABORTED, EPIPE,
EBADF})
try:
socket_map
@ -220,7 +220,7 @@ class dispatcher:
connecting = False
closing = False
addr = None
ignore_log_types = frozenset(['warning'])
ignore_log_types = frozenset({'warning'})
def __init__(self, sock=None, map=None):
if map is None:

View File

@ -1088,7 +1088,7 @@ class _BaseV4:
_DECIMAL_DIGITS = frozenset('0123456789')
# the valid octets for host and netmasks. only useful for IPv4.
_valid_mask_octets = frozenset((255, 254, 252, 248, 240, 224, 192, 128, 0))
_valid_mask_octets = frozenset({255, 254, 252, 248, 240, 224, 192, 128, 0})
_max_prefixlen = IPV4LENGTH
# There are only a handful of valid v4 netmasks, so we cache them all

View File

@ -11,6 +11,7 @@ Usage::
"""
import argparse
import collections
import json
import sys
@ -24,17 +25,24 @@ def main():
help='a JSON file to be validated or pretty-printed')
parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),
help='write the output of infile to outfile')
parser.add_argument('--sort-keys', action='store_true', default=False,
help='sort the output of dictionaries alphabetically by key')
options = parser.parse_args()
infile = options.infile or sys.stdin
outfile = options.outfile or sys.stdout
sort_keys = options.sort_keys
with infile:
try:
obj = json.load(infile)
if sort_keys:
obj = json.load(infile)
else:
obj = json.load(infile,
object_pairs_hook=collections.OrderedDict)
except ValueError as e:
raise SystemExit(e)
with outfile:
json.dump(obj, outfile, sort_keys=True, indent=4)
json.dump(obj, outfile, sort_keys=sort_keys, indent=4)
outfile.write('\n')

View File

@ -1230,8 +1230,8 @@ class MH(Mailbox):
class Babyl(_singlefileMailbox):
"""An Rmail-style Babyl mailbox."""
_special_labels = frozenset(('unseen', 'deleted', 'filed', 'answered',
'forwarded', 'edited', 'resent'))
_special_labels = frozenset({'unseen', 'deleted', 'filed', 'answered',
'forwarded', 'edited', 'resent'})
def __init__(self, path, factory=None, create=True):
"""Initialize a Babyl mailbox."""

View File

@ -87,12 +87,16 @@ class Repr:
return self._repr_iterable(x, level, header, '])', self.maxarray)
def repr_set(self, x, level):
if not x:
return 'set()'
x = _possibly_sorted(x)
return self._repr_iterable(x, level, 'set([', '])', self.maxset)
return self._repr_iterable(x, level, '{', '}', self.maxset)
def repr_frozenset(self, x, level):
if not x:
return 'frozenset()'
x = _possibly_sorted(x)
return self._repr_iterable(x, level, 'frozenset([', '])',
return self._repr_iterable(x, level, 'frozenset({', '})',
self.maxfrozenset)
def repr_deque(self, x, level):

View File

@ -21,10 +21,10 @@ if _sre.CODESIZE == 2:
else:
MAXCODE = 0xFFFFFFFF
_LITERAL_CODES = set([LITERAL, NOT_LITERAL])
_REPEATING_CODES = set([REPEAT, MIN_REPEAT, MAX_REPEAT])
_SUCCESS_CODES = set([SUCCESS, FAILURE])
_ASSERT_CODES = set([ASSERT, ASSERT_NOT])
_LITERAL_CODES = {LITERAL, NOT_LITERAL}
_REPEATING_CODES = {REPEAT, MIN_REPEAT, MAX_REPEAT}
_SUCCESS_CODES = {SUCCESS, FAILURE}
_ASSERT_CODES = {ASSERT, ASSERT_NOT}
def _compile(code, pattern, flags):
# internal: compile a (sub)pattern

View File

@ -24,8 +24,8 @@ HEXDIGITS = frozenset("0123456789abcdefABCDEF")
WHITESPACE = frozenset(" \t\n\r\v\f")
_REPEATCODES = frozenset((MIN_REPEAT, MAX_REPEAT))
_UNITCODES = frozenset((ANY, RANGE, IN, LITERAL, NOT_LITERAL, CATEGORY))
_REPEATCODES = frozenset({MIN_REPEAT, MAX_REPEAT})
_UNITCODES = frozenset({ANY, RANGE, IN, LITERAL, NOT_LITERAL, CATEGORY})
ESCAPES = {
r"\a": (LITERAL, ord("\a")),

