cpython/Lib/pdb.py

607 lines
16 KiB
Python
Raw Normal View History

1992-01-14 14:30:15 -04:00
# pdb.py -- finally, a Python debugger! See below for instructions.
# To do:
# - Keep a list of exceptions trapped (default only KeyboardInterrupt?)
# - It should be possible to intercept KeyboardInterrupt completely
# - Handle return events differently (how?)
# - When stopping on an exception, show traceback stack
# - Merge with tb (for post-mortem usage)
# - Show stack traces upside-down (like dbx/gdb) ???
# (actually, the current way is more natural given the directions
# taken by the up/down commands)
1992-01-10 10:54:42 -04:00
# To use the debugger in its simplest form:
# >>> import pdb
# >>> pdb.run('<a statement>')
# The debugger's prompt is '(Pdb) '.
# This will stop in the first function call in <a statement>.
# The commands recognized by the debugger are listed below.
# Most can be abbreviated as indicated; e.g., h(elp) means that
# 'help' can be typed as 'h' or 'help'
# (but not as 'he' or 'hel', nor as 'H' or 'Help' or 'HELP').
# Optional arguments are enclosed in square brackets.
# A blank line repeats the previous command literally.
# (Except for 'list', where it lists the next 11 lines.)
# Commands that the debugger does not recognized are assumed to
# be Python statements and are executed in the context of the
# program being debugged.
# Python statements can also be prefixed with an exclamation point ('!').
# This is a powerful way to inspect the program being debugged;
# it is even possible to change variables.
# When an exception occurs in such a statement, the exception name
# is printed but the debugger's state is not changed.
# The debugger is not directly programmable; but it is implemented
# as a class from which you can derive your own debugger class,
# so you can make as fancy as you like.
# The debugger's commands are:
# h(elp)
# Without argument, print the list of available commands.
# With a command name as argument, print help about that command
# (this is currently not implemented).
# w(here)
# Print a stack trace, with the most recent frame at the bottom.
# An arrow indicates the "current frame", which determines the
# context of most commands.
# d(own)
# Move the current frame one level down in the stack trace
# (to an older frame).
# u(p)
# Move the current frame one level up in the stack trace
# (to a newer frame).
# b(reak) [lineno]
# With a line number argument, set a break there in the current file.
# Without argument, list all breaks.
# cl(ear) [lineno]
# With a line number argument, clear that break in the current file.
# Without argument, clear all breaks (but first ask confirmation).
# s(tep)
# Execute the current line, stop at the first possible occasion
# (either in a function that is called or in the current function).
# n(ext)
# Continue execution until the next line in the current function
# is reached or it returns.
# r(eturn)
# Continue execution until the current function returns.
# c(ont(inue))
# Continue execution, only stop when a breakpoint is encountered.
# l(ist) [first [,last]]
# List source code for the current file.
# Without arguments, list 11 lines around the current line
# or continue the previous listing.
# With one argument, list 11 lines starting at that line.
# With two arguments, list the given range;
# if the second argument is less than the first, it is a count.
# a(rgs)
# Print the argument list of the current function.
# p expression
# Print the value of the expression.
# (!) statement
# Execute the (one-line) statement in the context of
# the current stack frame.
# The exclamation point can be omitted unless the first word
# of the statement resembles a debugger command.
