bpo-44151: linear_regression() minor API improvements (GH-26199)

This commit is contained in:
Zack Kneupper 2021-05-24 20:30:58 -04:00 committed by GitHub
parent 8450e8a81f
commit 2f3a87856c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 26 additions and 26 deletions

View File

@ -76,7 +76,7 @@ These functions calculate statistics regarding relations between two inputs.
========================= =====================================================
:func:`covariance` Sample covariance for two variables.
:func:`correlation` Pearson's correlation coefficient for two variables.
:func:`linear_regression` Intercept and slope for simple linear regression.
:func:`linear_regression` Slope and intercept for simple linear regression.
========================= =====================================================
@ -643,24 +643,25 @@ However, for reading convenience, most of the examples show sorted sequences.
.. versionadded:: 3.10
.. function:: linear_regression(regressor, dependent_variable)
.. function:: linear_regression(independent_variable, dependent_variable)
Return the intercept and slope of `simple linear regression
Return the slope and intercept of `simple linear regression
<https://en.wikipedia.org/wiki/Simple_linear_regression>`_
parameters estimated using ordinary least squares. Simple linear
regression describes the relationship between *regressor* and
*dependent variable* in terms of this linear function:
regression describes the relationship between an independent variable *x* and
a dependent variable *y* in terms of this linear function:
*dependent_variable = intercept + slope \* regressor + noise*
*y = intercept + slope \* x + noise*
where ``intercept`` and ``slope`` are the regression parameters that are
where ``slope`` and ``intercept`` are the regression parameters that are
estimated, and noise represents the
variability of the data that was not explained by the linear regression
(it is equal to the difference between predicted and actual values
of dependent variable).
Both inputs must be of the same length (no less than two), and regressor
needs not to be constant; otherwise :exc:`StatisticsError` is raised.
Both inputs must be of the same length (no less than two), and
the independent variable *x* needs not to be constant;
otherwise :exc:`StatisticsError` is raised.
For example, we can use the `release dates of the Monty
Python films <https://en.wikipedia.org/wiki/Monty_Python#Films>`_, and used
@ -672,7 +673,7 @@ However, for reading convenience, most of the examples show sorted sequences.
>>> year = [1971, 1975, 1979, 1982, 1983]
>>> films_total = [1, 2, 3, 4, 5]
>>> intercept, slope = linear_regression(year, films_total)
>>> slope, intercept = linear_regression(year, films_total)
>>> round(intercept + slope * 2019)
16

View File

@ -94,7 +94,7 @@ for two inputs:
>>> correlation(x, y) #doctest: +ELLIPSIS
0.31622776601...
>>> linear_regression(x, y) #doctest:
LinearRegression(intercept=1.5, slope=0.1)
LinearRegression(slope=0.1, intercept=1.5)
Exceptions
@ -932,18 +932,18 @@ def correlation(x, y, /):
raise StatisticsError('at least one of the inputs is constant')
LinearRegression = namedtuple('LinearRegression', ['intercept', 'slope'])
LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept'))
def linear_regression(regressor, dependent_variable, /):
def linear_regression(x, y, /):
"""Intercept and slope for simple linear regression
Return the intercept and slope of simple linear regression
parameters estimated using ordinary least squares. Simple linear
regression describes relationship between *regressor* and
*dependent variable* in terms of linear function:
regression describes relationship between *x* and
*y* in terms of linear function:
dependent_variable = intercept + slope * regressor + noise
y = intercept + slope * x + noise
where *intercept* and *slope* are the regression parameters that are
estimated, and noise represents the variability of the data that was
@ -953,19 +953,18 @@ def linear_regression(regressor, dependent_variable, /):
The parameters are returned as a named tuple.
>>> regressor = [1, 2, 3, 4, 5]
>>> x = [1, 2, 3, 4, 5]
>>> noise = NormalDist().samples(5, seed=42)
>>> dependent_variable = [2 + 3 * regressor[i] + noise[i] for i in range(5)]
>>> linear_regression(regressor, dependent_variable) #doctest: +ELLIPSIS
LinearRegression(intercept=1.75684970486..., slope=3.09078914170...)
>>> y = [2 + 3 * x[i] + noise[i] for i in range(5)]
>>> linear_regression(x, y) #doctest: +ELLIPSIS
LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)
"""
n = len(regressor)
if len(dependent_variable) != n:
n = len(x)
if len(y) != n:
raise StatisticsError('linear regression requires that both inputs have same number of data points')
if n < 2:
raise StatisticsError('linear regression requires at least two data points')
x, y = regressor, dependent_variable
xbar = fsum(x) / n
ybar = fsum(y) / n
sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
@ -973,9 +972,9 @@ def linear_regression(regressor, dependent_variable, /):
try:
slope = sxy / s2x # equivalent to: covariance(x, y) / variance(x)
except ZeroDivisionError:
raise StatisticsError('regressor is constant')
raise StatisticsError('x is constant')
intercept = ybar - slope * xbar
return LinearRegression(intercept=intercept, slope=slope)
return LinearRegression(slope=slope, intercept=intercept)
## Normal Distribution #####################################################

View File

@ -2501,7 +2501,7 @@ class TestLinearRegression(unittest.TestCase):
([1, 2, 3], [21, 22, 23], 20, 1),
([1, 2, 3], [5.1, 5.2, 5.3], 5, 0.1),
]:
intercept, slope = statistics.linear_regression(x, y)
slope, intercept = statistics.linear_regression(x, y)
self.assertAlmostEqual(intercept, true_intercept)
self.assertAlmostEqual(slope, true_slope)