mirror of https://github.com/python/cpython
Tools/scripts/analyze_dxp.py, a module with some helper functions to
analyze the output of sys.getdxp().
This commit is contained in:
parent
b7019d8e9e
commit
43bff057c1
|
@ -4,6 +4,7 @@ dutree or lll) are also generally useful UNIX tools.
|
|||
|
||||
See also the Demo/scripts directory!
|
||||
|
||||
analyze_dxp.py Analyzes the result of sys.getdxp()
|
||||
byext.py Print lines/words/chars stats of files by extension
|
||||
byteyears.py Print product of a file's size and age
|
||||
checkappend.py Search for multi-argument .append() calls
|
||||
|
|
|
@ -0,0 +1,129 @@
|
|||
"""
|
||||
Some helper functions to analyze the output of sys.getdxp() (which is
|
||||
only available if Python was built with -DDYNAMIC_EXECUTION_PROFILE).
|
||||
These will tell you which opcodes have been executed most frequently
|
||||
in the current process, and, if Python was also built with -DDXPAIRS,
|
||||
will tell you which instruction _pairs_ were executed most frequently,
|
||||
which may help in choosing new instructions.
|
||||
|
||||
If Python was built without -DDYNAMIC_EXECUTION_PROFILE, importing
|
||||
this module will raise a RuntimeError.
|
||||
|
||||
If you're running a script you want to profile, a simple way to get
|
||||
the common pairs is:
|
||||
|
||||
$ PYTHONPATH=$PYTHONPATH:<python_srcdir>/Tools/scripts \
|
||||
./python -i -O the_script.py --args
|
||||
...
|
||||
> from analyze_dxp import *
|
||||
> s = render_common_pairs()
|
||||
> open('/tmp/some_file', 'w').write(s)
|
||||
"""
|
||||
|
||||
import copy
|
||||
import opcode
|
||||
import operator
|
||||
import sys
|
||||
import threading
|
||||
|
||||
if not hasattr(sys, "getdxp"):
|
||||
raise RuntimeError("Can't import analyze_dxp: Python built without"
|
||||
" -DDYNAMIC_EXECUTION_PROFILE.")
|
||||
|
||||
|
||||
_profile_lock = threading.RLock()
|
||||
_cumulative_profile = sys.getdxp()
|
||||
|
||||
# If Python was built with -DDXPAIRS, sys.getdxp() returns a list of
|
||||
# lists of ints. Otherwise it returns just a list of ints.
|
||||
def has_pairs(profile):
|
||||
"""Returns True if the Python that produced the argument profile
|
||||
was built with -DDXPAIRS."""
|
||||
|
||||
return len(profile) > 0 and isinstance(profile[0], list)
|
||||
|
||||
|
||||
def reset_profile():
|
||||
"""Forgets any execution profile that has been gathered so far."""
|
||||
with _profile_lock:
|
||||
sys.getdxp() # Resets the internal profile
|
||||
global _cumulative_profile
|
||||
_cumulative_profile = sys.getdxp() # 0s out our copy.
|
||||
|
||||
|
||||
def merge_profile():
|
||||
"""Reads sys.getdxp() and merges it into this module's cached copy.
|
||||
|
||||
We need this because sys.getdxp() 0s itself every time it's called."""
|
||||
|
||||
with _profile_lock:
|
||||
new_profile = sys.getdxp()
|
||||
if has_pairs(new_profile):
|
||||
for first_inst in range(len(_cumulative_profile)):
|
||||
for second_inst in range(len(_cumulative_profile[first_inst])):
|
||||
_cumulative_profile[first_inst][second_inst] += (
|
||||
new_profile[first_inst][second_inst])
|
||||
else:
|
||||
for inst in range(len(_cumulative_profile)):
|
||||
_cumulative_profile[inst] += new_profile[inst]
|
||||
|
||||
|
||||
def snapshot_profile():
|
||||
"""Returns the cumulative execution profile until this call."""
|
||||
with _profile_lock:
|
||||
merge_profile()
|
||||
return copy.deepcopy(_cumulative_profile)
|
||||
|
||||
|
||||
def common_instructions(profile):
|
||||
"""Returns the most common opcodes in order of descending frequency.
|
||||
|
||||
The result is a list of tuples of the form
|
||||
(opcode, opname, # of occurrences)
|
||||
|
||||
"""
|
||||
if has_pairs(profile) and profile:
|
||||
inst_list = profile[-1]
|
||||
else:
|
||||
inst_list = profile
|
||||
result = [(op, opcode.opname[op], count)
|
||||
for op, count in enumerate(inst_list)
|
||||
if count > 0]
|
||||
result.sort(key=operator.itemgetter(2), reverse=True)
|
||||
return result
|
||||
|
||||
|
||||
def common_pairs(profile):
|
||||
"""Returns the most common opcode pairs in order of descending frequency.
|
||||
|
||||
The result is a list of tuples of the form
|
||||
((1st opcode, 2nd opcode),
|
||||
(1st opname, 2nd opname),
|
||||
# of occurrences of the pair)
|
||||
|
||||
"""
|
||||
if not has_pairs(profile):
|
||||
return []
|
||||
result = [((op1, op2), (opcode.opname[op1], opcode.opname[op2]), count)
|
||||
# Drop the row of single-op profiles with [:-1]
|
||||
for op1, op1profile in enumerate(profile[:-1])
|
||||
for op2, count in enumerate(op1profile)
|
||||
if count > 0]
|
||||
result.sort(key=operator.itemgetter(2), reverse=True)
|
||||
return result
|
||||
|
||||
|
||||
def render_common_pairs(profile=None):
|
||||
"""Renders the most common opcode pairs to a string in order of
|
||||
descending frequency.
|
||||
|
||||
The result is a series of lines of the form:
|
||||
# of occurrences: ('1st opname', '2nd opname')
|
||||
|
||||
"""
|
||||
if profile is None:
|
||||
profile = snapshot_profile()
|
||||
def seq():
|
||||
for _, ops, count in common_pairs(profile):
|
||||
yield "%s: %s\n" % (count, ops)
|
||||
return ''.join(seq())
|
Loading…
Reference in New Issue