mirror of https://github.com/python/cpython
Minor code beautifications in statistics.py (gh-124866)
This commit is contained in:
parent
04bfea2d26
commit
120729d862
|
@ -248,6 +248,7 @@ def geometric_mean(data):
|
|||
found_zero = True
|
||||
else:
|
||||
raise StatisticsError('No negative inputs allowed', x)
|
||||
|
||||
total = fsum(map(log, count_positive(data)))
|
||||
|
||||
if not n:
|
||||
|
@ -710,6 +711,7 @@ def correlation(x, y, /, *, method='linear'):
|
|||
start = (n - 1) / -2 # Center rankings around zero
|
||||
x = _rank(x, start=start)
|
||||
y = _rank(y, start=start)
|
||||
|
||||
else:
|
||||
xbar = fsum(x) / n
|
||||
ybar = fsum(y) / n
|
||||
|
@ -1213,91 +1215,6 @@ def quantiles(data, *, n=4, method='exclusive'):
|
|||
|
||||
## Normal Distribution #####################################################
|
||||
|
||||
def _normal_dist_inv_cdf(p, mu, sigma):
|
||||
# There is no closed-form solution to the inverse CDF for the normal
|
||||
# distribution, so we use a rational approximation instead:
|
||||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||||
q = p - 0.5
|
||||
|
||||
if fabs(q) <= 0.425:
|
||||
r = 0.180625 - q * q
|
||||
# Hash sum: 55.88319_28806_14901_4439
|
||||
num = (((((((2.50908_09287_30122_6727e+3 * r +
|
||||
3.34305_75583_58812_8105e+4) * r +
|
||||
6.72657_70927_00870_0853e+4) * r +
|
||||
4.59219_53931_54987_1457e+4) * r +
|
||||
1.37316_93765_50946_1125e+4) * r +
|
||||
1.97159_09503_06551_4427e+3) * r +
|
||||
1.33141_66789_17843_7745e+2) * r +
|
||||
3.38713_28727_96366_6080e+0) * q
|
||||
den = (((((((5.22649_52788_52854_5610e+3 * r +
|
||||
2.87290_85735_72194_2674e+4) * r +
|
||||
3.93078_95800_09271_0610e+4) * r +
|
||||
2.12137_94301_58659_5867e+4) * r +
|
||||
5.39419_60214_24751_1077e+3) * r +
|
||||
6.87187_00749_20579_0830e+2) * r +
|
||||
4.23133_30701_60091_1252e+1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
return mu + (x * sigma)
|
||||
|
||||
r = p if q <= 0.0 else 1.0 - p
|
||||
r = sqrt(-log(r))
|
||||
if r <= 5.0:
|
||||
r = r - 1.6
|
||||
# Hash sum: 49.33206_50330_16102_89036
|
||||
num = (((((((7.74545_01427_83414_07640e-4 * r +
|
||||
2.27238_44989_26918_45833e-2) * r +
|
||||
2.41780_72517_74506_11770e-1) * r +
|
||||
1.27045_82524_52368_38258e+0) * r +
|
||||
3.64784_83247_63204_60504e+0) * r +
|
||||
5.76949_72214_60691_40550e+0) * r +
|
||||
4.63033_78461_56545_29590e+0) * r +
|
||||
1.42343_71107_49683_57734e+0)
|
||||
den = (((((((1.05075_00716_44416_84324e-9 * r +
|
||||
5.47593_80849_95344_94600e-4) * r +
|
||||
1.51986_66563_61645_71966e-2) * r +
|
||||
1.48103_97642_74800_74590e-1) * r +
|
||||
6.89767_33498_51000_04550e-1) * r +
|
||||
1.67638_48301_83803_84940e+0) * r +
|
||||
2.05319_16266_37758_82187e+0) * r +
|
||||
1.0)
|
||||
else:
|
||||
r = r - 5.0
|
||||
# Hash sum: 47.52583_31754_92896_71629
|
||||
