cpython/Objects/complexobject.c

574 lines
10 KiB
C
Raw Normal View History

1996-01-11 20:47:05 -04:00
/* Complex object implementation */
/* Borrows heavily from floatobject.c */
#ifndef WITHOUT_COMPLEX
#include "allobjects.h"
#include "modsupport.h"
#include <errno.h>
#include "mymath.h"
#ifdef i860
/* Cray APP has bogus definition of HUGE_VAL in <math.h> */
#undef HUGE_VAL
#endif
#ifdef HUGE_VAL
#define CHECK(x) if (errno != 0) ; \
else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
else errno = ERANGE
#else
#define CHECK(x) /* Don't know how to check */
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifndef LONG_MAX
#define LONG_MAX 0X7FFFFFFFL
#endif
#ifndef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#ifdef __NeXT__
#ifdef __sparc__
/*
* This works around a bug in the NS/Sparc 3.3 pre-release
* limits.h header file.
* 10-Feb-1995 bwarsaw@cnri.reston.va.us
*/
#undef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#endif
#if !defined(__STDC__) && !defined(macintosh)
extern double fmod PROTO((double, double));
extern double pow PROTO((double, double));
#endif
/* elementary operations on complex numbers */
int c_error;
static complex c_1 = {1., 0.};
complex c_sum(a,b)
complex a,b;
{
complex r;
r.real = a.real + b.real;
r.imag = a.imag + b.imag;
return r;
}
complex c_diff(a,b)
complex a,b;
{
complex r;
r.real = a.real - b.real;
r.imag = a.imag - b.imag;
return r;
}
complex c_neg(a)
complex a;
{
complex r;
r.real = -a.real;
r.imag = -a.imag;
return r;
}
complex c_prod(a,b)
complex a,b;
{
complex r;
r.real = a.real*b.real - a.imag*b.imag;
r.imag = a.real*b.imag + a.imag*b.real;
return r;
}
complex c_quot(a,b)
complex a,b;
{
complex r;
double d = b.real*b.real + b.imag*b.imag;
if (d == 0.)
c_error = 1;
r.real = (a.real*b.real + a.imag*b.imag)/d;
r.imag = (a.imag*b.real - a.real*b.imag)/d;
return r;
}
complex c_pow(a,b)
complex a,b;
{
complex r;
double vabs,len,at,phase;
if (b.real == 0. && b.imag == 0.) {
r.real = 1.;
r.imag = 0.;
}
else if (a.real == 0. && a.imag == 0.) {
if (b.imag != 0. || b.real < 0.)
c_error = 2;
r.real = 0.;
r.imag = 0.;
}
else {
vabs = hypot(a.real,a.imag);
len = pow(vabs,b.real);
at = atan2(a.imag, a.real);
phase = at*b.real;
if (b.imag != 0.0) {
len /= exp(at*b.imag);
phase += b.imag*log(vabs);
}
r.real = len*cos(phase);
r.imag = len*sin(phase);
}
return r;
}
complex c_powu(x, n)
complex x;
long n;
{
complex r = c_1;
complex p = x;
long mask = 1;
while (mask > 0 && n >= mask) {
if (n & mask)
r = c_prod(r,p);
mask <<= 1;
p = c_prod(p,p);
}
return r;
}
complex c_powi(x, n)
complex x;
long n;
{
complex cn;
if (n > 100 || n < -100) {
cn.real = (double) n;
cn.imag = 0.;
return c_pow(x,cn);
}
else if (n > 0)
return c_powu(x,n);
else
return c_quot(c_1,c_powu(x,-n));
}
PyObject *
PyComplex_FromCComplex(complex cval)
{
register complexobject *op = (complexobject *) malloc(sizeof(complexobject));
if (op == NULL)
return err_nomem();
op->ob_type = &Complextype;
op->cval = cval;
NEWREF(op);
return (object *) op;
}
PyObject *
PyComplex_FromDoubles(double real, double imag) {
complex c;
c.real = real;
c.imag = imag;
return PyComplex_FromCComplex(c);
}
double
PyComplex_RealAsDouble(PyObject *op) {
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.real;
} else {
return PyFloat_AsDouble(op);
}
}
double
PyComplex_ImagAsDouble(PyObject *op) {
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.imag;
} else {
return 0.0;
}
}
1996-01-11 21:21:14 -04:00
complex
PyComplex_AsCComplex(PyObject *op) {
complex cv;
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval;
} else {
cv.real = PyFloat_AsDouble(op);
cv.imag = 0.;
return cv;
}
}
1996-01-11 20:47:05 -04:00
static void
complex_dealloc(op)
object *op;
{
DEL(op);
}
void
complex_buf_repr(buf, v)
char *buf;
complexobject *v;
{
if (v->cval.real == 0.)
