cpython/Doc/lib/libcodecs.tex

1052 lines
33 KiB
TeX
Raw Normal View History

\section{\module{codecs} ---
Codec registry and base classes}
\declaremodule{standard}{codecs}
\modulesynopsis{Encode and decode data and streams.}
\moduleauthor{Marc-Andre Lemburg}{mal@lemburg.com}
\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
\sectionauthor{Martin v. L\"owis}{martin@v.loewis.de}
\index{Unicode}
\index{Codecs}
\indexii{Codecs}{encode}
\indexii{Codecs}{decode}
\index{streams}
\indexii{stackable}{streams}
This module defines base classes for standard Python codecs (encoders
and decoders) and provides access to the internal Python codec
registry which manages the codec and error handling lookup process.
It defines the following functions:
\begin{funcdesc}{register}{search_function}
Register a codec search function. Search functions are expected to
take one argument, the encoding name in all lower case letters, and
return a tuple of functions \code{(\var{encoder}, \var{decoder}, \var{stream_reader},
\var{stream_writer})} taking the following arguments:
\var{encoder} and \var{decoder}: These must be functions or methods
which have the same interface as the
\method{encode()}/\method{decode()} methods of Codec instances (see
Codec Interface). The functions/methods are expected to work in a
stateless mode.
\var{stream_reader} and \var{stream_writer}: These have to be
factory functions providing the following interface:
\code{factory(\var{stream}, \var{errors}='strict')}
The factory functions must return objects providing the interfaces
defined by the base classes \class{StreamWriter} and
\class{StreamReader}, respectively. Stream codecs can maintain
state.
Possible values for errors are \code{'strict'} (raise an exception
in case of an encoding error), \code{'replace'} (replace malformed
data with a suitable replacement marker, such as \character{?}),
\code{'ignore'} (ignore malformed data and continue without further
notice), \code{'xmlcharrefreplace'} (replace with the appropriate XML
character reference (for encoding only)) and \code{'backslashreplace'}
(replace with backslashed escape sequences (for encoding only)) as
well as any other error handling name defined via
\function{register_error()}.
In case a search function cannot find a given encoding, it should
return \code{None}.
\end{funcdesc}
\begin{funcdesc}{lookup}{encoding}
Looks up a codec tuple in the Python codec registry and returns the
function tuple as defined above.
Encodings are first looked up in the registry's cache. If not found,
the list of registered search functions is scanned. If no codecs tuple
is found, a \exception{LookupError} is raised. Otherwise, the codecs
tuple is stored in the cache and returned to the caller.
\end{funcdesc}
2002-04-17 16:33:06 -03:00
To simplify access to the various codecs, the module provides these
additional functions which use \function{lookup()} for the codec
lookup:
\begin{funcdesc}{getencoder}{encoding}
Lookup up the codec for the given encoding and return its encoder
function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{getdecoder}{encoding}
Lookup up the codec for the given encoding and return its decoder
function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{getreader}{encoding}
Lookup up the codec for the given encoding and return its StreamReader
class or factory function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{getwriter}{encoding}
Lookup up the codec for the given encoding and return its StreamWriter
class or factory function.
Raises a \exception{LookupError} in case the encoding cannot be found.
\end{funcdesc}
\begin{funcdesc}{register_error}{name, error_handler}
Register the error handling function \var{error_handler} under the
2002-09-08 19:26:13 -03:00
name \var{name}. \var{error_handler} will be called during encoding
and decoding in case of an error, when \var{name} is specified as the
errors parameter.
For encoding \var{error_handler} will be called with a
\exception{UnicodeEncodeError} instance, which contains information about
the location of the error. The error handler must either raise this or
a different exception or return a tuple with a replacement for the
unencodable part of the input and a position where encoding should
continue. The encoder will encode the replacement and continue encoding
the original input at the specified position. Negative position values
will be treated as being relative to the end of the input string. If the
resulting position is out of bound an IndexError will be raised.