num = (((((((2.01033_43992_92288_13265e-7 * r +
|
||||
2.71155_55687_43487_57815e-5) * r +
|
||||
1.24266_09473_88078_43860e-3) * r +
|
||||
2.65321_89526_57612_30930e-2) * r +
|
||||
2.96560_57182_85048_91230e-1) * r +
|
||||
1.78482_65399_17291_33580e+0) * r +
|
||||
5.46378_49111_64114_36990e+0) * r +
|
||||
6.65790_46435_01103_77720e+0)
|
||||
den = (((((((2.04426_31033_89939_78564e-15 * r +
|
||||
1.42151_17583_16445_88870e-7) * r +
|
||||
1.84631_83175_10054_68180e-5) * r +
|
||||
7.86869_13114_56132_59100e-4) * r +
|
||||
1.48753_61290_85061_48525e-2) * r +
|
||||
1.36929_88092_27358_05310e-1) * r +
|
||||
5.99832_20655_58879_37690e-1) * r +
|
||||
1.0)
|
||||
|
||||
x = num / den
|
||||
if q < 0.0:
|
||||
x = -x
|
||||
|
||||
return mu + (x * sigma)
|
||||
|
||||
|
||||
# If available, use C implementation
|
||||
try:
|
||||
from _statistics import _normal_dist_inv_cdf
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
class NormalDist:
|
||||
"Normal distribution of a random variable"
|
||||
# https://en.wikipedia.org/wiki/Normal_distribution
|
||||
|
@ -1561,11 +1478,13 @@ def _sum(data):
|
|||
types_add = types.add
|
||||
partials = {}
|
||||
partials_get = partials.get
|
||||
|
||||
for typ, values in groupby(data, type):
|
||||
types_add(typ)
|
||||
for n, d in map(_exact_ratio, values):
|
||||
count += 1
|
||||
partials[d] = partials_get(d, 0) + n
|
||||
|
||||
if None in partials:
|
||||
# The sum will be a NAN or INF. We can ignore all the finite
|
||||
# partials, and just look at this special one.
|
||||
|
@ -1574,6 +1493,7 @@ def _sum(data):
|
|||
else:
|
||||
# Sum all the partial sums using builtin sum.
|
||||
total = sum(Fraction(n, d) for d, n in partials.items())
|
||||
|
||||
T = reduce(_coerce, types, int) # or raise TypeError
|
||||
return (T, total, count)
|
||||
|
||||
|
@ -1596,6 +1516,7 @@ def _ss(data, c=None):
|
|||
types_add = types.add
|
||||
sx_partials = defaultdict(int)
|
||||
sxx_partials = defaultdict(int)
|
||||
|
||||
for typ, values in groupby(data, type):
|
||||
types_add(typ)
|
||||
for n, d in map(_exact_ratio, values):
|
||||
|
@ -1605,11 +1526,13 @@ def _ss(data, c=None):
|
|||
|
||||
if not count:
|
||||
ssd = c = Fraction(0)
|
||||
|
||||
elif None in sx_partials:
|
||||
# The sum will be a NAN or INF. We can ignore all the finite
|
||||
# partials, and just look at this special one.
|
||||
ssd = c = sx_partials[None]
|
||||
assert not _isfinite(ssd)
|
||||
|
||||
else:
|
||||
sx = sum(Fraction(n, d) for d, n in sx_partials.items())
|
||||
sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items())
|
||||
|
@ -1693,8 +1616,10 @@ def _convert(value, T):
|
|||
# This covers the cases where T is Fraction, or where value is
|
||||
# a NAN or INF (Decimal or float).
|
||||
return value
|
||||
|
||||
if issubclass(T, int) and value.denominator != 1:
|
||||
T = float
|
||||
|
||||
try:
