mirror of https://github.com/python/cpython
Simplify binomial approximation example with random.binomialvariate() (gh-113871)
This commit is contained in:
parent
65f8eb7119
commit
2fd2e74793
|
@ -1026,19 +1026,16 @@ probability that the Python room will stay within its capacity limits?
|
|||
>>> round(NormalDist(mu=n*p, sigma=sqrt(n*p*q)).cdf(k + 0.5), 4)
|
||||
0.8402
|
||||
|
||||
>>> # Solution using the cumulative binomial distribution
|
||||
>>> # Exact solution using the cumulative binomial distribution
|
||||
>>> from math import comb, fsum
|
||||
>>> round(fsum(comb(n, r) * p**r * q**(n-r) for r in range(k+1)), 4)
|
||||
0.8402
|
||||
|
||||
>>> # Approximation using a simulation
|
||||
>>> from random import seed, choices
|
||||
>>> from random import seed, binomialvariate
|
||||
>>> seed(8675309)
|
||||
>>> def trial():
|
||||
... return choices(('Python', 'Ruby'), (p, q), k=n).count('Python')
|
||||
...
|
||||
>>> mean(trial() <= k for i in range(10_000))
|
||||
0.8398
|
||||
>>> mean(binomialvariate(n, p) <= k for i in range(10_000))
|
||||
0.8406
|
||||
|
||||
|
||||
Naive bayesian classifier
|
||||
|
|
Loading…
Reference in New Issue