1998-08-10 16:42:37 -03:00
|
|
|
\section{\module{random} ---
|
1999-04-21 15:14:22 -03:00
|
|
|
Generate pseudo-random numbers}
|
1998-07-23 14:59:49 -03:00
|
|
|
|
1999-04-21 15:14:22 -03:00
|
|
|
\declaremodule{standard}{random}
|
1998-08-10 16:42:37 -03:00
|
|
|
\modulesynopsis{Generate pseudo-random numbers with various common
|
1999-04-21 15:14:22 -03:00
|
|
|
distributions.}
|
1998-07-23 14:59:49 -03:00
|
|
|
|
1997-04-03 18:41:49 -04:00
|
|
|
|
|
|
|
This module implements pseudo-random number generators for various
|
2001-01-24 19:06:53 -04:00
|
|
|
distributions.
|
|
|
|
For integers, uniform selection from a range.
|
|
|
|
For sequences, uniform selection of a random element, and a function to
|
|
|
|
generate a random permutation of a list in-place.
|
|
|
|
On the real line, there are functions to compute uniform, normal (Gaussian),
|
|
|
|
lognormal, negative exponential, gamma, and beta distributions.
|
|
|
|
For generating distribution of angles, the circular uniform and
|
|
|
|
von Mises distributions are available.
|
|
|
|
|
|
|
|
Almost all module functions depend on the basic function
|
|
|
|
\function{random()}, which generates a random float uniformly in
|
|
|
|
the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill
|
|
|
|
generator, combining three pure multiplicative congruential
|
|
|
|
generators of modulus 30269, 30307 and 30323. Its period (how many
|
|
|
|
numbers it generates before repeating the sequence exactly) is
|
|
|
|
6,953,607,871,644. While of much higher quality than the \function{rand()}
|
|
|
|
function supplied by most C libraries, the theoretical properties
|
|
|
|
are much the same as for a single linear congruential generator of
|
|
|
|
large modulus.
|
|
|
|
|
|
|
|
The functions in this module are not threadsafe: if you want to call these
|
|
|
|
functions from multiple threads, you should explicitly serialize the calls.
|
|
|
|
Else, because no critical sections are implemented internally, calls
|
|
|
|
from different threads may see the same return values.
|
|
|
|
|
|
|
|
|
|
|
|
\begin{funcdesc}{seed}{\optional{x}}
|
|
|
|
Initialize the basic random number generator.
|
|
|
|
Optional argument \var{x} can be any hashable object,
|
|
|
|
and the generator is seeded from its hash code.
|
|
|
|
It is not guaranteed that distinct hash codes will produce distinct
|
|
|
|
seeds.
|
|
|
|
If \var{x} is omitted or \code{None},
|
|
|
|
the seed is derived from the current system time.
|
|
|
|
The seed is also set from the current system time when
|
|
|
|
the module is first imported.
|
2001-01-24 20:39:16 -04:00
|
|
|
\end{funcdesc}
|
2000-04-03 17:13:55 -03:00
|
|
|
|
2001-01-22 14:18:30 -04:00
|
|
|
\begin{funcdesc}{choice}{seq}
|
2001-01-24 19:06:53 -04:00
|
|
|
Return a random element from the non-empty sequence \var{seq}.
|
2001-01-22 14:18:30 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
|
|
|
\begin{funcdesc}{randint}{a, b}
|
|
|
|
\deprecated{2.0}{Use \function{randrange()} instead.}
|
2001-01-24 19:06:53 -04:00
|
|
|
Return a random integer \var{N} such that
|
2001-01-22 14:18:30 -04:00
|
|
|
\code{\var{a} <= \var{N} <= \var{b}}.
|
|
|
|
\end{funcdesc}
|
|
|
|
|
|
|
|
\begin{funcdesc}{randrange}{\optional{start,} stop\optional{, step}}
|
|
|
|
Return a randomly selected element from \code{range(\var{start},
|
|
|
|
\var{stop}, \var{step})}. This is equivalent to
|
2001-01-24 19:06:53 -04:00
|
|
|
\code{choice(range(\var{start}, \var{stop}, \var{step}))},
|
|
|
|
but doesn't actually build a range object.
|
2001-01-22 14:18:30 -04:00
|
|
|
\versionadded{1.5.2}
|
|
|
|
\end{funcdesc}
|
|
|
|
|
2001-01-24 19:06:53 -04:00
|
|
|
\begin{funcdesc}{random}{}
|
|
|
|
Return the next random floating point number in the range [0.0, 1.0).
|
|
|
|
\end{funcdesc}
|
|
|
|
|
2001-01-22 14:18:30 -04:00
|
|
|
\begin{funcdesc}{uniform}{a, b}
|
2001-01-24 19:06:53 -04:00
|
|
|
Return a random real number \var{N} such that
|
2001-01-22 14:18:30 -04:00
|
|
|
\code{\var{a} <= \var{N} < \var{b}}.
|
|
|
|
\end{funcdesc}
|
2000-04-03 17:13:55 -03:00
|
|
|
|
|
|
|
|
|
|
|
The following functions are defined to support specific distributions,
|
|
|
|
and all return real values. Function parameters are named after the
|
|
|
|
corresponding variables in the distribution's equation, as used in
|
|
|
|
common mathematical practice; most of these equations can be found in
|
2001-01-22 14:18:30 -04:00
|
|
|
any statistics text.