View File

@ -150,7 +150,7 @@ def _sum(data, start=0):
# We fail as soon as we reach a value that is not an int or the type of
# the first value which is not an int. E.g. _sum([int, int, float, int])
# is okay, but sum([int, int, float, Fraction]) is not.
allowed_types = set([int, type(start)])
allowed_types = {int, type(start)}
n, d = _exact_ratio(start)
partials = {d: n} # map {denominator: sum of numerators}
# Micro-optimizations.
@ -168,7 +168,7 @@ def _sum(data, start=0):
assert allowed_types.pop() is int
T = int
else:
T = (allowed_types - set([int])).pop()
T = (allowed_types - {int}).pop()
if None in partials:
assert issubclass(T, (float, Decimal))
assert not math.isfinite(partials[None])

View File

@ -6,6 +6,7 @@ import subprocess
from test import support
from test.script_helper import assert_python_ok
class TestTool(unittest.TestCase):
data = """
@ -15,7 +16,7 @@ class TestTool(unittest.TestCase):
:"yes"} ]
"""
expect = textwrap.dedent("""\
expect_without_sort_keys = textwrap.dedent("""\
[
[
"blorpie"
@ -37,6 +38,28 @@ class TestTool(unittest.TestCase):
]
""")
expect = textwrap.dedent("""\
[
[
"blorpie"
],
[
"whoops"
],
[],
"d-shtaeou",
"d-nthiouh",
"i-vhbjkhnth",
{
"nifty": 87
},
{
"morefield": false,
"field": "yes"
}
]
""")
def test_stdin_stdout(self):
with subprocess.Popen(
(sys.executable, '-m', 'json.tool'),
@ -75,3 +98,11 @@ class TestTool(unittest.TestCase):
self.assertEqual(rc, 0)
self.assertTrue(out.startswith(b'usage: '))
self.assertEqual(err, b'')
def test_sort_keys_flag(self):
infile = self._create_infile()
rc, out, err = assert_python_ok('-m', 'json.tool', '--sort-keys', infile)
self.assertEqual(rc, 0)
self.assertEqual(out.splitlines(),
self.expect_without_sort_keys.encode().splitlines())
self.assertEqual(err, b'')

View File

@ -10,7 +10,7 @@ import importlib
import importlib.util
import unittest
from test.support import run_unittest, create_empty_file, verbose
from test.support import create_empty_file, verbose
from reprlib import repr as r # Don't shadow builtin repr
from reprlib import Repr
from reprlib import recursive_repr
@ -70,18 +70,18 @@ class ReprTests(unittest.TestCase):
eq(r([1, 2, 3, 4, 5, 6, 7]), "[1, 2, 3, 4, 5, 6, ...]")
# Sets give up after 6 as well
eq(r(set([])), "set([])")
eq(r(set([1])), "set([1])")
eq(r(set([1, 2, 3])), "set([1, 2, 3])")
eq(r(set([1, 2, 3, 4, 5, 6])), "set([1, 2, 3, 4, 5, 6])")
eq(r(set([1, 2, 3, 4, 5, 6, 7])), "set([1, 2, 3, 4, 5, 6, ...])")
eq(r(set([])), "set()")
eq(r(set([1])), "{1}")
eq(r(set([1, 2, 3])), "{1, 2, 3}")
eq(r(set([1, 2, 3, 4, 5, 6])), "{1, 2, 3, 4, 5, 6}")
eq(r(set([1, 2, 3, 4, 5, 6, 7])), "{1, 2, 3, 4, 5, 6, ...}")
# Frozensets give up after 6 as well
eq(r(frozenset([])), "frozenset([])")
eq(r(frozenset([1])), "frozenset([1])")
eq(r(frozenset([1, 2, 3])), "frozenset([1, 2, 3])")
eq(r(frozenset([1, 2, 3, 4, 5, 6])), "frozenset([1, 2, 3, 4, 5, 6])")
eq(r(frozenset([1, 2, 3, 4, 5, 6, 7])), "frozenset([1, 2, 3, 4, 5, 6, ...])")
eq(r(frozenset([])), "frozenset()")
eq(r(frozenset([1])), "frozenset({1})")
eq(r(frozenset([1, 2, 3])), "frozenset({1, 2, 3})")
eq(r(frozenset([1, 2, 3, 4, 5, 6])), "frozenset({1, 2, 3, 4, 5, 6})")
eq(r(frozenset([1, 2, 3, 4, 5, 6, 7])), "frozenset({1, 2, 3, 4, 5, 6, ...})")
# collections.deque after 6
eq(r(deque([1, 2, 3, 4, 5, 6, 7])), "deque([1, 2, 3, 4, 5, 6, ...])")
@ -103,6 +103,20 @@ class ReprTests(unittest.TestCase):
eq(r(array('i', [1, 2, 3, 4, 5, 6])),
"array('i', [1, 2, 3, 4, 5, ...])")
def test_set_literal(self):
eq = self.assertEqual
eq(r({1}), "{1}")
eq(r({1, 2, 3}), "{1, 2, 3}")
eq(r({1, 2, 3, 4, 5, 6}), "{1, 2, 3, 4, 5, 6}")
eq(r({1, 2, 3, 4, 5, 6, 7}), "{1, 2, 3, 4, 5, 6, ...}")
def test_frozenset(self):
eq = self.assertEqual
eq(r(frozenset({1})), "frozenset({1})")
eq(r(frozenset({1, 2, 3})), "frozenset({1, 2, 3})")
eq(r(frozenset({1, 2, 3, 4, 5, 6})), "frozenset({1, 2, 3, 4, 5, 6})")
eq(r(frozenset({1, 2, 3, 4, 5, 6, 7})), "frozenset({1, 2, 3, 4, 5, 6, ...})")
def test_numbers(self):
eq = self.assertEqual
eq(r(123), repr(123))
@ -373,11 +387,5 @@ class TestRecursiveRepr(unittest.TestCase):
m.append(m)
self.assertEqual(repr(m), '<a, b, c, d, e, +++, x, +++>')
def test_main():
run_unittest(ReprTests)
run_unittest(LongReprTest)
run_unittest(TestRecursiveRepr)
if __name__ == "__main__":
test_main()
unittest.main()

