mirror of https://github.com/python/cpython
gh-101678: refactor the math module to use special functions from c11 (GH-101679)
Shouldn't affect users, hence no news. Automerge-Triggered-By: GH:mdickinson
This commit is contained in:
parent
244d4cd9d2
commit
58395759b0
|
@ -7,8 +7,9 @@
|
|||
static double
|
||||
_Py_log1p(double x)
|
||||
{
|
||||
/* Some platforms supply a log1p function but don't respect the sign of
|
||||
zero: log1p(-0.0) gives 0.0 instead of the correct result of -0.0.
|
||||
/* Some platforms (e.g. MacOS X 10.8, see gh-59682) supply a log1p function
|
||||
but don't respect the sign of zero: log1p(-0.0) gives 0.0 instead of
|
||||
the correct result of -0.0.
|
||||
|
||||
To save fiddling with configure tests and platform checks, we handle the
|
||||
special case of zero input directly on all platforms.
|
||||
|
|
|
@ -101,10 +101,6 @@ get_math_module_state(PyObject *module)
|
|||
|
||||
static const double pi = 3.141592653589793238462643383279502884197;
|
||||
static const double logpi = 1.144729885849400174143427351353058711647;
|
||||
#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
|
||||
static const double sqrtpi = 1.772453850905516027298167483341145182798;
|
||||
#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
|
||||
|
||||
|
||||
/* Version of PyFloat_AsDouble() with in-line fast paths
|
||||
for exact floats and integers. Gives a substantial
|
||||
|
@ -162,7 +158,9 @@ m_sinpi(double x)
|
|||
return copysign(1.0, x)*r;
|
||||
}
|
||||
|
||||
/* Implementation of the real gamma function. In extensive but non-exhaustive
|
||||
/* Implementation of the real gamma function. Kept here to work around
|
||||
issues (see e.g. gh-70309) with quality of libm's tgamma/lgamma implementations
|
||||
on various platforms (Windows, MacOS). In extensive but non-exhaustive
|
||||
random tests, this function proved accurate to within <= 10 ulps across the
|
||||
entire float domain. Note that accuracy may depend on the quality of the
|
||||
system math functions, the pow function in particular. Special cases
|
||||
|
@ -458,163 +456,6 @@ m_lgamma(double x)
|
|||
return r;
|
||||
}
|
||||
|
||||
#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
|
||||
|
||||
/*
|
||||
Implementations of the error function erf(x) and the complementary error
|
||||
function erfc(x).
|
||||
|
||||
Method: we use a series approximation for erf for small x, and a continued
|
||||
fraction approximation for erfc(x) for larger x;
|
||||
combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
|
||||
this gives us erf(x) and erfc(x) for all x.
|
||||
|
||||
The series expansion used is:
|
||||
|
||||
erf(x) = x*exp(-x*x)/sqrt(pi) * [
|
||||
2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
|
||||
|
||||
The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
|
||||
This series converges well for smallish x, but slowly for larger x.
|
||||
|
||||
The continued fraction expansion used is:
|
||||
|
||||
erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
|
||||
3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
|
||||
|
||||
after the first term, the general term has the form:
|
||||
|
||||
k*(k-0.5)/(2*k+0.5 + x**2 - ...).
|
||||
|
||||
This expansion converges fast for larger x, but convergence becomes
|
||||
infinitely slow as x approaches 0.0. The (somewhat naive) continued
|
||||
fraction evaluation algorithm used below also risks overflow for large x;
|
||||
but for large x, erfc(x) == 0.0 to within machine precision. (For
|
||||
example, erfc(30.0) is approximately 2.56e-393).
|
||||
|
||||
Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
|
||||
continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
|
||||
ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
|
||||
numbers of terms to use for the relevant expansions. */
|
||||
|
||||
#define ERF_SERIES_CUTOFF 1.5
|
||||
#define ERF_SERIES_TERMS 25
|
||||
#define ERFC_CONTFRAC_CUTOFF 30.0
|
||||
#define ERFC_CONTFRAC_TERMS 50
|
||||
|
||||
/*
|
||||
Error function, via power series.
|
||||
|
||||
Given a finite float x, return an approximation to erf(x).
|
||||
Converges reasonably fast for small x.
|
||||
*/
|
||||
|
||||
static double
|
||||
m_erf_series(double x)
|
||||
{
|
||||
double x2, acc, fk, result;
|
||||
int i, saved_errno;
|
||||
|
||||
x2 = x * x;
|
||||
acc = 0.0;
|
||||
fk = (double)ERF_SERIES_TERMS + 0.5;
|
||||
for (i = 0; i < ERF_SERIES_TERMS; i++) {
|
||||
acc = 2.0 + x2 * acc / fk;
|
||||
fk -= 1.0;
|
||||
}
|
||||
/* Make sure the exp call doesn't affect errno;
|
||||
see m_erfc_contfrac for more. */
|
||||
saved_errno = errno;
|
||||
result = acc * x * exp(-x2) / sqrtpi;
|
||||
errno = saved_errno;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Complementary error function, via continued fraction expansion.