sprintf(buf, "%.12gj", v->cval.imag);
1996-01-11 20:47:05 -04:00
else
sprintf(buf, "(%.12g%+.12gj)", v->cval.real, v->cval.imag);
1996-01-11 20:47:05 -04:00
}
static int
complex_print(v, fp, flags)
complexobject *v;
FILE *fp;
int flags; /* Not used but required by interface */
{
char buf[100];
complex_buf_repr(buf, v);
fputs(buf, fp);
return 0;
}
static object *
complex_repr(v)
complexobject *v;
{
char buf[100];
complex_buf_repr(buf, v);
return newstringobject(buf);
}
static int
complex_compare(v, w)
complexobject *v, *w;
{
/* Note: "greater" and "smaller" have no meaning for complex numbers,
but Python requires that they be defined nevertheless. */
complex i = v->cval;
complex j = w->cval;
if (i.real == j.real && i.imag == j.imag)
return 0;
else if (i.real != j.real)
return (i.real < j.real) ? -1 : 1;
else
return (i.imag < j.imag) ? -1 : 1;
}
static long
complex_hash(v)
complexobject *v;
{
double intpart, fractpart;
int expo;
long x;
/* This is designed so that Python numbers with the same
value hash to the same value, otherwise comparisons
of mapping keys will turn out weird */
#ifdef MPW /* MPW C modf expects pointer to extended as second argument */
{
extended e;
fractpart = modf(v->cval.real, &e);
intpart = e;
}
#else
fractpart = modf(v->cval.real, &intpart);
#endif
if (fractpart == 0.0) {
if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) {
/* Convert to long int and use its hash... */
object *w = dnewlongobject(v->cval.real);
if (w == NULL)
return -1;
x = hashobject(w);
DECREF(w);
return x;
}
x = (long)intpart;
}
else {
fractpart = frexp(fractpart, &expo);
fractpart = fractpart*2147483648.0; /* 2**31 */
x = (long) (intpart + fractpart) ^ expo; /* Rather arbitrary */
}
if (x == -1)
x = -2;
return x;
}
static object *
complex_add(v, w)
complexobject *v;
complexobject *w;
{
return newcomplexobject(c_sum(v->cval,w->cval));
}
static object *
complex_sub(v, w)
complexobject *v;
complexobject *w;
{
return newcomplexobject(c_diff(v->cval,w->cval));
}
static object *
complex_mul(v, w)
complexobject *v;
complexobject *w;
{
return newcomplexobject(c_prod(v->cval,w->cval));
}
static object *
complex_div(v, w)
complexobject *v;
complexobject *w;
{
complex quot;
c_error = 0;
quot = c_quot(v->cval,w->cval);
if (c_error == 1) {
err_setstr(ZeroDivisionError, "float division");
return NULL;
}
return newcomplexobject(quot);
}
static object *
complex_pow(v, w, z)
complexobject *v;
object *w;
complexobject *z;
{
complex p;
complex exponent;
long int_exponent;
if ((object *)z!=None) {
err_setstr(ValueError, "complex modulo");
return NULL;
}
c_error = 0;
exponent = ((complexobject*)w)->cval;
int_exponent = (long)exponent.real;
if (exponent.imag == 0. && exponent.real == int_exponent)
p = c_powi(v->cval,int_exponent);
else
p = c_pow(v->cval,exponent);
if (c_error == 2) {
err_setstr(ValueError, "0.0 to a negative or complex power");
return NULL;
}
return newcomplexobject(p);
}
static object *
complex_neg(v)
complexobject *v;
{
complex neg;
neg.real = -v->cval.real;
neg.imag = -v->cval.imag;
return newcomplexobject(neg);
}
static object *
complex_pos(v)
complexobject *v;
{
INCREF(v);
return (object *)v;
}
static object *
complex_abs(v)
complexobject *v;
{