Decoding and translating works similar, except \exception{UnicodeDecodeError}
or \exception{UnicodeTranslateError} will be passed to the handler and
that the replacement from the error handler will be put into the output
directly.
\end{funcdesc}
\begin{funcdesc}{lookup_error}{name}
Return the error handler previously register under the name \var{name}.
Raises a \exception{LookupError} in case the handler cannot be found.
\end{funcdesc}
\begin{funcdesc}{strict_errors}{exception}
Implements the \code{strict} error handling.
\end{funcdesc}
\begin{funcdesc}{replace_errors}{exception}
Implements the \code{replace} error handling.
\end{funcdesc}
\begin{funcdesc}{ignore_errors}{exception}
Implements the \code{ignore} error handling.
\end{funcdesc}
\begin{funcdesc}{xmlcharrefreplace_errors_errors}{exception}
Implements the \code{xmlcharrefreplace} error handling.
\end{funcdesc}
\begin{funcdesc}{backslashreplace_errors_errors}{exception}
Implements the \code{backslashreplace} error handling.
\end{funcdesc}
To simplify working with encoded files or stream, the module
also defines these utility functions:
\begin{funcdesc}{open}{filename, mode\optional{, encoding\optional{,
errors\optional{, buffering}}}}
Open an encoded file using the given \var{mode} and return
a wrapped version providing transparent encoding/decoding.
\note{The wrapped version will only accept the object format
defined by the codecs, i.e.\ Unicode objects for most built-in
codecs. Output is also codec-dependent and will usually be Unicode as
well.}
\var{encoding} specifies the encoding which is to be used for the
2003-09-22 12:00:55 -03:00
file.
\var{errors} may be given to define the error handling. It defaults
to \code{'strict'} which causes a \exception{ValueError} to be raised
in case an encoding error occurs.
\var{buffering} has the same meaning as for the built-in
\function{open()} function. It defaults to line buffered.
\end{funcdesc}
\begin{funcdesc}{EncodedFile}{file, input\optional{,
output\optional{, errors}}}
Return a wrapped version of file which provides transparent
encoding translation.
Strings written to the wrapped file are interpreted according to the
given \var{input} encoding and then written to the original file as
strings using the \var{output} encoding. The intermediate encoding will
usually be Unicode but depends on the specified codecs.
If \var{output} is not given, it defaults to \var{input}.
\var{errors} may be given to define the error handling. It defaults to
\code{'strict'}, which causes \exception{ValueError} to be raised in case
an encoding error occurs.
\end{funcdesc}
The module also provides the following constants which are useful
for reading and writing to platform dependent files:
\begin{datadesc}{BOM}
\dataline{BOM_BE}
\dataline{BOM_LE}
\dataline{BOM_UTF8}
\dataline{BOM_UTF16}
\dataline{BOM_UTF16_BE}
\dataline{BOM_UTF16_LE}
\dataline{BOM_UTF32}
\dataline{BOM_UTF32_BE}
\dataline{BOM_UTF32_LE}
These constants define various encodings of the Unicode byte order mark
(BOM) used in UTF-16 and UTF-32 data streams to indicate the byte order
used in the stream or file and in UTF-8 as a Unicode signature.
\constant{BOM_UTF16} is either \constant{BOM_UTF16_BE} or
\constant{BOM_UTF16_LE} depending on the platform's native byte order,
\constant{BOM} is an alias for \constant{BOM_UTF16}, \constant{BOM_LE}
for \constant{BOM_UTF16_LE} and \constant{BOM_BE} for \constant{BOM_UTF16_BE}.
The others represent the BOM in UTF-8 and UTF-32 encodings.
\end{datadesc}
\subsection{Codec Base Classes}
The \module{codecs} defines a set of base classes which define the
interface and can also be used to easily write you own codecs for use
in Python.
Each codec has to define four interfaces to make it usable as codec in
Python: stateless encoder, stateless decoder, stream reader and stream
writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols.
The \class{Codec} class defines the interface for stateless
encoders/decoders.
