diff --git a/Doc/lib/librandom.tex b/Doc/lib/librandom.tex index 63abbb38e8e..1c39c15bb2a 100644 --- a/Doc/lib/librandom.tex +++ b/Doc/lib/librandom.tex @@ -1,9 +1,9 @@ \section{\module{random} --- - Generate pseudo-random numbers with various distributions.} -\declaremodule{standard}{random} + Generate pseudo-random numbers} +\declaremodule{standard}{random} \modulesynopsis{Generate pseudo-random numbers with various common -distributions.} + distributions.} This module implements pseudo-random number generators for various @@ -13,10 +13,10 @@ distributions. For generating distribution of angles, the circular uniform and von Mises distributions are available. The module exports the following functions, which are exactly -equivalent to those in the \module{whrandom} module: +equivalent to those in the \refmodule{whrandom} module: \function{choice()}, \function{randint()}, \function{random()} and -\function{uniform()}. See the documentation for the \module{whrandom} -module for these functions. +\function{uniform()}. See the documentation for the +\refmodule{whrandom} module for these functions. The following functions specific to the \module{random} module are also defined, and all return real values. Function parameters are named @@ -34,7 +34,7 @@ Returned values will range between 0 and 1. Circular uniform distribution. \var{mean} is the mean angle, and \var{arc} is the range of the distribution, centered around the mean angle. Both values must be expressed in radians, and can range -between 0 and pi. Returned values will range between +between 0 and \emph{pi}. Returned values will range between \code{\var{mean} - \var{arc}/2} and \code{\var{mean} + \var{arc}/2}. \end{funcdesc} @@ -69,11 +69,11 @@ standard deviation. \end{funcdesc} \begin{funcdesc}{vonmisesvariate}{mu, kappa} -\var{mu} is the mean angle, expressed in radians between 0 and 2*pi, +\var{mu} is the mean angle, expressed in radians between 0 and 2*\emph{pi}, and \var{kappa} is the concentration parameter, which must be greater than or equal to zero. If \var{kappa} is equal to zero, this distribution reduces to a uniform random angle over the range 0 to -2*pi. +2*\emph{pi}. \end{funcdesc} \begin{funcdesc}{paretovariate}{alpha} @@ -86,5 +86,5 @@ Weibull distribution. \var{alpha} is the scale parameter and \end{funcdesc} \begin{seealso} -\seemodule{whrandom}{the standard Python random number generator} + \seemodule{whrandom}{the standard Python random number generator} \end{seealso}