return newfloatobject(hypot(v->cval.real,v->cval.imag));
}
static int
complex_nonzero(v)
complexobject *v;
{
return v->cval.real != 0.0 && v->cval.imag != 0.0;
}
static int
complex_coerce(pv, pw)
object **pv;
object **pw;
{
complex cval;
cval.imag = 0.;
if (is_intobject(*pw)) {
cval.real = (double)getintvalue(*pw);
*pw = newcomplexobject(cval);
INCREF(*pv);
return 0;
}
else if (is_longobject(*pw)) {
cval.real = dgetlongvalue(*pw);
*pw = newcomplexobject(cval);
INCREF(*pv);
return 0;
}
else if (is_floatobject(*pw)) {
cval.real = getfloatvalue(*pw);
*pw = newcomplexobject(cval);
INCREF(*pv);
return 0;
}
return 1; /* Can't do it */
}
static object *
complex_int(v)
object *v;
{
double x = ((complexobject *)v)->cval.real;
if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN
: (x = floor(x)) > (double)LONG_MAX) {
err_setstr(OverflowError, "float too large to convert");
return NULL;
}
return newintobject((long)x);
}
static object *
complex_long(v)
object *v;
{
double x = ((complexobject *)v)->cval.real;
return dnewlongobject(x);
}
static object *
complex_float(v)
object *v;
{
double x = ((complexobject *)v)->cval.real;
return newfloatobject(x);
}
static object *
complex_new(self, args)
object *self;
object *args;
{
complex cval;
cval.imag = 0.;
if (!PyArg_ParseTuple(args, "d|d", &cval.real, &cval.imag))
return NULL;
return newcomplexobject(cval);
}
static object *
complex_conjugate(self)
object *self;
{
complex c = ((complexobject *)self)->cval;
c.imag = -c.imag;
return newcomplexobject(c);
}
static PyMethodDef complex_methods[] = {
{"conjugate", (PyCFunction)complex_conjugate, 1},
{NULL, NULL} /* sentinel */
};
static object *
complex_getattr(self, name)
complexobject *self;
char *name;
{
complex cval;
if (strcmp(name, "real") == 0)
return (object *)newfloatobject(self->cval.real);
else if (strcmp(name, "imag") == 0)
return (object *)newfloatobject(self->cval.imag);
else if (strcmp(name, "conj") == 0) {
cval.real = self->cval.real;
cval.imag = -self->cval.imag;
return (object *)newcomplexobject(cval);
}
return findmethod(complex_methods, (object *)self, name);
}
static number_methods complex_as_number = {
(binaryfunc)complex_add, /*nb_add*/
(binaryfunc)complex_sub, /*nb_subtract*/
(binaryfunc)complex_mul, /*nb_multiply*/
(binaryfunc)complex_div, /*nb_divide*/
0, /*nb_remainder*/
0, /*nb_divmod*/
(ternaryfunc)complex_pow, /*nb_power*/
(unaryfunc)complex_neg, /*nb_negative*/
(unaryfunc)complex_pos, /*nb_positive*/
(unaryfunc)complex_abs, /*nb_absolute*/
(inquiry)complex_nonzero, /*nb_nonzero*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
(coercion)complex_coerce, /*nb_coerce*/
(unaryfunc)complex_int, /*nb_int*/
(unaryfunc)complex_long, /*nb_long*/
(unaryfunc)complex_float, /*nb_float*/
0, /*nb_oct*/
0, /*nb_hex*/
};
typeobject Complextype = {
OB_HEAD_INIT(&Typetype)
0,
"complex",
sizeof(complexobject),
0,
(destructor)complex_dealloc, /*tp_dealloc*/
(printfunc)complex_print, /*tp_print*/
(getattrfunc)complex_getattr, /*tp_getattr*/
0, /*tp_setattr*/
(cmpfunc)complex_compare, /*tp_compare*/
(reprfunc)complex_repr, /*tp_repr*/
&complex_as_number, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
(hashfunc)complex_hash, /*tp_hash*/
};
#endif