cpython/Include/internal/pycore_import.h

214 lines
7.3 KiB
C
Raw Normal View History

#ifndef Py_LIMITED_API
#ifndef Py_INTERNAL_IMPORT_H
#define Py_INTERNAL_IMPORT_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef Py_BUILD_CORE
# error "this header requires Py_BUILD_CORE define"
#endif
#include "pycore_hashtable.h" // _Py_hashtable_t
#include "pycore_time.h" // _PyTime_t
extern int _PyImport_IsInitialized(PyInterpreterState *);
// Export for 'pyexpat' shared extension
PyAPI_FUNC(int) _PyImport_SetModule(PyObject *name, PyObject *module);
extern int _PyImport_SetModuleString(const char *name, PyObject* module);
extern void _PyImport_AcquireLock(PyInterpreterState *interp);
extern int _PyImport_ReleaseLock(PyInterpreterState *interp);
extern int _PyImport_FixupBuiltin(
PyObject *mod,
const char *name, /* UTF-8 encoded string */
PyObject *modules
);
extern int _PyImport_FixupExtensionObject(PyObject*, PyObject *,
PyObject *, PyObject *);
// Export for many shared extensions, like '_json'
PyAPI_FUNC(PyObject*) _PyImport_GetModuleAttr(PyObject *, PyObject *);
// Export for many shared extensions, like '_datetime'
PyAPI_FUNC(PyObject*) _PyImport_GetModuleAttrString(const char *, const char *);
struct _import_runtime_state {
/* The builtin modules (defined in config.c). */
struct _inittab *inittab;
/* The most recent value assigned to a PyModuleDef.m_base.m_index.
This is incremented each time PyModuleDef_Init() is called,
which is just about every time an extension module is imported.
See PyInterpreterState.modules_by_index for more info. */
Py_ssize_t last_module_index;
gh-100227: Make the Global PyModuleDef Cache Safe for Isolated Interpreters (gh-103084) Sharing mutable (or non-immortal) objects between interpreters is generally not safe. We can work around that but not easily. There are two restrictions that are critical for objects that break interpreter isolation. The first is that the object's state be guarded by a global lock. For now the GIL meets this requirement, but a granular global lock is needed once we have a per-interpreter GIL. The second restriction is that the object (and, for a container, its items) be deallocated/resized only when the interpreter in which it was allocated is the current one. This is because every interpreter has (or will have, see gh-101660) its own object allocator. Deallocating an object with a different allocator can cause crashes. The dict for the cache of module defs is completely internal, which simplifies what we have to do to meet those requirements. To do so, we do the following: * add a mechanism for re-using a temporary thread state tied to the main interpreter in an arbitrary thread * add _PyRuntime.imports.extensions.main_tstate` * add _PyThreadState_InitDetached() and _PyThreadState_ClearDetached() (pystate.c) * add _PyThreadState_BindDetached() and _PyThreadState_UnbindDetached() (pystate.c) * make sure the cache dict (_PyRuntime.imports.extensions.dict) and its items are all owned by the main interpreter) * add a placeholder using for a granular global lock Note that the cache is only used for legacy extension modules and not for multi-phase init modules. https://github.com/python/cpython/issues/100227
2023-03-29 20:15:43 -03:00
struct {
/* A lock to guard the cache. */
PyThread_type_lock mutex;
/* The actual cache of (filename, name, PyModuleDef) for modules.