View File

@ -183,9 +183,14 @@ Core and Builtins
Library
-------
- Issue #21650: Add an `--sort-keys` option to json.tool CLI.
- Issues #814253, #9179: Group references and conditional group references now
work in lookbehind assertions in regular expressions.
- Issue #22824: Updated reprlib output format for sets to use set literals.
Patch contributed by Berker Peksag.
- Issue #22406: Fixed the uu_codec codec incorrectly ported to 3.x.
Based on patch by Martin Panter.

View File

@ -0,0 +1,188 @@
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(fcntl_fcntl__doc__,
"fcntl($module, fd, code, arg=None, /)\n"
"--\n"
"\n"
"Perform the operation `code` on file descriptor fd.\n"
"\n"
"The values used for `code` are operating system dependent, and are available\n"
"as constants in the fcntl module, using the same names as used in\n"
"the relevant C header files. The argument arg is optional, and\n"
"defaults to 0; it may be an int or a string. If arg is given as a string,\n"
"the return value of fcntl is a string of that length, containing the\n"
"resulting value put in the arg buffer by the operating system. The length\n"
"of the arg string is not allowed to exceed 1024 bytes. If the arg given\n"
"is an integer or if none is specified, the result value is an integer\n"
"corresponding to the return value of the fcntl call in the C code.");
#define FCNTL_FCNTL_METHODDEF \
{"fcntl", (PyCFunction)fcntl_fcntl, METH_VARARGS, fcntl_fcntl__doc__},
static PyObject *
fcntl_fcntl_impl(PyModuleDef *module, int fd, int code, PyObject *arg);
static PyObject *
fcntl_fcntl(PyModuleDef *module, PyObject *args)
{
PyObject *return_value = NULL;
int fd;
int code;
PyObject *arg = NULL;
if (!PyArg_ParseTuple(args,
"O&i|O:fcntl",
conv_descriptor, &fd, &code, &arg))
goto exit;
return_value = fcntl_fcntl_impl(module, fd, code, arg);
exit:
return return_value;
}
PyDoc_STRVAR(fcntl_ioctl__doc__,
"ioctl($module, fd, op, arg=None, mutate_flag=True, /)\n"
"--\n"
"\n"
"Perform the operation op on file descriptor fd.\n"
"\n"
"The values used for op are operating system dependent, and are available as\n"
"constants in the fcntl or termios library modules, using the same names as\n"
"used in the relevant C header files.\n"
"\n"
"The argument `arg` is optional, and defaults to 0; it may be an int or a\n"
"buffer containing character data (most likely a string or an array).\n"
"\n"
"If the argument is a mutable buffer (such as an array) and if the\n"
"mutate_flag argument (which is only allowed in this case) is true then the\n"
"buffer is (in effect) passed to the operating system and changes made by\n"
"the OS will be reflected in the contents of the buffer after the call has\n"
"returned. The return value is the integer returned by the ioctl system\n"
"call.\n"
"\n"
"If the argument is a mutable buffer and the mutable_flag argument is not\n"
"passed or is false, the behavior is as if a string had been passed. This\n"
"behavior will change in future releases of Python.\n"
"\n"
"If the argument is an immutable buffer (most likely a string) then a copy\n"
"of the buffer is passed to the operating system and the return value is a\n"
"string of the same length containing whatever the operating system put in\n"
"the buffer. The length of the arg buffer in this case is not allowed to\n"
"exceed 1024 bytes.\n"
"\n"