# To assign to a global variable you must always prefix the
# command with a 'global' command, e.g.:
# (Pdb) global list_options; list_options = ['-l']
# (Pdb)
# q(uit)
# Quit from the debugger.
# The program being executed is aborted.
# Here's how it works.
# Some changes were made to the interpreter:
# - if sys.trace is defined (by the user), it should be a function
# - sys.trace is called the global trace function
# - there can also a local trace function (see later)
# Trace functions have three arguments: (frame, event, arg)
# - frame is the current stack frame
# - event is a string: 'call', 'line', 'return' or 'exception'
# - arg is dependent on the event type
# A trace function should return a new trace function or None.
# Class methods are accepted (and most useful!) as trace methods.
# The events have the following meaning:
#
# 'call': A function is called (or some other code block entered).
# The global trace function is called;
# arg is the argument list to the function;
# the return value specifies the local trace function.
#
# 'line': The interpreter is about to execute a new line of code
# (sometimes multiple line events on one line exist).
# The local trace function is called; arg in None;
# the return value specifies the new local trace function.
#
# 'return': A function (or other code block) is about to return.
# The local trace function is called;
# arg is the value that will be returned.
# The trace function's return value is ignored.
#
# 'exception': An exception has occurred.
# The local trace function is called if there is one,
# else the global trace function is called;
# arg is a triple (exception, value, traceback);
# the return value specifies the new local trace function
#
# Note that as an exception is propagated down the chain of callers,
# an 'exception' event is generated at each level.
# A stack frame object has the following read-only attributes:
# f_code: the code object being executed
# f_lineno: the current line number (-1 for 'call' events)
# f_back: the stack frame of the caller, or None
# f_locals: dictionary containing local name bindings
# f_globals: dictionary containing global name bindings
# A code object has the following read-only attributes:
# co_code: the code string
# co_names: the list of names used by the code
# co_consts: the list of (literal) constants used by the code
# co_filename: the filename from which the code was compiled
1992-01-10 10:54:42 -04:00
import string
import sys
import linecache
# A generic class to build command interpreters
PROMPT = '(Cmd) '
IDENTCHARS = string.letters + string.digits + '_'
class Cmd:
def init(self):
self.prompt = PROMPT
self.identchars = IDENTCHARS
self.lastcmd = ''
1992-01-10 10:54:42 -04:00
return self
def cmdloop(self):
stop = None
while not stop:
try:
line = raw_input(self.prompt)
except EOFError:
line = 'EOF'
stop = self.onecmd(line)
return stop
def onecmd(self, line):
line = string.strip(line)
if not line:
line = self.lastcmd
print line
else:
self.lastcmd = line
1992-01-10 10:54:42 -04:00
i, n = 0, len(line)
while i < n and line[i] in self.identchars: i = i+1
cmd, arg = line[:i], string.strip(line[i:])
if cmd == '':
return self.default(line)
1992-01-10 10:54:42 -04:00
else:
try:
func = eval('self.do_' + cmd)
except AttributeError:
return self.default(line)
return func(arg)
1992-01-10 10:54:42 -04:00
def default(self, line):
print '*** Unknown syntax:', line
def do_help(self, arg):
if arg:
# XXX check arg syntax
try:
func = eval('self.help_' + arg)
except:
print '*** No help on', `arg`
return
func()
else:
import getattr
names = getattr.dir(self)
cmds = []
for name in names:
if name[:3] == 'do_':
cmds.append(name[3:])
print cmds
# A specialization of Cmd for use by the debugger
PdbQuit = 'pdb.PdbQuit' # Exception to give up
1992-01-10 10:54:42 -04:00
class Pdb(Cmd):
def init(self):
self = Cmd.init(self)
self.prompt = '(Pdb) '
self.reset()
return self
def reset(self):
self.breaks = {}
1992-01-10 10:54:42 -04:00
self.botframe = None
self.stopframe = None
1992-01-10 10:54:42 -04:00
self.forget()
def forget(self):
self.setup(None)
1992-01-10 10:54:42 -04:00
def setup(self, frame):
self.curframe = self.topframe = frame
self.stack = []
self.lineno = None
def run(self, cmd):
import __main__
dict = __main__.__dict__
self.runctx(cmd, dict, dict)
def runctx(self, cmd, globals, locals):
1992-01-10 10:54:42 -04:00
self.reset()
sys.trace = self.dispatch
try:
exec(cmd + '\n', globals, locals)
1992-01-10 10:54:42 -04:00
except PdbQuit:
pass
finally:
sys.trace = None
del sys.trace
self.reset()
def dispatch(self, frame, event, arg):
if event == 'line':
return self.dispatch_line(frame)
if event == 'call':
return self.dispatch_call(frame, arg)
if event == 'return':
return self.dispatch_return(frame, arg)
if event == 'exception':
return self.dispatch_exception(frame, arg)
print '*** dispatch: unknown event type', `event`
return self.dispatch
def dispatch_line(self, frame):
if self.stop_here(frame) or self.break_here(frame):
self.ask_user(frame)
return self.dispatch
def dispatch_call(self, frame, arg):
1992-01-10 10:54:42 -04:00
if self.botframe is None:
self.botframe = frame
return
if not (self.stop_here(frame) or self.break_anywhere(frame)):
return
frame.f_locals['__args__'] = arg
return self.dispatch
def dispatch_return(self, frame, arg):
if self.stop_here(frame):
print '!!! return', `arg`
return
def dispatch_exception(self, frame, arg):
if arg[0] is PdbQuit: return None
if self.stop_here(frame):
print '!!! exception', arg[0] + ':', `arg[1]`
self.ask_user(frame)
1992-01-10 10:54:42 -04:00
return self.dispatch
def stop_here(self, frame):
if self.stopframe is None:
return 1
if frame is self.stopframe:
return 1
while frame is not self.stopframe:
if frame is None:
return 1
frame = frame.f_back
return 0
def break_here(self, frame):
if not self.breaks.has_key(frame.f_code.co_filename):
return 0
if not frame.f_lineno in \
self.breaks[frame.f_code.co_filename]:
return 0
return 1
def break_anywhere(self, frame):
return self.breaks.has_key(frame.f_code.co_filename)
def ask_user(self, frame):
self.setup(frame)
1992-01-10 10:54:42 -04:00
self.printwhere(self.curframe)
dummy = self.cmdloop()
self.forget()
1992-01-10 10:54:42 -04:00
def default(self, line):
if not line:
return self.do_next('')
1992-01-10 10:54:42 -04:00
else:
if line[0] == '!': line = line[1:]
try:
exec(line + '\n', \
self.curframe.f_globals, \
self.curframe.f_locals)
except:
print '***', sys.exc_type + ':',
1992-01-10 10:54:42 -04:00
print `sys.exc_value`
do_h = Cmd.do_help
def do_break(self, arg):
if not arg:
print self.breaks # XXX
return
try:
lineno = int(eval(arg))
except:
print '*** Error in argument:', `arg`
return
filename = self.curframe.f_code.co_filename
line = linecache.getline(filename, lineno)
if not line:
print '*** That line does not exist!'
return
if not self.breaks.has_key(filename):
self.breaks[filename] = []
list = self.breaks[filename]
if lineno in list:
print '*** There is already a break there!'
return
list.append(lineno)
do_b = do_break
def do_clear(self, arg):
if not arg:
try:
reply = raw_input('Clear all breaks? ')
except EOFError:
reply = 'no'
reply = string.lower(string.strip(reply))
if reply in ('y', 'yes'):
self.breaks = {}
1992-01-10 10:54:42 -04:00
return
try:
lineno = int(eval(arg))
except:
print '*** Error in argument:', `arg`
return
filename = self.curframe.f_code.co_filename
try:
self.breaks[filename].remove(lineno)
except (ValueError, KeyError):
print '*** There is no break there!'