|
||||
|
||||
Given a positive float x, return an approximation to erfc(x). Converges
|
||||
reasonably fast for x large (say, x > 2.0), and should be safe from
|
||||
overflow if x and nterms are not too large. On an IEEE 754 machine, with x
|
||||
<= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
|
||||
than the smallest representable nonzero float. */
|
||||
|
||||
static double
|
||||
m_erfc_contfrac(double x)
|
||||
{
|
||||
double x2, a, da, p, p_last, q, q_last, b, result;
|
||||
int i, saved_errno;
|
||||
|
||||
if (x >= ERFC_CONTFRAC_CUTOFF)
|
||||
return 0.0;
|
||||
|
||||
x2 = x*x;
|
||||
a = 0.0;
|
||||
da = 0.5;
|
||||
p = 1.0; p_last = 0.0;
|
||||
q = da + x2; q_last = 1.0;
|
||||
for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
|
||||
double temp;
|
||||
a += da;
|
||||
da += 2.0;
|
||||
b = da + x2;
|
||||
temp = p; p = b*p - a*p_last; p_last = temp;
|
||||
temp = q; q = b*q - a*q_last; q_last = temp;
|
||||
}
|
||||
/* Issue #8986: On some platforms, exp sets errno on underflow to zero;
|
||||
save the current errno value so that we can restore it later. */
|
||||
saved_errno = errno;
|
||||
result = p / q * x * exp(-x2) / sqrtpi;
|
||||
errno = saved_errno;
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
|
||||
|
||||
/* Error function erf(x), for general x */
|
||||
|
||||
static double
|
||||
m_erf(double x)
|
||||
{
|
||||
#ifdef HAVE_ERF
|
||||
return erf(x);
|
||||
#else
|
||||
double absx, cf;
|
||||
|
||||
if (Py_IS_NAN(x))
|
||||
return x;
|
||||
absx = fabs(x);
|
||||
if (absx < ERF_SERIES_CUTOFF)
|
||||
return m_erf_series(x);
|
||||
else {
|
||||
cf = m_erfc_contfrac(absx);
|
||||
return x > 0.0 ? 1.0 - cf : cf - 1.0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Complementary error function erfc(x), for general x. */
|
||||
|
||||
static double
|
||||
m_erfc(double x)
|
||||
{
|
||||
#ifdef HAVE_ERFC
|
||||
return erfc(x);
|
||||
#else
|
||||
double absx, cf;
|
||||
|
||||
if (Py_IS_NAN(x))
|
||||
return x;
|
||||
absx = fabs(x);
|
||||
if (absx < ERF_SERIES_CUTOFF)
|
||||
return 1.0 - m_erf_series(x);
|
||||
else {
|
||||
cf = m_erfc_contfrac(absx);
|
||||
return x > 0.0 ? cf : 2.0 - cf;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
wrapper for atan2 that deals directly with special cases before
|
||||
delegating to the platform libm for the remaining cases. This
|
||||
|
@ -801,25 +642,7 @@ m_log2(double x)
|
|||
}
|
||||
|
||||
if (x > 0.0) {
|
||||
#ifdef HAVE_LOG2
|
||||
return log2(x);
|
||||
#else
|
||||
double m;
|
||||
int e;
|
||||
m = frexp(x, &e);
|
||||
/* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
|
||||
* x is just greater than 1.0: in that case e is 1, log(m) is negative,
|
||||
* and we get significant cancellation error from the addition of
|
||||
* log(m) / log(2) to e. The slight rewrite of the expression below
|
||||
* avoids this problem.
|
||||
*/
|
||||
if (x >= 1.0) {
|
||||
return log(2.0 * m) / log(2.0) + (e - 1);
|
||||
}
|
||||
else {
|
||||
return log(m) / log(2.0) + e;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else if (x == 0.0) {
|
||||
errno = EDOM;
|
||||
|
@ -1261,10 +1084,10 @@ FUNC1(cos, cos, 0,
|
|||
FUNC1(cosh, cosh, 1,
|
||||
"cosh($module, x, /)\n--\n\n"
|
||||
"Return the hyperbolic cosine of x.")
|
||||
FUNC1A(erf, m_erf,
|
||||
FUNC1A(erf, erf,
|
||||
"erf($module, x, /)\n--\n\n"
|
||||
"Error function at x.")
|
||||
FUNC1A(erfc, m_erfc,
|
||||
FUNC1A(erfc, erfc,
|
||||
"erfc($module, x, /)\n--\n\n"
|
||||
"Complementary error function at x.")
|
||||
FUNC1(exp, exp, 1,
|
||||
|
|
Loading…
Reference in New Issue