To simplify and standardize error handling, the \method{encode()} and
\method{decode()} methods may implement different error handling
schemes by providing the \var{errors} string argument. The following
string values are defined and implemented by all standard Python
codecs:
\begin{tableii}{l|l}{code}{Value}{Meaning}
\lineii{'strict'}{Raise \exception{UnicodeError} (or a subclass);
this is the default.}
\lineii{'ignore'}{Ignore the character and continue with the next.}
\lineii{'replace'}{Replace with a suitable replacement character;
Python will use the official U+FFFD REPLACEMENT
CHARACTER for the built-in Unicode codecs on
decoding and '?' on encoding.}
\lineii{'xmlcharrefreplace'}{Replace with the appropriate XML
character reference (only for encoding).}
\lineii{'backslashreplace'}{Replace with backslashed escape sequences
(only for encoding).}
\end{tableii}
The set of allowed values can be extended via \method{register_error}.
\subsubsection{Codec Objects \label{codec-objects}}
The \class{Codec} class defines these methods which also define the
function interfaces of the stateless encoder and decoder:
\begin{methoddesc}{encode}{input\optional{, errors}}
Encodes the object \var{input} and returns a tuple (output object,
length consumed). While codecs are not restricted to use with Unicode, in
a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (e.g., \code{cp1252} or
\code{iso-8859-1}).
\var{errors} defines the error handling to apply. It defaults to
\code{'strict'} handling.
The method may not store state in the \class{Codec} instance. Use
\class{StreamCodec} for codecs which have to keep state in order to
make encoding/decoding efficient.
The encoder must be able to handle zero length input and return an
empty object of the output object type in this situation.
\end{methoddesc}
\begin{methoddesc}{decode}{input\optional{, errors}}
Decodes the object \var{input} and returns a tuple (output object,
length consumed). In a Unicode context, decoding converts a plain string
encoded using a particular character set encoding to a Unicode object.
\var{input} must be an object which provides the \code{bf_getreadbuf}
buffer slot. Python strings, buffer objects and memory mapped files
are examples of objects providing this slot.
\var{errors} defines the error handling to apply. It defaults to
\code{'strict'} handling.
The method may not store state in the \class{Codec} instance. Use
\class{StreamCodec} for codecs which have to keep state in order to
make encoding/decoding efficient.
The decoder must be able to handle zero length input and return an
empty object of the output object type in this situation.
\end{methoddesc}
The \class{StreamWriter} and \class{StreamReader} classes provide
generic working interfaces which can be used to implement new
encodings submodules very easily. See \module{encodings.utf_8} for an
example on how this is done.
\subsubsection{StreamWriter Objects \label{stream-writer-objects}}
The \class{StreamWriter} class is a subclass of \class{Codec} and
defines the following methods which every stream writer must define in
order to be compatible to the Python codec registry.
\begin{classdesc}{StreamWriter}{stream\optional{, errors}}
Constructor for a \class{StreamWriter} instance.
All stream writers must provide this constructor interface. They are
free to add additional keyword arguments, but only the ones defined
here are used by the Python codec registry.
\var{stream} must be a file-like object open for writing (binary)
data.
The \class{StreamWriter} may implement different error handling
schemes by providing the \var{errors} keyword argument. These
parameters are predefined:
\begin{itemize}
\item \code{'strict'} Raise \exception{ValueError} (or a subclass);
this is the default.
\item \code{'ignore'} Ignore the character and continue with the next.
\item \code{'replace'} Replace with a suitable replacement character
\item \code{'xmlcharrefreplace'} Replace with the appropriate XML
character reference
\item \code{'backslashreplace'} Replace with backslashed escape sequences.
\end{itemize}
The \var{errors} argument will be assigned to an attribute of the
same name. Assigning to this attribute makes it possible to switch
between different error handling strategies during the lifetime
of the \class{StreamWriter} object.
The set of allowed values for the \var{errors} argument can
be extended with \function{register_error()}.
\end{classdesc}
\begin{methoddesc}{write}{object}
Writes the object's contents encoded to the stream.
\end{methoddesc}
\begin{methoddesc}{writelines}{list}
Writes the concatenated list of strings to the stream (possibly by
reusing the \method{write()} method).