"If the arg given is an integer or if none is specified, the result value is\n"
"an integer corresponding to the return value of the ioctl call in the C\n"
"code.");
#define FCNTL_IOCTL_METHODDEF \
{"ioctl", (PyCFunction)fcntl_ioctl, METH_VARARGS, fcntl_ioctl__doc__},
static PyObject *
fcntl_ioctl_impl(PyModuleDef *module, int fd, unsigned int code, PyObject *ob_arg, int mutate_arg);
static PyObject *
fcntl_ioctl(PyModuleDef *module, PyObject *args)
{
PyObject *return_value = NULL;
int fd;
unsigned int code;
PyObject *ob_arg = NULL;
int mutate_arg = 1;
if (!PyArg_ParseTuple(args,
"O&I|Op:ioctl",
conv_descriptor, &fd, &code, &ob_arg, &mutate_arg))
goto exit;
return_value = fcntl_ioctl_impl(module, fd, code, ob_arg, mutate_arg);
exit:
return return_value;
}
PyDoc_STRVAR(fcntl_flock__doc__,
"flock($module, fd, code, /)\n"
"--\n"
"\n"
"Perform the lock operation op on file descriptor fd.\n"
"\n"
"See the Unix manual page for flock(2) for details (On some systems, this\n"
"function is emulated using fcntl()).");
#define FCNTL_FLOCK_METHODDEF \
{"flock", (PyCFunction)fcntl_flock, METH_VARARGS, fcntl_flock__doc__},
static PyObject *
fcntl_flock_impl(PyModuleDef *module, int fd, int code);
static PyObject *
fcntl_flock(PyModuleDef *module, PyObject *args)
{
PyObject *return_value = NULL;
int fd;
int code;
if (!PyArg_ParseTuple(args,
"O&i:flock",
conv_descriptor, &fd, &code))
goto exit;
return_value = fcntl_flock_impl(module, fd, code);
exit:
return return_value;
}
PyDoc_STRVAR(fcntl_lockf__doc__,
"lockf($module, fd, code, lenobj=None, startobj=None, whence=0, /)\n"
"--\n"
"\n"
"A wrapper around the fcntl() locking calls.\n"
"\n"
"fd is the file descriptor of the file to lock or unlock, and operation is one\n"
"of the following values:\n"
"\n"
" LOCK_UN - unlock\n"
" LOCK_SH - acquire a shared lock\n"
" LOCK_EX - acquire an exclusive lock\n"
"\n"
"When operation is LOCK_SH or LOCK_EX, it can also be bitwise ORed with\n"
"LOCK_NB to avoid blocking on lock acquisition. If LOCK_NB is used and the\n"
"lock cannot be acquired, an IOError will be raised and the exception will\n"
"have an errno attribute set to EACCES or EAGAIN (depending on the operating\n"
"system -- for portability, check for either value).\n"
"\n"
"length is the number of bytes to lock, with the default meaning to lock to\n"
"EOF. start is the byte offset, relative to whence, to that the lock\n"
"starts. whence is as with fileobj.seek(), specifically:\n"
"\n"
" 0 - relative to the start of the file (SEEK_SET)\n"
" 1 - relative to the current buffer position (SEEK_CUR)\n"
" 2 - relative to the end of the file (SEEK_END)");
#define FCNTL_LOCKF_METHODDEF \
{"lockf", (PyCFunction)fcntl_lockf, METH_VARARGS, fcntl_lockf__doc__},
static PyObject *
fcntl_lockf_impl(PyModuleDef *module, int fd, int code, PyObject *lenobj, PyObject *startobj, int whence);
static PyObject *
fcntl_lockf(PyModuleDef *module, PyObject *args)
{
PyObject *return_value = NULL;
int fd;
int code;
PyObject *lenobj = NULL;
PyObject *startobj = NULL;
int whence = 0;
if (!PyArg_ParseTuple(args,
"O&i|OOi:lockf",
conv_descriptor, &fd, &code, &lenobj, &startobj, &whence))
goto exit;
return_value = fcntl_lockf_impl(module, fd, code, lenobj, startobj, whence);
exit:
return return_value;
}
/*[clinic end generated code: output=84bdde73a92f7c61 input=a9049054013a1b77]*/