|
|
|
|
|
1997-04-03 18:41:49 -04:00
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{betavariate}{alpha, beta}
|
2001-01-22 14:18:30 -04:00
|
|
|
Beta distribution. Conditions on the parameters are
|
|
|
|
\code{\var{alpha} > -1} and \code{\var{beta} > -1}.
|
|
|
|
Returned values range between 0 and 1.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{cunifvariate}{mean, arc}
|
2001-01-22 14:18:30 -04:00
|
|
|
Circular uniform distribution. \var{mean} is the mean angle, and
|
|
|
|
\var{arc} is the range of the distribution, centered around the mean
|
|
|
|
angle. Both values must be expressed in radians, and can range
|
2001-01-24 19:06:53 -04:00
|
|
|
between 0 and \emph{pi}. Returned values range between
|
2001-01-22 14:18:30 -04:00
|
|
|
\code{\var{mean} - \var{arc}/2} and \code{\var{mean} +
|
|
|
|
\var{arc}/2}.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
|
|
|
\begin{funcdesc}{expovariate}{lambd}
|
2001-01-22 14:18:30 -04:00
|
|
|
Exponential distribution. \var{lambd} is 1.0 divided by the desired
|
|
|
|
mean. (The parameter would be called ``lambda'', but that is a
|
2001-01-24 19:06:53 -04:00
|
|
|
reserved word in Python.) Returned values range from 0 to
|
2001-01-22 14:18:30 -04:00
|
|
|
positive infinity.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{gamma}{alpha, beta}
|
2001-01-22 14:18:30 -04:00
|
|
|
Gamma distribution. (\emph{Not} the gamma function!) Conditions on
|
|
|
|
the parameters are \code{\var{alpha} > -1} and \code{\var{beta} > 0}.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{gauss}{mu, sigma}
|
2001-01-22 14:18:30 -04:00
|
|
|
Gaussian distribution. \var{mu} is the mean, and \var{sigma} is the
|
|
|
|
standard deviation. This is slightly faster than the
|
|
|
|
\function{normalvariate()} function defined below.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{lognormvariate}{mu, sigma}
|
2001-01-22 14:18:30 -04:00
|
|
|
Log normal distribution. If you take the natural logarithm of this
|
|
|
|
distribution, you'll get a normal distribution with mean \var{mu}
|
|
|
|
and standard deviation \var{sigma}. \var{mu} can have any value,
|
2001-01-24 19:06:53 -04:00
|
|
|
and \var{sigma} must be greater than zero.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{normalvariate}{mu, sigma}
|
2001-01-22 14:18:30 -04:00
|
|
|
Normal distribution. \var{mu} is the mean, and \var{sigma} is the
|
|
|
|
standard deviation.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1998-03-08 04:13:53 -04:00
|
|
|
\begin{funcdesc}{vonmisesvariate}{mu, kappa}
|
2001-01-22 14:18:30 -04:00
|
|
|
\var{mu} is the mean angle, expressed in radians between 0 and
|
|
|
|
2*\emph{pi}, and \var{kappa} is the concentration parameter, which
|
|
|
|
must be greater than or equal to zero. If \var{kappa} is equal to
|
|
|
|
zero, this distribution reduces to a uniform random angle over the
|
|
|
|
range 0 to 2*\emph{pi}.
|
1997-04-03 18:41:49 -04:00
|
|
|
\end{funcdesc}
|
1997-07-17 13:34:52 -03:00
|
|
|
|
1997-12-30 13:38:05 -04:00
|
|
|
\begin{funcdesc}{paretovariate}{alpha}
|
2001-01-22 14:18:30 -04:00
|
|
|
Pareto distribution. \var{alpha} is the shape parameter.
|
1997-12-30 13:38:05 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
|
|
|
\begin{funcdesc}{weibullvariate}{alpha, beta}
|
2001-01-22 14:18:30 -04:00
|
|
|
Weibull distribution. \var{alpha} is the scale parameter and
|
|
|
|
\var{beta} is the shape parameter.
|
1997-12-30 13:38:05 -04:00
|
|
|
\end{funcdesc}
|
1997-07-17 13:34:52 -03:00
|
|
|
|
2000-12-15 15:07:17 -04:00
|
|
|
|
|
|
|
This function does not represent a specific distribution, but
|
|
|
|
implements a standard useful algorithm:
|
|
|
|
|
|
|
|
\begin{funcdesc}{shuffle}{x\optional{, random}}
|
2001-01-22 14:18:30 -04:00
|
|
|
Shuffle the sequence \var{x} in place.
|
|
|
|
The optional argument \var{random} is a 0-argument function
|
|
|
|
returning a random float in [0.0, 1.0); by default, this is the
|
|
|
|
function \function{random()}.
|
2000-12-15 15:07:17 -04:00
|
|
|
|
2001-01-22 14:18:30 -04:00
|
|
|
Note that for even rather small \code{len(\var{x})}, the total
|
|
|
|
number of permutations of \var{x} is larger than the period of most
|
|
|
|
random number generators; this implies that most permutations of a
|
|
|
|
long sequence can never be generated.
|
2000-12-15 15:07:17 -04:00
|
|
|
\end{funcdesc}
|
|
|
|
|
1997-07-17 13:34:52 -03:00
|
|
|
\begin{seealso}
|
2001-01-24 19:06:53 -04:00
|
|
|
\seetext{Wichmann, B. A. \& Hill, I. D., ``Algorithm AS 183:
|
|
|
|
An efficient and portable pseudo-random number generator'',
|
|
|
|
\citetitle{Applied Statistics} 31 (1982) 188-190.}
|
1997-07-17 13:34:52 -03:00
|
|
|
\end{seealso}
|