\end{methoddesc}
\begin{methoddesc}{reset}{}
Flushes and resets the codec buffers used for keeping state.
Calling this method should ensure that the data on the output is put
into a clean state, that allows appending of new fresh data without
having to rescan the whole stream to recover state.
\end{methoddesc}
In addition to the above methods, the \class{StreamWriter} must also
inherit all other methods and attribute from the underlying stream.
\subsubsection{StreamReader Objects \label{stream-reader-objects}}
The \class{StreamReader} class is a subclass of \class{Codec} and
defines the following methods which every stream reader must define in
order to be compatible to the Python codec registry.
\begin{classdesc}{StreamReader}{stream\optional{, errors}}
Constructor for a \class{StreamReader} instance.
All stream readers must provide this constructor interface. They are
free to add additional keyword arguments, but only the ones defined
here are used by the Python codec registry.
\var{stream} must be a file-like object open for reading (binary)
data.
The \class{StreamReader} may implement different error handling
schemes by providing the \var{errors} keyword argument. These
parameters are defined:
\begin{itemize}
\item \code{'strict'} Raise \exception{ValueError} (or a subclass);
this is the default.
\item \code{'ignore'} Ignore the character and continue with the next.
\item \code{'replace'} Replace with a suitable replacement character.
\end{itemize}
The \var{errors} argument will be assigned to an attribute of the
same name. Assigning to this attribute makes it possible to switch
between different error handling strategies during the lifetime
of the \class{StreamReader} object.
The set of allowed values for the \var{errors} argument can
be extended with \function{register_error()}.
\end{classdesc}
\begin{methoddesc}{read}{\optional{size}}
Decodes data from the stream and returns the resulting object.
\var{size} indicates the approximate maximum number of bytes to read
from the stream for decoding purposes. The decoder can modify this
setting as appropriate. The default value -1 indicates to read and
decode as much as possible. \var{size} is intended to prevent having
to decode huge files in one step.
The method should use a greedy read strategy meaning that it should
read as much data as is allowed within the definition of the encoding
and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too.
\end{methoddesc}
\begin{methoddesc}{readline}{[size]}
Read one line from the input stream and return the
decoded data.
Unlike the \method{readlines()} method, this method inherits
the line breaking knowledge from the underlying stream's
\method{readline()} method -- there is currently no support for line
breaking using the codec decoder due to lack of line buffering.
Sublcasses should however, if possible, try to implement this method
using their own knowledge of line breaking.
\var{size}, if given, is passed as size argument to the stream's
\method{readline()} method.
\end{methoddesc}
\begin{methoddesc}{readlines}{[sizehint]}
Read all lines available on the input stream and return them as list
of lines.
Line breaks are implemented using the codec's decoder method and are
included in the list entries.
\var{sizehint}, if given, is passed as \var{size} argument to the
stream's \method{read()} method.
\end{methoddesc}
\begin{methoddesc}{reset}{}
Resets the codec buffers used for keeping state.
Note that no stream repositioning should take place. This method is
primarily intended to be able to recover from decoding errors.
\end{methoddesc}
In addition to the above methods, the \class{StreamReader} must also
inherit all other methods and attribute from the underlying stream.
The next two base classes are included for convenience. They are not
needed by the codec registry, but may provide useful in practice.
\subsubsection{StreamReaderWriter Objects \label{stream-reader-writer}}
The \class{StreamReaderWriter} allows wrapping streams which work in
both read and write modes.
The design is such that one can use the factory functions returned by
the \function{lookup()} function to construct the instance.
\begin{classdesc}{StreamReaderWriter}{stream, Reader, Writer, errors}
Creates a \class{StreamReaderWriter} instance.
\var{stream} must be a file-like object.
\var{Reader} and \var{Writer} must be factory functions or classes
providing the \class{StreamReader} and \class{StreamWriter} interface
resp.
Error handling is done in the same way as defined for the
stream readers and writers.
\end{classdesc}
\class{StreamReaderWriter} instances define the combined interfaces of
\class{StreamReader} and \class{StreamWriter} classes. They inherit
all other methods and attribute from the underlying stream.
\subsubsection{StreamRecoder Objects \label{stream-recoder-objects}}
The \class{StreamRecoder} provide a frontend - backend view of
encoding data which is sometimes useful when dealing with different
encoding environments.
The design is such that one can use the factory functions returned by
the \function{lookup()} function to construct the instance.
\begin{classdesc}{StreamRecoder}{stream, encode, decode,
Reader, Writer, errors}
Creates a \class{StreamRecoder} instance which implements a two-way
conversion: \var{encode} and \var{decode} work on the frontend (the
input to \method{read()} and output of \method{write()}) while
\var{Reader} and \var{Writer} work on the backend (reading and
writing to the stream).
You can use these objects to do transparent direct recodings from
e.g.\ Latin-1 to UTF-8 and back.
\var{stream} must be a file-like object.
\var{encode}, \var{decode} must adhere to the \class{Codec}
interface, \var{Reader}, \var{Writer} must be factory functions or
classes providing objects of the \class{StreamReader} and
\class{StreamWriter} interface respectively.
\var{encode} and \var{decode} are needed for the frontend
translation, \var{Reader} and \var{Writer} for the backend
translation. The intermediate format used is determined by the two
sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.
Error handling is done in the same way as defined for the
stream readers and writers.
\end{classdesc}
\class{StreamRecoder} instances define the combined interfaces of
\class{StreamReader} and \class{StreamWriter} classes. They inherit
all other methods and attribute from the underlying stream.
\subsection{Standard Encodings\label{standard-encodings}}
2002-12-31 08:39:07 -04:00
Python comes with a number of codecs builtin, either implemented as C
functions, or with dictionaries as mapping tables. The following table
lists the codecs by name, together with a few common aliases, and the
languages for which the encoding is likely used. Neither the list of
aliases nor the list of languages is meant to be exhaustive. Notice
that spelling alternatives that only differ in case or use a hyphen
instead of an underscore are also valid aliases.
Many of the character sets support the same languages. They vary in
individual characters (e.g. whether the EURO SIGN is supported or
not), and in the assignment of characters to code positions. For the
European languages in particular, the following variants typically
exist:
\begin{itemize}
\item an ISO 8859 codeset
\item a Microsoft Windows code page, which is typically derived from
a 8859 codeset, but replaces control characters with additional
graphic characters
\item an IBM EBCDIC code page
\item an IBM PC code page, which is \ASCII{} compatible
2002-12-31 08:39:07 -04:00
\end{itemize}
\begin{longtableiii}{l|l|l}{textrm}{Codec}{Aliases}{Languages}
\lineiii{ascii}
{646, us-ascii}
{English}
\lineiii{big5}
{big5-tw, csbig5}
{Traditional Chinese}
\lineiii{big5hkscs}
{big5-hkscs, hkscs}
{Traditional Chinese}
2002-12-31 08:39:07 -04:00
\lineiii{cp037}
{IBM037, IBM039}
{English}
\lineiii{cp424}
{EBCDIC-CP-HE, IBM424}
{Hebrew}
\lineiii{cp437}
{437, IBM437}
{English}
\lineiii{cp500}
{EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500}
{Western Europe}
\lineiii{cp737}
{}
{Greek}
\lineiii{cp775}
{IBM775}
{Baltic languages}
\lineiii{cp850}
{850, IBM850}
{Western Europe}
\lineiii{cp852}
{852, IBM852}
{Central and Eastern Europe}
\lineiii{cp855}
{855, IBM855}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{cp856}
{}
{Hebrew}
\lineiii{cp857}
{857, IBM857}
{Turkish}
\lineiii{cp860}
{860, IBM860}
{Portuguese}
\lineiii{cp861}
{861, CP-IS, IBM861}
{Icelandic}
\lineiii{cp862}
{862, IBM862}
{Hebrew}
\lineiii{cp863}
{863, IBM863}
{Canadian}
\lineiii{cp864}
{IBM864}
{Arabic}
\lineiii{cp865}
{865, IBM865}
{Danish, Norwegian}
2004-07-01 23:14:34 -03:00
\lineiii{cp866}
{866, IBM866}
{Russian}
2002-12-31 08:39:07 -04:00
\lineiii{cp869}
{869, CP-GR, IBM869}
{Greek}
\lineiii{cp874}
{}
{Thai}
\lineiii{cp875}
{}
{Greek}
\lineiii{cp932}
{932, ms932, mskanji, ms-kanji}
{Japanese}
\lineiii{cp949}
{949, ms949, uhc}
{Korean}
\lineiii{cp950}
{950, ms950}
{Traditional Chinese}
2002-12-31 08:39:07 -04:00
\lineiii{cp1006}
{}
{Urdu}
\lineiii{cp1026}
{ibm1026}
{Turkish}
\lineiii{cp1140}
{ibm1140}
{Western Europe}
\lineiii{cp1250}
{windows-1250}
{Central and Eastern Europe}
\lineiii{cp1251}
{windows-1251}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{cp1252}
{windows-1252}
{Western Europe}
\lineiii{cp1253}
{windows-1253}
{Greek}
\lineiii{cp1254}
{windows-1254}
{Turkish}
\lineiii{cp1255}
{windows-1255}
{Hebrew}
\lineiii{cp1256}
{windows1256}
{Arabic}
\lineiii{cp1257}
{windows-1257}
{Baltic languages}
\lineiii{cp1258}
{windows-1258}
{Vietnamese}
\lineiii{euc_jp}
{eucjp, ujis, u-jis}
{Japanese}
\lineiii{euc_jis_2004}
{jisx0213, eucjis2004}
{Japanese}
\lineiii{euc_jisx0213}
{eucjisx0213}
{Japanese}
\lineiii{euc_kr}
{euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001}
{Korean}
\lineiii{gb2312}
{chinese, csiso58gb231280, euc-cn, euccn, eucgb2312-cn, gb2312-1980,
gb2312-80, iso-ir-58}
{Simplified Chinese}
\lineiii{gbk}
{936, cp936, ms936}
{Unified Chinese}
\lineiii{gb18030}
{gb18030-2000}
{Unified Chinese}
\lineiii{hz}
{hzgb, hz-gb, hz-gb-2312}
{Simplified Chinese}
\lineiii{iso2022_jp}
{csiso2022jp, iso2022jp, iso-2022-jp}
{Japanese}
\lineiii{iso2022_jp_1}
{iso2022jp-1, iso-2022-jp-1}
{Japanese}
\lineiii{iso2022_jp_2}
{iso2022jp-2, iso-2022-jp-2}
{Japanese, Korean, Simplified Chinese, Western Europe, Greek}
\lineiii{iso2022_jp_2004}
{iso2022jp-2004, iso-2022-jp-2004}
{Japanese}
\lineiii{iso2022_jp_3}
{iso2022jp-3, iso-2022-jp-3}
{Japanese}
\lineiii{iso2022_jp_ext}
{iso2022jp-ext, iso-2022-jp-ext}
{Japanese}
\lineiii{iso2022_kr}
{csiso2022kr, iso2022kr, iso-2022-kr}
{Korean}
2002-12-31 08:39:07 -04:00
\lineiii{latin_1}
{iso-8859-1, iso8859-1, 8859, cp819, latin, latin1, L1}
{West Europe}
\lineiii{iso8859_2}
{iso-8859-2, latin2, L2}
{Central and Eastern Europe}
\lineiii{iso8859_3}
{iso-8859-3, latin3, L3}
{Esperanto, Maltese}
\lineiii{iso8859_4}
{iso-8859-4, latin4, L4}
{Baltic languagues}
\lineiii{iso8859_5}
{iso-8859-5, cyrillic}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{iso8859_6}
{iso-8859-6, arabic}
{Arabic}
\lineiii{iso8859_7}
{iso-8859-7, greek, greek8}
{Greek}
\lineiii{iso8859_8}
{iso-8859-8, hebrew}
{Hebrew}
\lineiii{iso8859_9}
{iso-8859-9, latin5, L5}
{Turkish}
\lineiii{iso8859_10}
{iso-8859-10, latin6, L6}
{Nordic languages}
\lineiii{iso8859_13}
{iso-8859-13}
{Baltic languages}
\lineiii{iso8859_14}
{iso-8859-14, latin8, L8}
{Celtic languages}
\lineiii{iso8859_15}
{iso-8859-15}
{Western Europe}
\lineiii{johab}
{cp1361, ms1361}
{Korean}
2002-12-31 08:39:07 -04:00
\lineiii{koi8_r}
{}
{Russian}
\lineiii{koi8_u}
{}
{Ukrainian}
\lineiii{mac_cyrillic}
{maccyrillic}
{Bulgarian, Byelorussian, Macedonian, Russian, Serbian}
\lineiii{mac_greek}
{macgreek}
{Greek}
\lineiii{mac_iceland}
{maciceland}
{Icelandic}
\lineiii{mac_latin2}
{maclatin2, maccentraleurope}
{Central and Eastern Europe}
\lineiii{mac_roman}
{macroman}
{Western Europe}
\lineiii{mac_turkish}
{macturkish}
{Turkish}
\lineiii{ptcp154}
{csptcp154, pt154, cp154, cyrillic-asian}
{Kazakh}
\lineiii{shift_jis}
{csshiftjis, shiftjis, sjis, s_jis}
{Japanese}
\lineiii{shift_jis_2004}
{shiftjis2004, sjis_2004, sjis2004}
{Japanese}
\lineiii{shift_jisx0213}
{shiftjisx0213, sjisx0213, s_jisx0213}
{Japanese}
2002-12-31 08:39:07 -04:00
\lineiii{utf_16}
{U16, utf16}
{all languages}
\lineiii{utf_16_be}
{UTF-16BE}
{all languages (BMP only)}
\lineiii{utf_16_le}
{UTF-16LE}
{all languages (BMP only)}
\lineiii{utf_7}
{U7}
{all languages}
\lineiii{utf_8}
{U8, UTF, utf8}
{all languages}
\end{longtableiii}
A number of codecs are specific to Python, so their codec names have
no meaning outside Python. Some of them don't convert from Unicode
strings to byte strings, but instead use the property of the Python
codecs machinery that any bijective function with one argument can be
considered as an encoding.
For the codecs listed below, the result in the ``encoding'' direction
is always a byte string. The result of the ``decoding'' direction is
listed as operand type in the table.
\begin{tableiv}{l|l|l|l}{textrm}{Codec}{Aliases}{Operand type}{Purpose}
\lineiv{base64_codec}
{base64, base-64}
{byte string}
{Convert operand to MIME base64}
2003-09-23 17:21:01 -03:00
\lineiv{bz2_codec}
{bz2}
{byte string}
{Compress the operand using bz2}
2002-12-31 08:39:07 -04:00
\lineiv{hex_codec}
{hex}
{byte string}
{Convert operand to hexadecimal representation, with two
digits per byte}
2002-12-31 08:39:07 -04:00
\lineiv{idna}
{}
{Unicode string}
{Implements \rfc{3490}.
2003-09-01 20:13:04 -03:00
\versionadded{2.3}
See also \refmodule{encodings.idna}}
2002-12-31 08:39:07 -04:00
\lineiv{mbcs}
{dbcs}
{Unicode string}
{Windows only: Encode operand according to the ANSI codepage (CP_ACP)}
\lineiv{palmos}
{}
{Unicode string}
{Encoding of PalmOS 3.5}
\lineiv{punycode}
{}
{Unicode string}
{Implements \rfc{3492}.
