mirror of https://github.com/python/cpython
Add more comments to hypot() (GH-102817)
This commit is contained in:
parent
1cb75a9ce0
commit
3adb23a17d
|
@ -2447,9 +2447,8 @@ Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
|
|||
To minimize loss of information during the accumulation of fractional
|
||||
values, each term has a separate accumulator. This also breaks up
|
||||
sequential dependencies in the inner loop so the CPU can maximize
|
||||
floating point throughput. [4] On a 2.6 GHz Haswell, adding one
|
||||
dimension has an incremental cost of only 5ns -- for example when
|
||||
moving from hypot(x,y) to hypot(x,y,z).
|
||||
floating point throughput. [4] On an Apple M1 Max, hypot(*vec)
|
||||
takes only 3.33 µsec when len(vec) == 1000.
|
||||
|
||||
The square root differential correction is needed because a
|
||||
correctly rounded square root of a correctly rounded sum of
|
||||
|
@ -2473,7 +2472,7 @@ step is exact. The Neumaier summation computes as if in doubled
|
|||
precision (106 bits) and has the advantage that its input squares
|
||||
are non-negative so that the condition number of the sum is one.
|
||||
The square root with a differential correction is likewise computed
|
||||
as if in double precision.
|
||||
as if in doubled precision.
|
||||
|
||||
For n <= 1000, prior to the final addition that rounds the overall
|
||||
result, the internal accuracy of "h" together with its correction of
|
||||
|
@ -2514,12 +2513,9 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
|||
}
|
||||
frexp(max, &max_e);
|
||||
if (max_e < -1023) {
|
||||
/* When max_e < -1023, ldexp(1.0, -max_e) would overflow.
|
||||
So we first perform lossless scaling from subnormals back to normals,
|
||||
then recurse back to vector_norm(), and then finally undo the scaling.
|
||||
*/
|
||||
/* When max_e < -1023, ldexp(1.0, -max_e) would overflow. */
|
||||
for (i=0 ; i < n ; i++) {
|
||||
vec[i] /= DBL_MIN;
|
||||
vec[i] /= DBL_MIN; // convert subnormals to normals
|
||||
}
|
||||
return DBL_MIN * vector_norm(n, vec, max / DBL_MIN, found_nan);
|
||||
}
|
||||
|
@ -2529,17 +2525,14 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
|||
for (i=0 ; i < n ; i++) {
|
||||
x = vec[i];
|
||||
assert(Py_IS_FINITE(x) && fabs(x) <= max);
|
||||
|
||||
x *= scale;
|
||||
x *= scale; // lossless scaling
|
||||
assert(fabs(x) < 1.0);
|
||||
|
||||
pr = dl_mul(x, x);
|
||||
pr = dl_mul(x, x); // lossless squaring
|
||||
assert(pr.hi <= 1.0);
|
||||
|
||||
sm = dl_fast_sum(csum, pr.hi);
|
||||
sm = dl_fast_sum(csum, pr.hi); // lossless addition
|
||||
csum = sm.hi;
|
||||
frac1 += pr.lo;
|
||||
frac2 += sm.lo;
|
||||
frac1 += pr.lo; // lossy addition
|
||||
frac2 += sm.lo; // lossy addition
|
||||
}
|
||||
h = sqrt(csum - 1.0 + (frac1 + frac2));
|
||||
pr = dl_mul(-h, h);
|
||||
|
@ -2548,7 +2541,8 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
|
|||
frac1 += pr.lo;
|
||||
frac2 += sm.lo;
|
||||
x = csum - 1.0 + (frac1 + frac2);
|
||||
return (h + x / (2.0 * h)) / scale;
|
||||
h += x / (2.0 * h); // differential correction
|
||||
return h / scale;
|
||||
}
|
||||
|
||||
#define NUM_STACK_ELEMS 16
|
||||
|
|
Loading…
Reference in New Issue