gh-100227: Make the Global PyModuleDef Cache Safe for Isolated Interpreters (gh-103084) Sharing mutable (or non-immortal) objects between interpreters is generally not safe. We can work around that but not easily. There are two restrictions that are critical for objects that break interpreter isolation. The first is that the object's state be guarded by a global lock. For now the GIL meets this requirement, but a granular global lock is needed once we have a per-interpreter GIL. The second restriction is that the object (and, for a container, its items) be deallocated/resized only when the interpreter in which it was allocated is the current one. This is because every interpreter has (or will have, see gh-101660) its own object allocator. Deallocating an object with a different allocator can cause crashes. The dict for the cache of module defs is completely internal, which simplifies what we have to do to meet those requirements. To do so, we do the following: * add a mechanism for re-using a temporary thread state tied to the main interpreter in an arbitrary thread * add _PyRuntime.imports.extensions.main_tstate` * add _PyThreadState_InitDetached() and _PyThreadState_ClearDetached() (pystate.c) * add _PyThreadState_BindDetached() and _PyThreadState_UnbindDetached() (pystate.c) * make sure the cache dict (_PyRuntime.imports.extensions.dict) and its items are all owned by the main interpreter) * add a placeholder using for a granular global lock Note that the cache is only used for legacy extension modules and not for multi-phase init modules. https://github.com/python/cpython/issues/100227
2023-03-29 20:15:43 -03:00
Only legacy (single-phase init) extension modules are added
and only if they support multiple initialization (m_size >- 0)
or are imported in the main interpreter.
This is initialized lazily in _PyImport_FixupExtensionObject().
Modules are added there and looked up in _imp.find_extension(). */
_Py_hashtable_t *hashtable;
gh-100227: Make the Global PyModuleDef Cache Safe for Isolated Interpreters (gh-103084) Sharing mutable (or non-immortal) objects between interpreters is generally not safe. We can work around that but not easily. There are two restrictions that are critical for objects that break interpreter isolation. The first is that the object's state be guarded by a global lock. For now the GIL meets this requirement, but a granular global lock is needed once we have a per-interpreter GIL. The second restriction is that the object (and, for a container, its items) be deallocated/resized only when the interpreter in which it was allocated is the current one. This is because every interpreter has (or will have, see gh-101660) its own object allocator. Deallocating an object with a different allocator can cause crashes. The dict for the cache of module defs is completely internal, which simplifies what we have to do to meet those requirements. To do so, we do the following: * add a mechanism for re-using a temporary thread state tied to the main interpreter in an arbitrary thread * add _PyRuntime.imports.extensions.main_tstate` * add _PyThreadState_InitDetached() and _PyThreadState_ClearDetached() (pystate.c) * add _PyThreadState_BindDetached() and _PyThreadState_UnbindDetached() (pystate.c) * make sure the cache dict (_PyRuntime.imports.extensions.dict) and its items are all owned by the main interpreter) * add a placeholder using for a granular global lock Note that the cache is only used for legacy extension modules and not for multi-phase init modules. https://github.com/python/cpython/issues/100227
2023-03-29 20:15:43 -03:00
} extensions;
/* Package context -- the full module name for package imports */
const char * pkgcontext;
};
struct _import_state {
/* cached sys.modules dictionary */
PyObject *modules;
/* This is the list of module objects for all legacy (single-phase init)
extension modules ever loaded in this process (i.e. imported
in this interpreter or in any other). Py_None stands in for
modules that haven't actually been imported in this interpreter.
A module's index (PyModuleDef.m_base.m_index) is used to look up
the corresponding module object for this interpreter, if any.
(See PyState_FindModule().) When any extension module
is initialized during import, its moduledef gets initialized by
PyModuleDef_Init(), and the first time that happens for each
PyModuleDef, its index gets set to the current value of
a global counter (see _PyRuntimeState.imports.last_module_index).
The entry for that index in this interpreter remains unset until
the module is actually imported here. (Py_None is used as
a placeholder.) Note that multi-phase init modules always get
an index for which there will never be a module set.
This is initialized lazily in PyState_AddModule(), which is also
where modules get added. */
PyObject *modules_by_index;
/* importlib module._bootstrap */
PyObject *importlib;
/* override for config->use_frozen_modules (for tests)
(-1: "off", 1: "on", 0: no override) */
int override_frozen_modules;
int override_multi_interp_extensions_check;
#ifdef HAVE_DLOPEN
int dlopenflags;
#endif
PyObject *import_func;
/* The global import lock. */
struct {
PyThread_type_lock mutex;
unsigned long thread;
int level;
} lock;
/* diagnostic info in PyImport_ImportModuleLevelObject() */
struct {
int import_level;
_PyTime_t accumulated;
int header;
} find_and_load;
};
#ifdef HAVE_DLOPEN
# include <dlfcn.h> // RTLD_NOW, RTLD_LAZY
# if HAVE_DECL_RTLD_NOW
# define _Py_DLOPEN_FLAGS RTLD_NOW
# else
# define _Py_DLOPEN_FLAGS RTLD_LAZY
# endif
# define DLOPENFLAGS_INIT .dlopenflags = _Py_DLOPEN_FLAGS,
#else
# define _Py_DLOPEN_FLAGS 0
# define DLOPENFLAGS_INIT
#endif
#define IMPORTS_INIT \
{ \
DLOPENFLAGS_INIT \
.lock = { \
.mutex = NULL, \
.thread = PYTHREAD_INVALID_THREAD_ID, \
.level = 0, \
}, \
.find_and_load = { \
.header = 1, \
}, \
}
extern void _PyImport_ClearCore(PyInterpreterState *interp);
extern Py_ssize_t _PyImport_GetNextModuleIndex(void);
extern const char * _PyImport_ResolveNameWithPackageContext(const char *name);
extern const char * _PyImport_SwapPackageContext(const char *newcontext);
extern int _PyImport_GetDLOpenFlags(PyInterpreterState *interp);
extern void _PyImport_SetDLOpenFlags(PyInterpreterState *interp, int new_val);
extern PyObject * _PyImport_InitModules(PyInterpreterState *interp);
extern PyObject * _PyImport_GetModules(PyInterpreterState *interp);
extern void _PyImport_ClearModules(PyInterpreterState *interp);
extern void _PyImport_ClearModulesByIndex(PyInterpreterState *interp);
extern int _PyImport_InitDefaultImportFunc(PyInterpreterState *interp);
extern int _PyImport_IsDefaultImportFunc(
PyInterpreterState *interp,
PyObject *func);
extern PyObject * _PyImport_GetImportlibLoader(
PyInterpreterState *interp,
const char *loader_name);
extern PyObject * _PyImport_GetImportlibExternalLoader(
PyInterpreterState *interp,
const char *loader_name);
extern PyObject * _PyImport_BlessMyLoader(
PyInterpreterState *interp,
PyObject *module_globals);
extern PyObject * _PyImport_ImportlibModuleRepr(
PyInterpreterState *interp,
PyObject *module);
extern PyStatus _PyImport_Init(void);
extern void _PyImport_Fini(void);
extern void _PyImport_Fini2(void);
extern PyStatus _PyImport_InitCore(
PyThreadState *tstate,
PyObject *sysmod,
int importlib);
extern PyStatus _PyImport_InitExternal(PyThreadState *tstate);
extern void _PyImport_FiniCore(PyInterpreterState *interp);
extern void _PyImport_FiniExternal(PyInterpreterState *interp);
#ifdef HAVE_FORK
extern PyStatus _PyImport_ReInitLock(PyInterpreterState *interp);
#endif
extern PyObject* _PyImport_GetBuiltinModuleNames(void);
struct _module_alias {
const char *name; /* ASCII encoded string */
const char *orig; /* ASCII encoded string */
};
// Export these 3 symbols for test_ctypes
PyAPI_DATA(const struct _frozen*) _PyImport_FrozenBootstrap;
PyAPI_DATA(const struct _frozen*) _PyImport_FrozenStdlib;
PyAPI_DATA(const struct _frozen*) _PyImport_FrozenTest;
extern const struct _module_alias * _PyImport_FrozenAliases;
extern int _PyImport_CheckSubinterpIncompatibleExtensionAllowed(
const char *name);
// Export for '_testinternalcapi' shared extension
PyAPI_FUNC(int) _PyImport_ClearExtension(PyObject *name, PyObject *filename);
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTERNAL_IMPORT_H */
#endif /* !Py_LIMITED_API */