Wrap multiline macros in a 'do {} while(0)', for safety.

This commit is contained in:
Mark Dickinson 2010-05-09 20:42:09 +00:00
parent fda8d114ea
commit 43ca377e45
1 changed files with 43 additions and 37 deletions

View File

@ -31,11 +31,13 @@
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) > (y) ? (y) : (x))
#define SIGCHECK(PyTryBlock) \
if (--_Py_Ticker < 0) { \
_Py_Ticker = _Py_CheckInterval; \
if (PyErr_CheckSignals()) PyTryBlock \
}
#define SIGCHECK(PyTryBlock) \
do { \
if (--_Py_Ticker < 0) { \
_Py_Ticker = _Py_CheckInterval; \
if (PyErr_CheckSignals()) PyTryBlock \
} \
} while(0)
/* Normalize (remove leading zeros from) a long int object.
Doesn't attempt to free the storage--in most cases, due to the nature
@ -1151,11 +1153,13 @@ convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
return 1;
}
#define CONVERT_BINOP(v, w, a, b) \
if (!convert_binop(v, w, a, b)) { \
Py_INCREF(Py_NotImplemented); \
return Py_NotImplemented; \
}
#define CONVERT_BINOP(v, w, a, b) \
do { \
if (!convert_binop(v, w, a, b)) { \
Py_INCREF(Py_NotImplemented); \
return Py_NotImplemented; \
} \
} while(0) \
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
2**k if d is nonzero, else 0. */
@ -1371,7 +1375,7 @@ long_to_decimal_string(PyObject *aa, int addL)
SIGCHECK({
Py_DECREF(scratch);
return NULL;
})
});
}
/* pout should have at least one digit, so that the case when a = 0
works correctly */
@ -1540,7 +1544,7 @@ _PyLong_Format(PyObject *aa, int base, int addL, int newstyle)
Py_DECREF(scratch);
Py_DECREF(str);
return NULL;
})
});
/* Break rem into digits. */
assert(ntostore > 0);
@ -2121,7 +2125,7 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
Py_DECREF(v);
*prem = NULL;
return NULL;
})
});
/* estimate quotient digit q; may overestimate by 1 (rare) */
vtop = vk[size_w];
@ -2578,7 +2582,7 @@ x_mul(PyLongObject *a, PyLongObject *b)
SIGCHECK({
Py_DECREF(z);
return NULL;
})
});
carry = *pz + f * f;
*pz++ = (digit)(carry & PyLong_MASK);
@ -2616,7 +2620,7 @@ x_mul(PyLongObject *a, PyLongObject *b)
SIGCHECK({
Py_DECREF(z);
return NULL;
})
});
while (pb < pbend) {
carry += *pz + *pb++ * f;
@ -3475,26 +3479,28 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
* is NULL.
*/
#define REDUCE(X) \
if (c != NULL) { \
if (l_divmod(X, c, NULL, &temp) < 0) \
goto Error; \
Py_XDECREF(X); \
X = temp; \
temp = NULL; \
}
do { \
if (c != NULL) { \
if (l_divmod(X, c, NULL, &temp) < 0) \
goto Error; \
Py_XDECREF(X); \
X = temp; \
temp = NULL; \
} \
} while(0)
/* Multiply two values, then reduce the result:
result = X*Y % c. If c is NULL, skip the mod. */
#define MULT(X, Y, result) \
{ \
temp = (PyLongObject *)long_mul(X, Y); \
if (temp == NULL) \
goto Error; \
Py_XDECREF(result); \
result = temp; \
temp = NULL; \
REDUCE(result) \
}
#define MULT(X, Y, result) \
do { \
temp = (PyLongObject *)long_mul(X, Y); \
if (temp == NULL) \
goto Error; \
Py_XDECREF(result); \
result = temp; \
temp = NULL; \
REDUCE(result); \
} while(0)
if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
@ -3503,9 +3509,9 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
digit bi = b->ob_digit[i];
for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
MULT(z, z, z)
MULT(z, z, z);
if (bi & j)
MULT(z, a, z)
MULT(z, a, z);
}
}
}
@ -3514,7 +3520,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
Py_INCREF(z); /* still holds 1L */
table[0] = z;
for (i = 1; i < 32; ++i)
MULT(table[i-1], a, table[i])
MULT(table[i-1], a, table[i]);
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
const digit bi = b->ob_digit[i];
@ -3522,9 +3528,9 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
const int index = (bi >> j) & 0x1f;
for (k = 0; k < 5; ++k)
MULT(z, z, z)
MULT(z, z, z);
if (index)
MULT(z, table[index], z)
MULT(z, table[index], z);
}
}
}