cpython/Lib/compiler/pyassem.py

481 lines
15 KiB
Python
Raw Normal View History

"""Assembler for Python bytecode
The new module is used to create the code object. The following
attribute definitions are included from the reference manual:
co_name gives the function name
co_argcount is the number of positional arguments (including
arguments with default values)
co_nlocals is the number of local variables used by the function
(including arguments)
co_varnames is a tuple containing the names of the local variables
(starting with the argument names)
co_code is a string representing the sequence of bytecode instructions
co_consts is a tuple containing the literals used by the bytecode
co_names is a tuple containing the names used by the bytecode
co_filename is the filename from which the code was compiled
co_firstlineno is the first line number of the function
co_lnotab is a string encoding the mapping from byte code offsets
to line numbers. see LineAddrTable below.
co_stacksize is the required stack size (including local variables)
co_flags is an integer encoding a number of flags for the
interpreter. There are four flags:
CO_OPTIMIZED -- uses load fast
CO_NEWLOCALS -- everything?
CO_VARARGS -- use *args
CO_VARKEYWORDS -- uses **args
If a code object represents a function, the first item in co_consts is
the documentation string of the function, or None if undefined.
"""
import sys
import dis
import new
import string
import misc
# flags for code objects
CO_OPTIMIZED = 0x0001
CO_NEWLOCALS = 0x0002
CO_VARARGS = 0x0004
CO_VARKEYWORDS = 0x0008
class TupleArg:
def __init__(self, count, names):
self.count = count
self.names = names
def __repr__(self):
return "TupleArg(%s, %s)" % (self.count, self.names)
def getName(self):
return ".nested%d" % self.count
class PyAssembler:
"""Creates Python code objects
"""
# XXX this class needs to major refactoring
def __init__(self, args=(), name='?', filename='<?>',
docstring=None):
# XXX why is the default value for flags 3?
self.insts = []
# used by makeCodeObject
self._getArgCount(args)
self.code = ''
self.consts = [docstring]
self.filename = filename
self.flags = CO_NEWLOCALS
self.name = name
self.names = []
self.varnames = list(args) or []
for i in range(len(self.varnames)):
var = self.varnames[i]
if isinstance(var, TupleArg):
self.varnames[i] = var.getName()
# lnotab support
self.firstlineno = 0
self.lastlineno = 0
self.last_addr = 0
self.lnotab = ''
def _getArgCount(self, args):
self.argcount = len(args)
if args:
for arg in args:
if isinstance(arg, TupleArg):
numNames = len(misc.flatten(arg.names))
self.argcount = self.argcount - numNames
def __repr__(self):
return "<bytecode: %d instrs>" % len(self.insts)
def setFlags(self, val):
"""XXX for module's function"""
self.flags = val
def setOptimized(self):
self.flags = self.flags | CO_OPTIMIZED
def setVarArgs(self):
if not self.flags & CO_VARARGS:
self.flags = self.flags | CO_VARARGS
self.argcount = self.argcount - 1
def setKWArgs(self):
self.flags = self.flags | CO_VARKEYWORDS
def getCurInst(self):
return len(self.insts)
def getNextInst(self):
return len(self.insts) + 1
def dump(self, io=sys.stdout):
i = 0
for inst in self.insts:
if inst[0] == 'SET_LINENO':
io.write("\n")
io.write(" %3d " % i)
if len(inst) == 1:
io.write("%s\n" % inst)
else:
io.write("%-15.15s\t%s\n" % inst)
i = i + 1
def makeCodeObject(self):
"""Make a Python code object
This creates a Python code object using the new module. This
seems simpler than reverse-engineering the way marshal dumps
code objects into .pyc files. One of the key difficulties is
figuring out how to layout references to code objects that
appear on the VM stack; e.g.