View File

@ -15,6 +15,12 @@
#include <stropts.h>
#endif
/*[clinic input]
output preset file
module fcntl
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=c7356fdb126a904a]*/
static int
conv_descriptor(PyObject *object, int *target)
{
@ -26,48 +32,72 @@ conv_descriptor(PyObject *object, int *target)
return 1;
}
/* Must come after conv_descriptor definition. */
#include "clinic/fcntlmodule.c.h"
/* fcntl(fd, op, [arg]) */
/*[clinic input]
fcntl.fcntl
fd: object(type='int', converter='conv_descriptor')
code: int
arg: object = NULL
/
Perform the operation `code` on file descriptor fd.
The values used for `code` are operating system dependent, and are available
as constants in the fcntl module, using the same names as used in
the relevant C header files. The argument arg is optional, and
defaults to 0; it may be an int or a string. If arg is given as a string,
the return value of fcntl is a string of that length, containing the
resulting value put in the arg buffer by the operating system. The length
of the arg string is not allowed to exceed 1024 bytes. If the arg given
is an integer or if none is specified, the result value is an integer
corresponding to the return value of the fcntl call in the C code.
[clinic start generated code]*/
static PyObject *
fcntl_fcntl(PyObject *self, PyObject *args)
fcntl_fcntl_impl(PyModuleDef *module, int fd, int code, PyObject *arg)
/*[clinic end generated code: output=afc5bfa74a03ef0d input=4850c13a41e86930]*/
{
int fd;
int code;
long arg;
int int_arg = 0;
int ret;
char *str;
Py_ssize_t len;
char buf[1024];
if (PyArg_ParseTuple(args, "O&is#:fcntl",
conv_descriptor, &fd, &code, &str, &len)) {
if ((size_t)len > sizeof buf) {
PyErr_SetString(PyExc_ValueError,
"fcntl string arg too long");
return NULL;
if (arg != NULL) {
int parse_result;
if (PyArg_Parse(arg, "s#", &str, &len)) {
if ((size_t)len > sizeof buf) {
PyErr_SetString(PyExc_ValueError,
"fcntl string arg too long");
return NULL;
}
memcpy(buf, str, len);
Py_BEGIN_ALLOW_THREADS
ret = fcntl(fd, code, buf);
Py_END_ALLOW_THREADS
if (ret < 0) {
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
return PyBytes_FromStringAndSize(buf, len);
}
memcpy(buf, str, len);
Py_BEGIN_ALLOW_THREADS
ret = fcntl(fd, code, buf);
Py_END_ALLOW_THREADS
if (ret < 0) {
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
PyErr_Clear();
parse_result = PyArg_Parse(arg,
"l;fcntl requires a file or file descriptor,"
" an integer and optionally a third integer or a string",
&int_arg);
if (!parse_result) {
return NULL;
}
return PyBytes_FromStringAndSize(buf, len);
}
PyErr_Clear();
arg = 0;
if (!PyArg_ParseTuple(args,
"O&i|l;fcntl requires a file or file descriptor,"
" an integer and optionally a third integer or a string",
conv_descriptor, &fd, &code, &arg)) {
return NULL;
}
Py_BEGIN_ALLOW_THREADS
ret = fcntl(fd, code, arg);
ret = fcntl(fd, code, int_arg);
Py_END_ALLOW_THREADS
if (ret < 0) {
PyErr_SetFromErrno(PyExc_IOError);
@ -76,29 +106,53 @@ fcntl_fcntl(PyObject *self, PyObject *args)
return PyLong_FromLong((long)ret);
}
PyDoc_STRVAR(fcntl_doc,
"fcntl(fd, op, [arg])\n\
\n\
Perform the operation op on file descriptor fd. The values used\n\
for op are operating system dependent, and are available\n\
as constants in the fcntl module, using the same names as used in\n\
the relevant C header files. The argument arg is optional, and\n\
defaults to 0; it may be an int or a string. If arg is given as a string,\n\
the return value of fcntl is a string of that length, containing the\n\
resulting value put in the arg buffer by the operating system. The length\n\
of the arg string is not allowed to exceed 1024 bytes. If the arg given\n\
is an integer or if none is specified, the result value is an integer\n\
corresponding to the return value of the fcntl call in the C code.");
/*[clinic input]
fcntl.ioctl
/* ioctl(fd, op, [arg]) */
fd: object(type='int', converter='conv_descriptor')
op as code: unsigned_int(bitwise=True)
arg as ob_arg: object = NULL
mutate_flag as mutate_arg: bool = True
/
Perform the operation op on file descriptor fd.
The values used for op are operating system dependent, and are available as
constants in the fcntl or termios library modules, using the same names as
used in the relevant C header files.
The argument `arg` is optional, and defaults to 0; it may be an int or a
buffer containing character data (most likely a string or an array).
If the argument is a mutable buffer (such as an array) and if the
mutate_flag argument (which is only allowed in this case) is true then the
buffer is (in effect) passed to the operating system and changes made by
the OS will be reflected in the contents of the buffer after the call has
returned. The return value is the integer returned by the ioctl system
call.
If the argument is a mutable buffer and the mutable_flag argument is not
passed or is false, the behavior is as if a string had been passed. This
behavior will change in future releases of Python.
If the argument is an immutable buffer (most likely a string) then a copy
of the buffer is passed to the operating system and the return value is a
string of the same length containing whatever the operating system put in
the buffer. The length of the arg buffer in this case is not allowed to
exceed 1024 bytes.
If the arg given is an integer or if none is specified, the result value is
an integer corresponding to the return value of the ioctl call in the C
code.
[clinic start generated code]*/
static PyObject *
fcntl_ioctl(PyObject *self, PyObject *args)
fcntl_ioctl_impl(PyModuleDef *module, int fd, unsigned int code, PyObject *ob_arg, int mutate_arg)
/*[clinic end generated code: output=ad47738c118622bf input=a55a6ee8e494c449]*/
{
#define IOCTL_BUFSZ 1024
int fd;
/* In PyArg_ParseTuple below, we use the unsigned non-checked 'I'
/* We use the unsigned non-checked 'I'
format for the 'code' parameter because Python turns 0x8000000
into either a large positive number (PyLong or PyInt on 64-bit
platforms) or a negative number on others (32-bit PyInt)
@ -111,101 +165,98 @@ fcntl_ioctl(PyObject *self, PyObject *args)
in their unsigned long ioctl codes this will break and need
special casing based on the platform being built on.
*/
unsigned int code;
int arg;
int arg = 0;
int ret;
Py_buffer pstr;
char *str;
Py_ssize_t len;
int mutate_arg = 1;
char buf[IOCTL_BUFSZ+1]; /* argument plus NUL byte */
if (PyArg_ParseTuple(args, "O&Iw*|i:ioctl",
conv_descriptor, &fd, &code,
&pstr, &mutate_arg)) {
char *arg;
str = pstr.buf;
len = pstr.len;
if (ob_arg != NULL) {
if (PyArg_Parse(ob_arg, "w*:ioctl", &pstr)) {
char *arg;
str = pstr.buf;
len = pstr.len;
if (mutate_arg) {
if (len <= IOCTL_BUFSZ) {
memcpy(buf, str, len);
buf[len] = '\0';
arg = buf;
if (mutate_arg) {
if (len <= IOCTL_BUFSZ) {
memcpy(buf, str, len);
buf[len] = '\0';
arg = buf;
}
else {
arg = str;
}
}
else {
arg = str;
if (len > IOCTL_BUFSZ) {
PyBuffer_Release(&pstr);
PyErr_SetString(PyExc_ValueError,
"ioctl string arg too long");
return NULL;
}
else {
memcpy(buf, str, len);
buf[len] = '\0';
arg = buf;
}
}
if (buf == arg) {
Py_BEGIN_ALLOW_THREADS /* think array.resize() */
ret = ioctl(fd, code, arg);
Py_END_ALLOW_THREADS
}
else {
ret = ioctl(fd, code, arg);
}
if (mutate_arg && (len <= IOCTL_BUFSZ)) {
memcpy(str, buf, len);
}
PyBuffer_Release(&pstr); /* No further access to str below this point */
if (ret < 0) {
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
if (mutate_arg) {
return PyLong_FromLong(ret);
}
else {
return PyBytes_FromStringAndSize(buf, len);
}
}
else {
PyErr_Clear();
if (PyArg_Parse(ob_arg, "s*:ioctl", &pstr)) {
str = pstr.buf;
len = pstr.len;
if (len > IOCTL_BUFSZ) {
PyBuffer_Release(&pstr);
PyErr_SetString(PyExc_ValueError,
"ioctl string arg too long");
"ioctl string arg too long");
return NULL;
}
else {
memcpy(buf, str, len);
buf[len] = '\0';
arg = buf;
}
}
if (buf == arg) {
Py_BEGIN_ALLOW_THREADS /* think array.resize() */
ret = ioctl(fd, code, arg);
