mirror of https://github.com/python/cpython
More sort cleanup: Moved the special cases from samplesortslice into
listsort. If the former calls itself recursively, they're a waste of time, since it's called on a random permutation of a random subset of elements. OTOH, for exactly the same reason, they're an immeasurably small waste of time (the odds of finding exploitable order in a random permutation are ~= 0, so the special-case loops looking for order give up quickly). The point is more for conceptual clarity. Also changed some "assert comments" into real asserts; when this code was first written, Python.h didn't supply assert.h.
This commit is contained in:
parent
8235ea1c3a
commit
330f9e9581
|
@ -1005,43 +1005,10 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
int n, extra, top, extraOnRight;
|
||||
struct SamplesortStackNode stack[STACKSIZE];
|
||||
|
||||
/* assert lo <= hi */
|
||||
assert(lo <= hi);
|
||||
n = hi - lo;
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
* Special cases
|
||||
* --------------------------------------------------------*/
|
||||
if (n < 2)
|
||||
return 0;
|
||||
|
||||
/* Set r to the largest value such that [lo,r) is sorted.
|
||||
This catches the already-sorted case, the all-the-same
|
||||
case, and the appended-a-few-elements-to-a-sorted-list case.
|
||||
If the array is unsorted, we're very likely to get out of
|
||||
the loop fast, so the test is cheap if it doesn't pay off.
|
||||
*/
|
||||
/* assert lo < hi */
|
||||
for (r = lo+1; r < hi; ++r) {
|
||||
IFLT(*r, *(r-1))
|
||||
break;
|
||||
}
|
||||
/* [lo,r) is sorted, [r,hi) unknown. Get out cheap if there are
|
||||
few unknowns, or few elements in total. */
|
||||
if (hi - r <= MAXMERGE || n < MINSIZE)
|
||||
return binarysort(lo, hi, r, compare);
|
||||
|
||||
/* Check for the array already being reverse-sorted. Typical
|
||||
benchmark-driven silliness <wink>. */
|
||||
/* assert lo < hi */
|
||||
for (r = lo+1; r < hi; ++r) {
|
||||
IFLT(*(r-1), *r)
|
||||
break;
|
||||
}
|
||||
if (hi - r <= MAXMERGE) {
|
||||
/* Reverse the reversed prefix, then insert the tail */
|
||||
reverse_slice(lo, r);
|
||||
return binarysort(lo, hi, r, compare);
|
||||
}
|
||||
if (n < MINSIZE)
|
||||
return binarysort(lo, hi, lo, compare);
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
* Normal case setup: a large array without obvious pattern.
|
||||
|
@ -1093,7 +1060,7 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
* Partition [lo, hi), and repeat until out of work.
|
||||
* --------------------------------------------------------*/
|
||||
for (;;) {
|
||||
/* assert lo <= hi, so n >= 0 */
|
||||
assert(lo <= hi);
|
||||
n = hi - lo;
|
||||
|
||||
/* We may not want, or may not be able, to partition:
|
||||
|
@ -1103,8 +1070,8 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
*/
|
||||
if (n < MINPARTITIONSIZE || extra == 0) {
|
||||
if (n >= MINSIZE) {
|
||||
/* assert extra == 0
|
||||
This is rare, since the average size
|
||||
assert(extra == 0);
|
||||
/* This is rare, since the average size
|
||||
of a final block is only about
|
||||
ln(original n). */
|
||||
if (samplesortslice(lo, hi, compare) < 0)
|
||||
|
@ -1184,7 +1151,7 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
duplicates later. */
|
||||
l = lo + 1;
|
||||
r = hi - 1;
|
||||
/* assert lo < l < r < hi (small n weeded out above) */
|
||||
assert(lo < l && l < r && r < hi);
|
||||
|
||||
do {
|
||||
/* slide l right, looking for key >= pivot */
|
||||
|
@ -1208,9 +1175,8 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
|
||||
} while (l < r);
|
||||
|
||||
/* assert lo < r <= l < hi
|
||||
assert r == l or r+1 == l
|
||||
everything to the left of l is < pivot, and
|
||||
assert(lo < r && r <= l && l < hi);
|
||||
/* everything to the left of l is < pivot, and
|
||||
everything to the right of r is >= pivot */
|
||||
|
||||
if (l == r) {
|
||||
|
@ -1219,13 +1185,12 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
else
|
||||
--r;
|
||||
}
|
||||
/* assert lo <= r and r+1 == l and l <= hi
|
||||
assert r == lo or a[r] < pivot
|
||||
assert a[lo] is pivot
|
||||
assert l == hi or a[l] >= pivot
|
||||
Swap the pivot into "the middle", so we can henceforth
|
||||
ignore it.