3 SET_LINENO 1
6 LOAD_CONST 0 (<code object fact at 8115878 [...]
9 MAKE_FUNCTION 0
12 STORE_NAME 0 (fact)
"""
self._findOffsets()
lnotab = LineAddrTable()
for t in self.insts:
opname = t[0]
if len(t) == 1:
lnotab.addCode(self.opnum[opname])
elif len(t) == 2:
if opname == 'SET_LINENO':
oparg = t[1]
lnotab.nextLine(oparg)
else:
oparg = self._convertArg(opname, t[1])
try:
hi, lo = divmod(oparg, 256)
except TypeError:
raise TypeError, "untranslated arg: %s, %s" % (opname, oparg)
lnotab.addCode(self.opnum[opname], lo, hi)
# why is a module a special case?
if self.flags == 0:
nlocals = 0
else:
nlocals = len(self.varnames)
# XXX danger! can't pass through here twice
if self.flags & CO_VARKEYWORDS:
self.argcount = self.argcount - 1
stacksize = findDepth(self.insts)
try:
co = new.code(self.argcount, nlocals, stacksize,
self.flags, lnotab.getCode(), self._getConsts(),
tuple(self.names), tuple(self.varnames),
self.filename, self.name, self.firstlineno,
lnotab.getTable())
except SystemError, err:
print err
print repr(self.argcount)
print repr(nlocals)
print repr(stacksize)
print repr(self.flags)
print repr(lnotab.getCode())
print repr(self._getConsts())
print repr(self.names)
print repr(self.varnames)
print repr(self.filename)
print repr(self.name)
print repr(self.firstlineno)
print repr(lnotab.getTable())
raise
return co
def _getConsts(self):
"""Return a tuple for the const slot of a code object
Converts PythonVMCode objects to code objects
"""
l = []
for elt in self.consts:
# XXX might be clearer to just as isinstance(CodeGen)
if hasattr(elt, 'asConst'):
l.append(elt.asConst())
else:
l.append(elt)
return tuple(l)
def _findOffsets(self):
"""Find offsets for use in resolving StackRefs"""
self.offsets = []
cur = 0
for t in self.insts:
self.offsets.append(cur)
l = len(t)
if l == 1:
cur = cur + 1
elif l == 2:
cur = cur + 3
arg = t[1]
# XXX this is a total hack: for a reference used
# multiple times, we create a list of offsets and
# expect that we when we pass through the code again
# to actually generate the offsets, we'll pass in the
# same order.
if isinstance(arg, StackRef):
try:
arg.__offset.append(cur)
except AttributeError:
arg.__offset = [cur]
def _convertArg(self, op, arg):
"""Convert the string representation of an arg to a number
The specific handling depends on the opcode.
XXX This first implementation isn't going to be very
efficient.
"""
if op == 'SET_LINENO':
return arg
if op == 'LOAD_CONST':
return self._lookupName(arg, self.consts)
if op in self.localOps:
# make sure it's in self.names, but use the bytecode offset
self._lookupName(arg, self.names)
return self._lookupName(arg, self.varnames)
if op in self.globalOps:
return self._lookupName(arg, self.names)
if op in self.nameOps:
return self._lookupName(arg, self.names)
if op == 'COMPARE_OP':
return self.cmp_op.index(arg)
if self.hasjrel.has_elt(op):
offset = arg.__offset[0]
del arg.__offset[0]
return self.offsets[arg.resolve()] - offset
if self.hasjabs.has_elt(op):
return self.offsets[arg.resolve()]
return arg
nameOps = ('STORE_NAME', 'IMPORT_NAME', 'IMPORT_FROM',
'STORE_ATTR', 'LOAD_ATTR', 'LOAD_NAME', 'DELETE_NAME',
'DELETE_ATTR')
localOps = ('LOAD_FAST', 'STORE_FAST', 'DELETE_FAST')
globalOps = ('LOAD_GLOBAL', 'STORE_GLOBAL', 'DELETE_GLOBAL')
def _lookupName(self, name, list):
"""Return index of name in list, appending if necessary"""
if name in list:
i = list.index(name)
# this is cheap, but incorrect in some cases, e.g 2 vs. 2L
if type(name) == type(list[i]):
return i
for i in range(len(list)):
elt = list[i]
if type(elt) == type(name) and elt == name:
return i
end = len(list)
list.append(name)
return end
# Convert some stuff from the dis module for local use
cmp_op = list(dis.cmp_op)
hasjrel = misc.Set()
for i in dis.hasjrel:
hasjrel.add(dis.opname[i])
hasjabs = misc.Set()
for i in dis.hasjabs:
hasjabs.add(dis.opname[i])
opnum = {}
for num in range(len(dis.opname)):
opnum[dis.opname[num]] = num
# this version of emit + arbitrary hooks might work, but it's damn
# messy.
def emit(self, *args):
self._emitDispatch(args[0], args[1:])
self.insts.append(args)
def _emitDispatch(self, type, args):
for func in self._emit_hooks.get(type, []):
func(self, args)
_emit_hooks = {}
class LineAddrTable:
"""lnotab
This class builds the lnotab, which is undocumented but described
by com_set_lineno in compile.c. Here's an attempt at explanation:
For each SET_LINENO instruction after the first one, two bytes are
added to lnotab. (In some cases, multiple two-byte entries are
added.) The first byte is the distance in bytes between the
instruction for the last SET_LINENO and the current SET_LINENO.