memcpy(buf, str, len);
buf[len] = '\0';
Py_BEGIN_ALLOW_THREADS
ret = ioctl(fd, code, buf);
Py_END_ALLOW_THREADS
}
else {
ret = ioctl(fd, code, arg);
}
if (mutate_arg && (len <= IOCTL_BUFSZ)) {
memcpy(str, buf, len);
}
PyBuffer_Release(&pstr); /* No further access to str below this point */
if (ret < 0) {
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
if (mutate_arg) {
return PyLong_FromLong(ret);
}
else {
if (ret < 0) {
PyBuffer_Release(&pstr);
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
PyBuffer_Release(&pstr);
return PyBytes_FromStringAndSize(buf, len);
}
}
PyErr_Clear();
if (PyArg_ParseTuple(args, "O&Is*:ioctl",
conv_descriptor, &fd, &code, &pstr)) {
str = pstr.buf;
len = pstr.len;
if (len > IOCTL_BUFSZ) {
PyBuffer_Release(&pstr);
PyErr_SetString(PyExc_ValueError,
"ioctl string arg too long");
return NULL;
PyErr_Clear();
if (!PyArg_Parse(ob_arg,
"i;ioctl requires a file or file descriptor,"
" an integer and optionally an integer or buffer argument",
&arg)) {
return NULL;
}
memcpy(buf, str, len);
buf[len] = '\0';
Py_BEGIN_ALLOW_THREADS
ret = ioctl(fd, code, buf);
Py_END_ALLOW_THREADS
if (ret < 0) {
PyBuffer_Release(&pstr);
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
PyBuffer_Release(&pstr);
return PyBytes_FromStringAndSize(buf, len);
}
PyErr_Clear();
arg = 0;
if (!PyArg_ParseTuple(args,
"O&I|i;ioctl requires a file or file descriptor,"
" an integer and optionally an integer or buffer argument",
conv_descriptor, &fd, &code, &arg)) {
return NULL;
// Fall-through to outside the 'if' statement.
}
Py_BEGIN_ALLOW_THREADS
ret = ioctl(fd, code, arg);
@ -218,52 +269,25 @@ fcntl_ioctl(PyObject *self, PyObject *args)
#undef IOCTL_BUFSZ
}
PyDoc_STRVAR(ioctl_doc,
"ioctl(fd, op[, arg[, mutate_flag]])\n\
\n\
Perform the operation op on file descriptor fd. The values used for op\n\
are operating system dependent, and are available as constants in the\n\
fcntl or termios library modules, using the same names as used in the\n\
relevant C header files.\n\
\n\
The argument arg is optional, and defaults to 0; it may be an int or a\n\
buffer containing character data (most likely a string or an array). \n\
\n\
If the argument is a mutable buffer (such as an array) and if the\n\
mutate_flag argument (which is only allowed in this case) is true then the\n\
buffer is (in effect) passed to the operating system and changes made by\n\
the OS will be reflected in the contents of the buffer after the call has\n\
returned. The return value is the integer returned by the ioctl system\n\
call.\n\
\n\
If the argument is a mutable buffer and the mutable_flag argument is not\n\
passed or is false, the behavior is as if a string had been passed. This\n\
behavior will change in future releases of Python.\n\
\n\
If the argument is an immutable buffer (most likely a string) then a copy\n\
of the buffer is passed to the operating system and the return value is a\n\
string of the same length containing whatever the operating system put in\n\
the buffer. The length of the arg buffer in this case is not allowed to\n\
exceed 1024 bytes.\n\
\n\
If the arg given is an integer or if none is specified, the result value is\n\
an integer corresponding to the return value of the ioctl call in the C\n\
code.");
/*[clinic input]
fcntl.flock
fd: object(type='int', converter='conv_descriptor')
code: int
/
/* flock(fd, operation) */
Perform the lock operation op on file descriptor fd.
See the Unix manual page for flock(2) for details (On some systems, this
function is emulated using fcntl()).
[clinic start generated code]*/
static PyObject *
fcntl_flock(PyObject *self, PyObject *args)
fcntl_flock_impl(PyModuleDef *module, int fd, int code)
/*[clinic end generated code: output=c9035133a7dbfc96 input=b762aa9448d05e43]*/
{
int fd;
int code;
int ret;
if (!PyArg_ParseTuple(args, "O&i:flock",
conv_descriptor, &fd, &code))
return NULL;
#ifdef HAVE_FLOCK
Py_BEGIN_ALLOW_THREADS
ret = flock(fd, code);