|
||||
*/
|
||||
assert(lo <= r && r+1 == l && l <= hi);
|
||||
/* assert r == lo or a[r] < pivot */
|
||||
assert(*lo == pivot);
|
||||
/* assert l == hi or a[l] >= pivot */
|
||||
/* Swap the pivot into "the middle", so we can henceforth
|
||||
ignore it. */
|
||||
*lo = *r;
|
||||
*r = pivot;
|
||||
|
||||
|
@ -1250,13 +1215,12 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
++l;
|
||||
}
|
||||
|
||||
/* assert lo <= r < l <= hi
|
||||
Partitions are [lo, r) and [l, hi) */
|
||||
|
||||
/* push fattest first; remember we still have extra PPs
|
||||
assert(lo <= r && r < l && l <= hi);
|
||||
/* Partitions are [lo, r) and [l, hi)
|
||||
:ush fattest first; remember we still have extra PPs
|
||||
to the left of the left chunk and to the right of
|
||||
the right chunk! */
|
||||
/* assert top < STACKSIZE */
|
||||
assert(top < STACKSIZE);
|
||||
if (r - lo <= hi - l) {
|
||||
/* second is bigger */
|
||||
stack[top].lo = l;
|
||||
|
@ -1283,33 +1247,77 @@ samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
|
|||
return -1;
|
||||
}
|
||||
|
||||
#undef IFLT
|
||||
|
||||
static PyTypeObject immutable_list_type;
|
||||
|
||||
static PyObject *
|
||||
listsort(PyListObject *self, PyObject *args)
|
||||
{
|
||||
int err;
|
||||
int k;
|
||||
PyObject *compare = NULL;
|
||||
PyObject **hi, **p;
|
||||
PyTypeObject *savetype;
|
||||
|
||||
if (args != NULL) {
|
||||
if (!PyArg_ParseTuple(args, "|O:sort", &compare))
|
||||
return NULL;
|
||||
}
|
||||
|
||||
savetype = self->ob_type;
|
||||
if (self->ob_size < 2) {
|
||||
k = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
self->ob_type = &immutable_list_type;
|
||||
err = samplesortslice(self->ob_item,
|
||||
self->ob_item + self->ob_size,
|
||||
compare);
|
||||
self->ob_type = savetype;
|
||||
if (err < 0)
|
||||
hi = self->ob_item + self->ob_size;
|
||||
|
||||
/* Set p to the largest value such that [lo, p) is sorted.
|
||||
This catches the already-sorted case, the all-the-same
|
||||
case, and the appended-a-few-elements-to-a-sorted-list case.
|
||||
If the array is unsorted, we're very likely to get out of
|
||||
the loop fast, so the test is cheap if it doesn't pay off.
|
||||
*/
|
||||
for (p = self->ob_item + 1; p < hi; ++p) {
|
||||
IFLT(*p, *(p-1))
|
||||
break;
|
||||
}
|
||||
/* [lo, p) is sorted, [p, hi) unknown. Get out cheap if there are
|
||||
few unknowns, or few elements in total. */
|
||||
if (hi - p <= MAXMERGE || self->ob_size < MINSIZE) {
|
||||
k = binarysort(self->ob_item, hi, p, compare);
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* Check for the array already being reverse-sorted, or that with
|
||||
a few elements tacked on to the end. */
|
||||
for (p = self->ob_item + 1; p < hi; ++p) {
|
||||
IFLT(*(p-1), *p)
|
||||
break;
|
||||
}
|
||||
/* [lo, p) is reverse-sorted, [p, hi) unknown. */
|
||||
if (hi - p <= MAXMERGE) {
|
||||
/* Reverse the reversed prefix, then insert the tail */
|
||||
reverse_slice(self->ob_item, p);
|
||||
k = binarysort(self->ob_item, hi, p, compare);
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* A large array without obvious pattern. */
|
||||
k = samplesortslice(self->ob_item, hi, compare);
|
||||
|
||||
done: /* The IFLT macro requires a label named "fail". */;
|
||||
fail:
|
||||
self->ob_type = savetype;
|
||||
if (k >= 0) {
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
else
|
||||
return NULL;
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
|
||||
#undef IFLT
|
||||
|
||||
int
|
||||
PyList_Sort(PyObject *v)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue