Issue #3439: add bit_length method to int and long.

Thanks Fredrik Johansson and Victor Stinner for code,
Raymond Hettinger for review.
This commit is contained in:
Mark Dickinson 2008-12-17 16:14:37 +00:00
parent d0c3515bc5
commit 1a707981c8
8 changed files with 239 additions and 1 deletions

View File

@ -447,6 +447,41 @@ Notes:
A right shift by *n* bits is equivalent to division by ``pow(2, n)``.
Additional Methods on Integer Types
-----------------------------------
.. method:: int.bit_length()
.. method:: long.bit_length()
For any integer ``x``, ``x.bit_length()`` returns the number of
bits necessary to represent ``x`` in binary, excluding the sign
and any leading zeros::
>>> n = 37
>>> bin(n)
'0b100101'
>>> n.bit_length()
6
>>> n = -0b00011010
>>> n.bit_length()
5
More precisely, if ``x`` is nonzero then ``x.bit_length()`` is the
unique positive integer ``k`` such that ``2**(k-1) <= abs(x) <
2**k``. Equivalently, ``x.bit_length()`` is equal to ``1 +
floor(log(x, 2))`` [#]_ . If ``x`` is zero then ``x.bit_length()``
gives ``0``.
Equivalent to::
def bit_length(self):
'Number of bits necessary to represent self in binary.'
return len(bin(self).lstrip('-0b'))
.. versionadded:: 2.7
Additional Methods on Float
---------------------------
@ -2648,6 +2683,11 @@ types, where they are relevant. Some of these are not reported by the
.. [#] As a consequence, the list ``[1, 2]`` is considered equal to ``[1.0, 2.0]``, and
similarly for tuples.
.. [#] Beware of this formula! It's mathematically valid, but as a
Python expression it will not give correct results for all ``x``,
as a consequence of the limited precision of floating-point
arithmetic.
.. [#] They must have since the parser can't tell the type of the operands.
.. [#] To format only a tuple you should therefore provide a singleton tuple whose only

View File

@ -66,7 +66,23 @@ Other Language Changes
Some smaller changes made to the core Python language are:
* List of changes to be written here.
* The :func:`int` and :func:`long` types gained a ``bit_length``
method that returns the number of bits necessary to represent
its argument in binary::
>>> n = 37
>>> bin(37)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124
(Contributed by Fredrik Johansson and Victor Stinner; :issue:`3439`.)
.. ======================================================================

View File

@ -2,6 +2,7 @@ import sys
import unittest
from test.test_support import run_unittest, have_unicode
import math
L = [
('0', 0),
@ -240,6 +241,40 @@ class IntTestCases(unittest.TestCase):
self.assertEqual(int('2br45qc', 35), 4294967297L)
self.assertEqual(int('1z141z5', 36), 4294967297L)
def test_bit_length(self):
tiny = 1e-10
for x in xrange(-65000, 65000):
k = x.bit_length()
# Check equivalence with Python version
self.assertEqual(k, len(bin(x).lstrip('-0b')))
# Behaviour as specified in the docs
if x != 0:
self.assert_(2**(k-1) <= abs(x) < 2**k)
else:
self.assertEqual(k, 0)
# Alternative definition: x.bit_length() == 1 + floor(log_2(x))
if x != 0:
# When x is an exact power of 2, numeric errors can
# cause floor(log(x)/log(2)) to be one too small; for
# small x this can be fixed by adding a small quantity
# to the quotient before taking the floor.
self.assertEqual(k, 1 + math.floor(
math.log(abs(x))/math.log(2) + tiny))
self.assertEqual((0).bit_length(), 0)
self.assertEqual((1).bit_length(), 1)
self.assertEqual((-1).bit_length(), 1)
self.assertEqual((2).bit_length(), 2)
self.assertEqual((-2).bit_length(), 2)
for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64]:
a = 2**i
self.assertEqual((a-1).bit_length(), i)
self.assertEqual((1-a).bit_length(), i)
self.assertEqual((a).bit_length(), i+1)
self.assertEqual((-a).bit_length(), i+1)
self.assertEqual((a+1).bit_length(), i+1)
self.assertEqual((-a-1).bit_length(), i+1)
def test_intconversion(self):
# Test __int__()
class ClassicMissingMethods:

View File

@ -3,6 +3,7 @@ from test import test_support
import sys
import random
import math
# Used for lazy formatting of failure messages
class Frm(object):
@ -752,6 +753,42 @@ class LongTest(unittest.TestCase):
self.assertRaises(OverflowError, long, float('-inf'))
self.assertRaises(ValueError, long, float('nan'))
def test_bit_length(self):
tiny = 1e-10
for x in xrange(-65000, 65000):
x = long(x)
k = x.bit_length()
# Check equivalence with Python version
self.assertEqual(k, len(bin(x).lstrip('-0b')))
# Behaviour as specified in the docs
if x != 0:
self.assert_(2**(k-1) <= abs(x) < 2**k)
else:
self.assertEqual(k, 0)
# Alternative definition: x.bit_length() == 1 + floor(log_2(x))
if x != 0:
# When x is an exact power of 2, numeric errors can
# cause floor(log(x)/log(2)) to be one too small; for
# small x this can be fixed by adding a small quantity
# to the quotient before taking the floor.
self.assertEqual(k, 1 + math.floor(
math.log(abs(x))/math.log(2) + tiny))
self.assertEqual((0L).bit_length(), 0)
self.assertEqual((1L).bit_length(), 1)
self.assertEqual((-1L).bit_length(), 1)
self.assertEqual((2L).bit_length(), 2)
self.assertEqual((-2L).bit_length(), 2)
for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]:
a = 2L**i
self.assertEqual((a-1).bit_length(), i)
self.assertEqual((1-a).bit_length(), i)
self.assertEqual((a).bit_length(), i+1)
self.assertEqual((-a).bit_length(), i+1)
self.assertEqual((a+1).bit_length(), i+1)
self.assertEqual((-a-1).bit_length(), i+1)
def test_main():
test_support.run_unittest(LongTest)

View File

@ -343,6 +343,7 @@ Drew Jenkins
Flemming Kjær Jensen
Jiba
Orjan Johansen
Fredrik Johansson
Gregory K. Johnson
Simon Johnston
Evan Jones

View File

@ -12,6 +12,8 @@ What's New in Python 2.7 alpha 1
Core and Builtins
-----------------
- Issue #3439: Add a bit_length method to int and long.
- Issue #2183: Simplify and optimize bytecode for list comprehensions.
Original patch by Neal Norwitz.

View File

@ -1138,6 +1138,40 @@ int__format__(PyObject *self, PyObject *args)
return NULL;
}
static const unsigned char BitLengthTable[32] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
};
static PyObject *
int_bit_length(PyIntObject *v)
{
unsigned long n;
long r = 0;
if (v->ob_ival < 0)
/* avoid undefined behaviour when v->ob_ival == -LONG_MAX-1 */
n = 0U-(unsigned long)v->ob_ival;
else
n = (unsigned long)v->ob_ival;
while (n >= 32) {
r += 6;
n >>= 6;
}
r += (long)(BitLengthTable[n]);
return PyInt_FromLong(r);
}
PyDoc_STRVAR(int_bit_length_doc,
"int.bit_length() -> int\n\
\n\
Number of bits necessary to represent self in binary.\n\
>>> bin(37)\n\
'0b100101'\n\
>>> (37).bit_length()\n\
6");
#if 0
static PyObject *
int_is_finite(PyObject *v)
@ -1149,6 +1183,8 @@ int_is_finite(PyObject *v)
static PyMethodDef int_methods[] = {
{"conjugate", (PyCFunction)int_int, METH_NOARGS,
"Returns self, the complex conjugate of any int."},
{"bit_length", (PyCFunction)int_bit_length, METH_NOARGS,
int_bit_length_doc},
#if 0
{"is_finite", (PyCFunction)int_is_finite, METH_NOARGS,
"Returns always True."},

View File

@ -3451,6 +3451,75 @@ long_sizeof(PyLongObject *v)
return PyInt_FromSsize_t(res);
}
static const unsigned char BitLengthTable[32] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
};
static PyObject *
long_bit_length(PyLongObject *v)
{
PyLongObject *result, *x, *y;
Py_ssize_t ndigits, msd_bits = 0;
digit msd;
assert(v != NULL);
assert(PyLong_Check(v));
ndigits = ABS(Py_SIZE(v));
if (ndigits == 0)
return PyInt_FromLong(0);
msd = v->ob_digit[ndigits-1];
while (msd >= 32) {
msd_bits += 6;
msd >>= 6;
}
msd_bits += (long)(BitLengthTable[msd]);
if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
/* expression above may overflow; use Python integers instead */
result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
if (result == NULL)
return NULL;
x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
if (x == NULL)
goto error;
y = (PyLongObject *)long_mul(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
x = (PyLongObject *)PyLong_FromLong(msd_bits);
if (x == NULL)
goto error;
y = (PyLongObject *)long_add(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
return (PyObject *)result;
error:
Py_DECREF(result);
return NULL;
}
PyDoc_STRVAR(long_bit_length_doc,
"long.bit_length() -> int or long\n\
\n\
Number of bits necessary to represent self in binary.\n\
>>> bin(37L)\n\
'0b100101'\n\
>>> (37L).bit_length()\n\
6");
#if 0
static PyObject *
long_is_finite(PyObject *v)
@ -3462,6 +3531,8 @@ long_is_finite(PyObject *v)
static PyMethodDef long_methods[] = {
{"conjugate", (PyCFunction)long_long, METH_NOARGS,
"Returns self, the complex conjugate of any long."},
{"bit_length", (PyCFunction)long_bit_length, METH_NOARGS,
long_bit_length_doc},
#if 0
{"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
"Returns always True."},