bpo-36018: Add another example for NormalDist() (#18191)

This commit is contained in:
Raymond Hettinger 2020-01-25 20:21:17 -08:00 committed by GitHub
parent 4515a590a4
commit 10355ed7f1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 36 additions and 0 deletions

View File

@ -772,6 +772,42 @@ Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_:
>>> quantiles(map(model, X, Y, Z)) # doctest: +SKIP
[1.4591308524824727, 1.8035946855390597, 2.175091447274739]
Normal distributions can be used to approximate `Binomial
distributions <http://mathworld.wolfram.com/BinomialDistribution.html>`_
when the sample size is large and when the probability of a successful
trial is near 50%.
For example, an open source conference has 750 attendees and two rooms with a
500 person capacity. There is a talk about Python and another about Ruby.
In previous conferences, 65% of the attendees preferred to listen to Python
talks. Assuming the population preferences haven't changed, what is the
probability that the rooms will stay within their capacity limits?
.. doctest::
>>> n = 750 # Sample size
>>> p = 0.65 # Preference for Python
>>> q = 1.0 - p # Preference for Ruby
>>> k = 500 # Room capacity
>>> # Approximation using the cumulative normal distribution
>>> from math import sqrt
>>> round(NormalDist(mu=n*p, sigma=sqrt(n*p*q)).cdf(k + 0.5), 4)
0.8402
>>> # Solution using the cumulative binomial distribution
>>> from math import comb, fsum
>>> round(fsum(comb(n, r) * p**r * q**(n-r) for r in range(k+1)), 4)
0.8402
>>> # Approximation using a simulation
>>> from random import seed, choices
>>> seed(8675309)
>>> def trial():
... return choices(('Python', 'Ruby'), (p, q), k=n).count('Python')
>>> mean(trial() <= k for i in range(10_000))
0.8398
Normal distributions commonly arise in machine learning problems.
Wikipedia has a `nice example of a Naive Bayesian Classifier