|
||||
# FIXME: what do we do if this overflows?
|
||||
return T(value)
|
||||
|
@ -1857,3 +1782,88 @@ def _sqrtprod(x: float, y: float) -> float:
|
|||
# https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
|
||||
d = sumprod((x, h), (y, -h))
|
||||
return h + d / (2.0 * h)
|
||||
|
||||
|
||||
def _normal_dist_inv_cdf(p, mu, sigma):
|
||||
# There is no closed-form solution to the inverse CDF for the normal
|
||||
# distribution, so we use a rational approximation instead:
|
||||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||||
q = p - 0.5
|
||||
|
||||
if fabs(q) <= 0.425:
|
||||
r = 0.180625 - q * q
|
||||
# Hash sum: 55.88319_28806_14901_4439
|
||||
num = (((((((2.50908_09287_30122_6727e+3 * r +
|
||||
3.34305_75583_58812_8105e+4) * r +
|
||||
6.72657_70927_00870_0853e+4) * r +
|
||||
4.59219_53931_54987_1457e+4) * r +
|
||||
1.37316_93765_50946_1125e+4) * r +
|
||||
1.97159_09503_06551_4427e+3) * r +
|
||||
1.33141_66789_17843_7745e+2) * r +
|
||||
3.38713_28727_96366_6080e+0) * q
|
||||
den = (((((((5.22649_52788_52854_5610e+3 * r +
|
||||
2.87290_85735_72194_2674e+4) * r +
|
||||
3.93078_95800_09271_0610e+4) * r +
|
||||
2.12137_94301_58659_5867e+4) * r +
|
||||
5.39419_60214_24751_1077e+3) * r +
|
||||
6.87187_00749_20579_0830e+2) * r +
|
||||
4.23133_30701_60091_1252e+1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
return mu + (x * sigma)
|
||||
|
||||
r = p if q <= 0.0 else 1.0 - p
|
||||
r = sqrt(-log(r))
|
||||
if r <= 5.0:
|
||||
r = r - 1.6
|
||||
# Hash sum: 49.33206_50330_16102_89036
|
||||
num = (((((((7.74545_01427_83414_07640e-4 * r +
|
||||
2.27238_44989_26918_45833e-2) * r +
|
||||
2.41780_72517_74506_11770e-1) * r +
|
||||
1.27045_82524_52368_38258e+0) * r +
|
||||
3.64784_83247_63204_60504e+0) * r +
|
||||
5.76949_72214_60691_40550e+0) * r +
|
||||
4.63033_78461_56545_29590e+0) * r +
|
||||
1.42343_71107_49683_57734e+0)
|
||||
den = (((((((1.05075_00716_44416_84324e-9 * r +
|
||||
5.47593_80849_95344_94600e-4) * r +
|
||||
1.51986_66563_61645_71966e-2) * r +
|
||||
1.48103_97642_74800_74590e-1) * r +
|
||||
6.89767_33498_51000_04550e-1) * r +
|
||||
1.67638_48301_83803_84940e+0) * r +
|
||||
2.05319_16266_37758_82187e+0) * r +
|
||||
1.0)
|
||||
else:
|
||||
r = r - 5.0
|
||||
# Hash sum: 47.52583_31754_92896_71629
|
||||
num = (((((((2.01033_43992_92288_13265e-7 * r +
|
||||
2.71155_55687_43487_57815e-5) * r +
|
||||
1.24266_09473_88078_43860e-3) * r +
|
||||
2.65321_89526_57612_30930e-2) * r +
|
||||
2.96560_57182_85048_91230e-1) * r +
|
||||
1.78482_65399_17291_33580e+0) * r +
|
||||
5.46378_49111_64114_36990e+0) * r +
|
||||
6.65790_46435_01103_77720e+0)
|
||||
den = (((((((2.04426_31033_89939_78564e-15 * r +
|
||||
1.42151_17583_16445_88870e-7) * r +
|
||||
1.84631_83175_10054_68180e-5) * r +
|
||||
7.86869_13114_56132_59100e-4) * r +
|
||||
1.48753_61290_85061_48525e-2) * r +
|
||||
1.36929_88092_27358_05310e-1) * r +
|
||||
5.99832_20655_58879_37690e-1) * r +
|
||||
1.0)
|
||||
|
||||
x = num / den
|
||||
if q < 0.0:
|
||||
x = -x
|
||||
|
||||
return mu + (x * sigma)
|
||||
|
||||
|
||||
# If available, use C implementation
|
||||
try:
|
||||
from _statistics import _normal_dist_inv_cdf
|
||||
except ImportError:
|
||||
pass
|
||||
|
|
Loading…
Reference in New Issue