@ -299,29 +323,49 @@ fcntl_flock(PyObject *self, PyObject *args)
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
Py_RETURN_NONE;
}
PyDoc_STRVAR(flock_doc,
"flock(fd, operation)\n\
\n\
Perform the lock operation op on file descriptor fd. See the Unix \n\
manual page for flock(2) for details. (On some systems, this function is\n\
emulated using fcntl().)");
/*[clinic input]
fcntl.lockf
fd: object(type='int', converter='conv_descriptor')
code: int
lenobj: object = NULL
startobj: object = NULL
whence: int = 0
/
A wrapper around the fcntl() locking calls.
fd is the file descriptor of the file to lock or unlock, and operation is one
of the following values:
LOCK_UN - unlock
LOCK_SH - acquire a shared lock
LOCK_EX - acquire an exclusive lock
When operation is LOCK_SH or LOCK_EX, it can also be bitwise ORed with
LOCK_NB to avoid blocking on lock acquisition. If LOCK_NB is used and the
lock cannot be acquired, an IOError will be raised and the exception will
have an errno attribute set to EACCES or EAGAIN (depending on the operating
system -- for portability, check for either value).
length is the number of bytes to lock, with the default meaning to lock to
EOF. start is the byte offset, relative to whence, to that the lock
starts. whence is as with fileobj.seek(), specifically:
0 - relative to the start of the file (SEEK_SET)
1 - relative to the current buffer position (SEEK_CUR)
2 - relative to the end of the file (SEEK_END)
[clinic start generated code]*/
/* lockf(fd, operation) */
static PyObject *
fcntl_lockf(PyObject *self, PyObject *args)
fcntl_lockf_impl(PyModuleDef *module, int fd, int code, PyObject *lenobj, PyObject *startobj, int whence)
/*[clinic end generated code: output=5536df2892bf3ce9 input=44856fa06db36184]*/
{
int fd, code, ret, whence = 0;
PyObject *lenobj = NULL, *startobj = NULL;
if (!PyArg_ParseTuple(args, "O&i|OOi:lockf",
conv_descriptor, &fd, &code,
&lenobj, &startobj, &whence))
return NULL;
int ret;
#ifndef LOCK_SH
#define LOCK_SH 1 /* shared lock */
@ -374,43 +418,17 @@ fcntl_lockf(PyObject *self, PyObject *args)
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
Py_RETURN_NONE;
}
PyDoc_STRVAR(lockf_doc,
"lockf (fd, operation, length=0, start=0, whence=0)\n\
\n\
This is essentially a wrapper around the fcntl() locking calls. fd is the\n\
file descriptor of the file to lock or unlock, and operation is one of the\n\
following values:\n\
\n\
LOCK_UN - unlock\n\
LOCK_SH - acquire a shared lock\n\
LOCK_EX - acquire an exclusive lock\n\
\n\
When operation is LOCK_SH or LOCK_EX, it can also be bitwise ORed with\n\
LOCK_NB to avoid blocking on lock acquisition. If LOCK_NB is used and the\n\
lock cannot be acquired, an IOError will be raised and the exception will\n\
have an errno attribute set to EACCES or EAGAIN (depending on the operating\n\
system -- for portability, check for either value).\n\
\n\
length is the number of bytes to lock, with the default meaning to lock to\n\
EOF. start is the byte offset, relative to whence, to that the lock\n\
starts. whence is as with fileobj.seek(), specifically:\n\
\n\
0 - relative to the start of the file (SEEK_SET)\n\
1 - relative to the current buffer position (SEEK_CUR)\n\
2 - relative to the end of the file (SEEK_END)");
/* List of functions */
static PyMethodDef fcntl_methods[] = {
{"fcntl", fcntl_fcntl, METH_VARARGS, fcntl_doc},
{"ioctl", fcntl_ioctl, METH_VARARGS, ioctl_doc},
{"flock", fcntl_flock, METH_VARARGS, flock_doc},
{"lockf", fcntl_lockf, METH_VARARGS, lockf_doc},
{NULL, NULL} /* sentinel */
FCNTL_FCNTL_METHODDEF
FCNTL_IOCTL_METHODDEF
FCNTL_FLOCK_METHODDEF
FCNTL_LOCKF_METHODDEF
{NULL, NULL} /* sentinel */
};

View File

@ -33,8 +33,7 @@ __all__ = [
# See the EBNF at the top of the file to understand the logical connection
# between the various node types.
builtin_types = set(
['identifier', 'string', 'bytes', 'int', 'object', 'singleton'])
builtin_types = {'identifier', 'string', 'bytes', 'int', 'object', 'singleton'}
class AST:
def __repr__(self):