diff --git a/Objects/listobject.c b/Objects/listobject.c index 21d01668089..33ebe812097 100644 --- a/Objects/listobject.c +++ b/Objects/listobject.c @@ -550,6 +550,231 @@ listappend(self, args) return ins(self, (int) self->ob_size, v); } +#define NEWSORT + +#ifdef NEWSORT + +/* New quicksort implementation for arrays of object pointers. + Thanks to discussions with Tim Peters. */ + +/* CMPERROR is returned by our comparison function when an error + occurred. This is the largest negative integer (0x80000000 on a + 32-bit system). */ +#define CMPERROR (1 << (8*sizeof(int) - 1)) + +/* Comparison function. Takes care of calling a user-supplied + comparison function (any callable Python object). Calls the + standard comparison function, cmpobject(), if the user-supplied + function is NULL. */ + +static int +docompare(x, y, compare) + object *x; + object *y; + object *compare; +{ + object *args, *res; + int i; + + if (compare == NULL) + return cmpobject(x, y); + + args = mkvalue("(OO)", x, y); + if (args == NULL) + return CMPERROR; + res = call_object(compare, args); + DECREF(args); + if (res == NULL) + return CMPERROR; + if (!is_intobject(res)) { + DECREF(res); + err_setstr(TypeError, "comparison function should return int"); + return CMPERROR; + } + i = getintvalue(res); + DECREF(res); + if (i < 0) + return -1; + if (i > 0) + return 1; + return 0; +} + +/* Straight insertion sort. More efficient for sorting small arrays. */ + +static int +insertionsort(array, size, compare) + object **array; /* Start of array to sort */ + int size; /* Number of elements to sort */ + object *compare;/* Comparison function object, or NULL for default */ +{ + register object **a = array; + register int i; + + for (i = 1; i < size; i++) { + register object *key = a[i]; + register int j = i; + while (--j >= 0) { + register int k = docompare(a[j], key, compare); + if (k == CMPERROR) + return -1; + if (k <= 0) + break; + a[j+1] = a[j]; + a[j] = key; /* For consistency */ + } + } + + return 0; +} + +/* MINSIZE is the smallest array we care to partition; smaller arrays + are sorted using a straight insertion sort (above). */ +#define MINSIZE 10 + +/* STACKSIZE is the size of our work stack. A rough estimate is that + this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large + enough. (Because of the way we push the biggest partition first, + the worst case occurs when all subarrays are always partitioned + exactly in two.) */ +#define STACKSIZE 64 + +/* Quicksort algorithm. Return -1 if an exception occurred; in this + case we leave the array partly sorted but otherwise in good health + (i.e. no items have been removed or duplicated). */ + +static int +quicksort(array, size, compare) + object **array; /* Start of array to sort */ + int size; /* Number of elements to sort */ + object *compare;/* Comparison function object, or NULL for default */ +{ + register object **a, *tmp, *pivot; + register int n, l, r, k; + int top, i, j, n2; + object **astack[STACKSIZE]; + int nstack[STACKSIZE]; + + /* Start out with the whole array on the work stack */ + astack[0] = array; + nstack[0] = size; + top = 1; + + /* Repeat until the work stack is empty */ + while (--top >= 0) { + a = astack[top]; + n = nstack[top]; + + /* If it's a small one, use straight insertion sort */ + if (n < MINSIZE) { + if (insertionsort(a, n, compare) < 0) + return -1; + continue; + } + + /* Choose median of a[0], a[n/2], a[n-1] as pivot */ + i = n>>1; + j = n-1; + k = docompare(a[0], a[i], compare); + if (k == CMPERROR) + return -1; + if (k < 0) + { tmp = a[0]; a[0] = a[i]; a[i] = tmp; } + k = docompare(a[j], a[i], compare); + if (k == CMPERROR) + return -1; + if (k < 0) + { tmp = a[j]; a[j] = a[i]; a[i] = tmp; } + k = docompare(a[j], a[0], compare); + if (k == CMPERROR) + return -1; + if (k < 0) + { tmp = a[j]; a[j] = a[0]; a[0] = tmp; } + pivot = a[0]; + + /* Partition the array */ + l = 0; + r = n; + for (;;) { + /* Move left index to element > pivot */ + while (++l < n) { + k = docompare(a[l], pivot, compare); + if (k == CMPERROR) + return -1; + if (k > 0) + break; + } + /* Move right index to element < pivot */ + while (--r > 0) { + k = docompare(a[r], pivot, compare); + if (k == CMPERROR) + return -1; + if (k < 0) + break; + } + /* If they met, we're through */ + if (r < l) + break; + /* Swap elements and continue */ + { tmp = a[l]; a[l] = a[r]; a[r] = tmp; } + } + + /* Move the pivot into the middle */ + { tmp = a[0]; a[0] = a[r]; a[r] = tmp; } + + /* We have now reached the following conditions: + 0 <= r < l <= n + all x in a[0:r] are <= pivot + all x in a[r:l] are == pivot + all x in a[l:n] are >= pivot + The partitions are a[0:r] and a[l:n] + */ + + /* Push biggest partition first */ + n2 = n - l; + if (r > n2) { + /* First one is bigger */ + if (r > 1) { + astack[top] = a; + nstack[top++] = r; + if (n2 > 1) { + astack[top] = a+l; + nstack[top++] = n2; + } + } + } else { + /* Second one is bigger */ + if (n2 > 1) { + astack[top] = a+l; + nstack[top++] = n2; + if (r > 1) { + astack[top] = a; + nstack[top++] = r; + } + } + } + + /* Should assert top < STACKSIZE-1 */ + } + + /* Succes */ + return 0; +} + +static object * +listsort(self, compare) + listobject *self; + object *compare; +{ + /* XXX Don't you *dare* changing the list's length in compare()! */ + if (quicksort(self->ob_item, self->ob_size, compare) < 0) + return NULL; + INCREF(None); + return None; +} + +#else /* !NEWSORT */ + static object *comparefunc; static int @@ -617,6 +842,8 @@ listsort(self, args) return None; } +#endif + static object * listreverse(self, args) listobject *self;