return
if not self.breaks[filename]:
del self.breaks[filename]
do_cl = do_clear # 'c' is already an abbreviation for 'continue'
1992-01-10 10:54:42 -04:00
def do_where(self, arg):
self.printtb()
do_w = do_where
def do_up(self, arg):
if self.curframe == self.botframe or \
not self.curframe.f_back: print '*** Top'
1992-01-10 10:54:42 -04:00
else:
self.stack.append(self.curframe)
self.curframe = self.curframe.f_back
1992-01-10 10:54:42 -04:00
self.lineno = None
self.printwhere(self.curframe)
do_u = do_up
def do_down(self, arg):
if not self.stack: print '*** Bottom'
1992-01-10 10:54:42 -04:00
else:
self.curframe = self.stack[-1]
1992-01-10 10:54:42 -04:00
self.lineno = None
del self.stack[-1]
1992-01-10 10:54:42 -04:00
self.printwhere(self.curframe)
do_d = do_down
def do_step(self, arg):
self.stopframe = None
return 1
1992-01-10 10:54:42 -04:00
do_s = do_step
def do_next(self, arg):
self.stopframe = self.curframe
return 1
1992-01-10 10:54:42 -04:00
do_n = do_next
def do_return(self, arg):
self.stopframe = self.curframe.f_back
return 1
do_r = do_return
1992-01-10 10:54:42 -04:00
def do_continue(self, arg):
self.stopframe = self.botframe
return 1
1992-01-10 10:54:42 -04:00
do_c = do_cont = do_continue
def do_quit(self, arg):
self.stopframe = self.botframe
raise PdbQuit
1992-01-10 10:54:42 -04:00
do_q = do_quit
def do_list(self, arg):
self.lastcmd = 'list'
1992-01-10 10:54:42 -04:00
last = None
if arg:
try:
x = eval(arg, {}, {})
if type(x) == type(()):
first, last = x
first = int(first)
last = int(last)
if last < first:
# Assume it's a count
last = first + last
else:
first = int(x)
except:
print '*** Error in argument:', `arg`
return
elif self.lineno is None:
first = max(1, self.curframe.f_lineno - 5)
else:
first = self.lineno + 1
if last is None:
last = first + 10
filename = self.curframe.f_code.co_filename
if self.breaks.has_key(filename):
breaklist = self.breaks[filename]
else:
breaklist = []
try:
for lineno in range(first, last+1):
line = linecache.getline(filename, lineno)
if not line:
print '[EOF]'
break
else:
s = string.rjust(`lineno`, 3)
if len(s) < 4: s = s + ' '
if lineno in breaklist: s = s + 'B'
else: s = s + ' '
if lineno == self.curframe.f_lineno:
s = s + '->'
print s + '\t' + line,
self.lineno = lineno
except KeyboardInterrupt:
pass
do_l = do_list
def do_args(self, arg):
try:
value = eval('__args__', self.curframe.f_globals, \
self.curframe.f_locals)
except:
print '***', sys.exc_type + ':', `sys.exc_value`
return
print `value`
do_a = do_args
def do_p(self, arg):
try:
value = eval(arg, self.curframe.f_globals, \
self.curframe.f_locals)
except:
print '***', sys.exc_type + ':', `sys.exc_value`
return
print `value`
1992-01-10 10:54:42 -04:00
# Print a traceback starting at a given stack frame
# Note that it is printed upside-down with respect
# to the orientation suggested by the up/down commands.
# This is consistent with gdb.
def printtb(self):
list = []
frame = self.topframe
while frame:
list.append(frame)
if frame is self.botframe: break
frame = frame.f_back
list.reverse()
for frame in list:
self.printwhere(frame)
def printwhere(self, frame):
if frame is self.curframe: print '->',
code = frame.f_code
filename = code.co_filename
lineno = frame.f_lineno
print filename + '(' + `lineno` + ')',
line = linecache.getline(filename, lineno)
if line: print string.strip(line),
print
# --------------------- testing ---------------------
# The Ackermann function -- a highly recursive beast
cheat = 0
cache = {}
def ack(x, y):
key = `(long(x), long(y))`
if cache.has_key(key):
res = cache[key]
else:
if x == 0:
res = 1L
elif y == 0:
if x == 1:
res = 2L
else:
res = 2L + x
elif y == 1 and cheat >= 1:
res = 2L * x
elif y == 2 and cheat >= 2:
res = pow(2L, x)
else:
res = ack(ack(x-1, y), y-1)
cache[key] = res
return res
def foo(n):
print 'foo', n
x = bar(n*2)
print 'bar returned', x
return
def bar(a):
print 'bar', a
return a*10
def test():
linecache.checkcache()
Pdb().init().run('foo(12)\n')
1992-01-10 10:54:42 -04:00
# --------------------- main ---------------------
import os
def main():
if sys.argv[1:]:
file = sys.argv[1]
head, tail = os.path.split(file)
if tail[-3:] != '.py':
print 'Sorry, file arg must be a python module'
print '(i.e., must end in \'.py\')'
# XXX Or we could copy it to a temp file
sys.exit(2)
del sys.argv[0]
sys.path.insert(0, head)
run('import ' + tail[:-3])
1992-01-10 10:54:42 -04:00
else:
run('')
def run(statement):
Pdb().init().run(statement)