The second byte is offset in line numbers. If either offset is
greater than 255, multiple two-byte entries are added -- one entry
for each factor of 255.
"""
def __init__(self):
self.code = []
self.codeOffset = 0
self.firstline = 0
self.lastline = 0
self.lastoff = 0
self.lnotab = []
def addCode(self, *args):
for arg in args:
self.code.append(chr(arg))
self.codeOffset = self.codeOffset + len(args)
def nextLine(self, lineno):
if self.firstline == 0:
self.firstline = lineno
self.lastline = lineno
else:
# compute deltas
addr = self.codeOffset - self.lastoff
line = lineno - self.lastline
while addr > 0 or line > 0:
# write the values in 1-byte chunks that sum
# to desired value
trunc_addr = addr
trunc_line = line
if trunc_addr > 255:
trunc_addr = 255
if trunc_line > 255:
trunc_line = 255
self.lnotab.append(trunc_addr)
self.lnotab.append(trunc_line)
addr = addr - trunc_addr
line = line - trunc_line
self.lastline = lineno
self.lastoff = self.codeOffset
def getCode(self):
return string.join(self.code, '')
def getTable(self):
return string.join(map(chr, self.lnotab), '')
class StackRef:
"""Manage stack locations for jumps, loops, etc."""
count = 0
def __init__(self, id=None, val=None):
if id is None:
id = StackRef.count
StackRef.count = StackRef.count + 1
self.id = id
self.val = val
def __repr__(self):
if self.val:
return "StackRef(val=%d)" % self.val
else:
return "StackRef(id=%d)" % self.id
def bind(self, inst):
self.val = inst
def resolve(self):
if self.val is None:
print "UNRESOLVE REF", self
return 0
return self.val
class StackDepthTracker:
# XXX need to keep track of stack depth on jumps
def findDepth(self, insts):
depth = 0
maxDepth = 0
for i in insts:
opname = i[0]
delta = self.effect.get(opname, 0)
if delta > 1:
depth = depth + delta
elif delta < 0:
if depth > maxDepth:
maxDepth = depth
depth = depth + delta
else:
if depth > maxDepth:
maxDepth = depth
# now check patterns
for pat, delta in self.patterns:
if opname[:len(pat)] == pat:
depth = depth + delta
break
# if we still haven't found a match
if delta == 0:
meth = getattr(self, opname)
depth = depth + meth(i[1])
if depth < 0:
depth = 0
return maxDepth
effect = {
'POP_TOP': -1,
'DUP_TOP': 1,
'SLICE+1': -1,
'SLICE+2': -1,
'SLICE+3': -2,
'STORE_SLICE+0': -1,
'STORE_SLICE+1': -2,
'STORE_SLICE+2': -2,
'STORE_SLICE+3': -3,
'DELETE_SLICE+0': -1,
'DELETE_SLICE+1': -2,
'DELETE_SLICE+2': -2,
'DELETE_SLICE+3': -3,
'STORE_SUBSCR': -3,
'DELETE_SUBSCR': -2,
# PRINT_EXPR?
'PRINT_ITEM': -1,
'LOAD_LOCALS': 1,
'RETURN_VALUE': -1,
'EXEC_STMT': -2,
'BUILD_CLASS': -2,
'STORE_NAME': -1,
'STORE_ATTR': -2,
'DELETE_ATTR': -1,
'STORE_GLOBAL': -1,
'BUILD_MAP': 1,
'COMPARE_OP': -1,
'STORE_FAST': -1,
}
# use pattern match
patterns = [
('BINARY_', -1),
('LOAD_', 1),
('IMPORT_', 1),
]
# special cases:
# UNPACK_TUPLE, UNPACK_LIST, BUILD_TUPLE,
# BUILD_LIST, CALL_FUNCTION, MAKE_FUNCTION, BUILD_SLICE
def UNPACK_TUPLE(self, count):
return count
def UNPACK_LIST(self, count):
return count
def BUILD_TUPLE(self, count):
return -count
def BUILD_LIST(self, count):
return -count
def CALL_FUNCTION(self, argc):
hi, lo = divmod(argc, 256)
return lo + hi * 2
def MAKE_FUNCTION(self, argc):
return -argc
def BUILD_SLICE(self, argc):
if argc == 2:
return -1
elif argc == 3:
return -2
findDepth = StackDepthTracker().findDepth