\versionadded{2.3}}
2002-12-31 08:39:07 -04:00
\lineiv{quopri_codec}
{quopri, quoted-printable, quotedprintable}
{byte string}
{Convert operand to MIME quoted printable}
\lineiv{raw_unicode_escape}
{}
{Unicode string}
{Produce a string that is suitable as raw Unicode literal in
Python source code}
2002-12-31 08:39:07 -04:00
\lineiv{rot_13}
{rot13}
{byte string}
{Returns the Caesar-cypher encryption of the operand}
\lineiv{string_escape}
{}
{byte string}
{Produce a string that is suitable as string literal in
Python source code}
2002-12-31 08:39:07 -04:00
\lineiv{undefined}
{}
{any}
{Raise an exception for all conversion. Can be used as the
system encoding if no automatic coercion between byte and
Unicode strings is desired.}
2002-12-31 08:39:07 -04:00
\lineiv{unicode_escape}
{}
{Unicode string}
{Produce a string that is suitable as Unicode literal in
Python source code}
2002-12-31 08:39:07 -04:00
\lineiv{unicode_internal}
{}
{Unicode string}
{Return the internal represenation of the operand}
\lineiv{uu_codec}
{uu}
{byte string}
{Convert the operand using uuencode}
\lineiv{zlib_codec}
{zip, zlib}
{byte string}
{Compress the operand using gzip}
\end{tableiv}
\subsection{\module{encodings.idna} ---
Internationalized Domain Names in Applications}
\declaremodule{standard}{encodings.idna}
\modulesynopsis{Internationalized Domain Names implementation}
% XXX The next line triggers a formatting bug, so it's commented out
% until that can be fixed.
%\moduleauthor{Martin v. L\"owis}
\versionadded{2.3}
This module implements \rfc{3490} (Internationalized Domain Names in
Applications) and \rfc{3492} (Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN)). It builds upon the
2003-07-16 02:17:23 -03:00
\code{punycode} encoding and \refmodule{stringprep}.
These RFCs together define a protocol to support non-\ASCII{} characters
in domain names. A domain name containing non-\ASCII{} characters (such
2003-07-16 02:17:23 -03:00
as ``www.Alliancefran\c caise.nu'') is converted into an
\ASCII-compatible encoding (ACE, such as
``www.xn--alliancefranaise-npb.nu''). The ACE form of the domain name
is then used in all places where arbitrary characters are not allowed
by the protocol, such as DNS queries, HTTP \mailheader{Host} fields, and so
on. This conversion is carried out in the application; if possible
invisible to the user: The application should transparently convert
Unicode domain labels to IDNA on the wire, and convert back ACE labels
to Unicode before presenting them to the user.
Python supports this conversion in several ways: The \code{idna} codec
allows to convert between Unicode and the ACE. Furthermore, the
2003-07-16 02:17:23 -03:00
\refmodule{socket} module transparently converts Unicode host names to
ACE, so that applications need not be concerned about converting host
names themselves when they pass them to the socket module. On top of
that, modules that have host names as function parameters, such as
2003-07-16 02:17:23 -03:00
\refmodule{httplib} and \refmodule{ftplib}, accept Unicode host names
(\refmodule{httplib} then also transparently sends an IDNA hostname in
the \mailheader{Host} field if it sends that field at all).
When receiving host names from the wire (such as in reverse name
lookup), no automatic conversion to Unicode is performed: Applications
wishing to present such host names to the user should decode them to
Unicode.
The module \module{encodings.idna} also implements the nameprep
procedure, which performs certain normalizations on host names, to
achieve case-insensitivity of international domain names, and to unify
similar characters. The nameprep functions can be used directly if
desired.
\begin{funcdesc}{nameprep}{label}
Return the nameprepped version of \var{label}. The implementation
currently assumes query strings, so \code{AllowUnassigned} is
true.
\end{funcdesc}
2003-06-17 22:58:31 -03:00
\begin{funcdesc}{ToASCII}{label}
Convert a label to \ASCII, as specified in \rfc{3490}.
\code{UseSTD3ASCIIRules} is assumed to be false.
\end{funcdesc}
\begin{funcdesc}{ToUnicode}{label}
Convert a label to Unicode, as specified in \rfc{3490}.
\end{funcdesc}