mirror of https://github.com/python/cpython
GH-100425: Improve accuracy of builtin sum() for float inputs (GH-100426)
This commit is contained in:
parent
1ecfd1ebf1
commit
5d84966cce
|
@ -1733,6 +1733,10 @@ are always available. They are listed here in alphabetical order.
|
|||
.. versionchanged:: 3.8
|
||||
The *start* parameter can be specified as a keyword argument.
|
||||
|
||||
.. versionchanged:: 3.12 Summation of floats switched to an algorithm
|
||||
that gives higher accuracy on most builds.
|
||||
|
||||
|
||||
.. class:: super()
|
||||
super(type, object_or_type=None)
|
||||
|
||||
|
|
|
@ -108,12 +108,7 @@ Number-theoretic and representation functions
|
|||
.. function:: fsum(iterable)
|
||||
|
||||
Return an accurate floating point sum of values in the iterable. Avoids
|
||||
loss of precision by tracking multiple intermediate partial sums:
|
||||
|
||||
>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
|
||||
0.9999999999999999
|
||||
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
|
||||
1.0
|
||||
loss of precision by tracking multiple intermediate partial sums.
|
||||
|
||||
The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
|
||||
typical case where the rounding mode is half-even. On some non-Windows
|
||||
|
|
|
@ -192,7 +192,7 @@ added onto a running total. That can make a difference in overall accuracy
|
|||
so that the errors do not accumulate to the point where they affect the
|
||||
final total:
|
||||
|
||||
>>> sum([0.1] * 10) == 1.0
|
||||
>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 1.0
|
||||
False
|
||||
>>> math.fsum([0.1] * 10) == 1.0
|
||||
True
|
||||
|
|
|
@ -9,6 +9,7 @@ import fractions
|
|||
import gc
|
||||
import io
|
||||
import locale
|
||||
import math
|
||||
import os
|
||||
import pickle
|
||||
import platform
|
||||
|
@ -31,6 +32,7 @@ from test.support import (swap_attr, maybe_get_event_loop_policy)
|
|||
from test.support.os_helper import (EnvironmentVarGuard, TESTFN, unlink)
|
||||
from test.support.script_helper import assert_python_ok
|
||||
from test.support.warnings_helper import check_warnings
|
||||
from test.support import requires_IEEE_754
|
||||
from unittest.mock import MagicMock, patch
|
||||
try:
|
||||
import pty, signal
|
||||
|
@ -38,6 +40,12 @@ except ImportError:
|
|||
pty = signal = None
|
||||
|
||||
|
||||
# Detect evidence of double-rounding: sum() does not always
|
||||
# get improved accuracy on machines that suffer from double rounding.
|
||||
x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
|
||||
HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)
|
||||
|
||||
|
||||
class Squares:
|
||||
|
||||
def __init__(self, max):
|
||||
|
@ -1617,6 +1625,8 @@ class BuiltinTest(unittest.TestCase):
|
|||
self.assertEqual(repr(sum([-0.0])), '0.0')
|
||||
self.assertEqual(repr(sum([-0.0], -0.0)), '-0.0')
|
||||
self.assertEqual(repr(sum([], -0.0)), '-0.0')
|
||||
self.assertTrue(math.isinf(sum([float("inf"), float("inf")])))
|
||||
self.assertTrue(math.isinf(sum([1e308, 1e308])))
|
||||
|
||||
self.assertRaises(TypeError, sum)
|
||||
self.assertRaises(TypeError, sum, 42)
|
||||
|
@ -1641,6 +1651,14 @@ class BuiltinTest(unittest.TestCase):
|
|||
sum(([x] for x in range(10)), empty)
|
||||
self.assertEqual(empty, [])
|
||||
|
||||
@requires_IEEE_754
|
||||
@unittest.skipIf(HAVE_DOUBLE_ROUNDING,
|
||||
"sum accuracy not guaranteed on machines with double rounding")
|
||||
@support.cpython_only # Other implementations may choose a different algorithm
|
||||
def test_sum_accuracy(self):
|
||||
self.assertEqual(sum([0.1] * 10), 1.0)
|
||||
self.assertEqual(sum([1.0, 10E100, 1.0, -10E100]), 2.0)
|
||||
|
||||
def test_type(self):
|
||||
self.assertEqual(type(''), type('123'))
|
||||
self.assertNotEqual(type(''), type(()))
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Improve the accuracy of ``sum()`` with compensated summation.
|
|
@ -2532,6 +2532,7 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
|
||||
if (PyFloat_CheckExact(result)) {
|
||||
double f_result = PyFloat_AS_DOUBLE(result);
|
||||
double c = 0.0;
|
||||
Py_SETREF(result, NULL);
|
||||
while(result == NULL) {
|
||||
item = PyIter_Next(iter);
|
||||
|
@ -2539,10 +2540,25 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
Py_DECREF(iter);
|
||||
if (PyErr_Occurred())
|
||||
return NULL;
|
||||
/* Avoid losing the sign on a negative result,
|
||||
and don't let adding the compensation convert
|
||||
an infinite or overflowed sum to a NaN. */
|
||||
if (c && Py_IS_FINITE(c)) {
|
||||
f_result += c;
|
||||
}
|
||||
return PyFloat_FromDouble(f_result);
|
||||
}
|
||||
if (PyFloat_CheckExact(item)) {
|
||||
f_result += PyFloat_AS_DOUBLE(item);
|
||||
// Improved Kahan–Babuška algorithm by Arnold Neumaier
|
||||
// https://www.mat.univie.ac.at/~neum/scan/01.pdf
|
||||
double x = PyFloat_AS_DOUBLE(item);
|
||||
double t = f_result + x;
|
||||
if (fabs(f_result) >= fabs(x)) {
|
||||
c += (f_result - t) + x;
|
||||
} else {
|
||||
c += (x - t) + f_result;
|
||||
}
|
||||
f_result = t;
|
||||
_Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc);
|
||||
continue;
|
||||
}
|
||||
|
@ -2556,6 +2572,9 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
continue;
|
||||
}
|
||||
}
|
||||
if (c && Py_IS_FINITE(c)) {
|
||||
f_result += c;
|
||||
}
|
||||
result = PyFloat_FromDouble(f_result);
|
||||
if (result == NULL) {
|
||||
Py_DECREF(item);
|
||||
|
|
Loading…
Reference in New Issue