mirror of https://github.com/python/cpython
1762 lines
124 KiB
Plaintext
1762 lines
124 KiB
Plaintext
|
------------------------------------------------------------------------
|
||
|
-- dqFMA.decTest -- decQuad Fused Multiply Add --
|
||
|
-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
|
||
|
------------------------------------------------------------------------
|
||
|
-- Please see the document "General Decimal Arithmetic Testcases" --
|
||
|
-- at http://www2.hursley.ibm.com/decimal for the description of --
|
||
|
-- these testcases. --
|
||
|
-- --
|
||
|
-- These testcases are experimental ('beta' versions), and they --
|
||
|
-- may contain errors. They are offered on an as-is basis. In --
|
||
|
-- particular, achieving the same results as the tests here is not --
|
||
|
-- a guarantee that an implementation complies with any Standard --
|
||
|
-- or specification. The tests are not exhaustive. --
|
||
|
-- --
|
||
|
-- Please send comments, suggestions, and corrections to the author: --
|
||
|
-- Mike Cowlishaw, IBM Fellow --
|
||
|
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
|
||
|
-- mfc@uk.ibm.com --
|
||
|
------------------------------------------------------------------------
|
||
|
version: 2.56
|
||
|
|
||
|
extended: 1
|
||
|
clamp: 1
|
||
|
precision: 34
|
||
|
maxExponent: 6144
|
||
|
minExponent: -6143
|
||
|
rounding: half_even
|
||
|
|
||
|
-- These tests comprese three parts:
|
||
|
-- 1. Sanity checks and other three-operand tests (especially those
|
||
|
-- where the fused operation makes a difference)
|
||
|
-- 2. Multiply tests (third operand is neutral zero [0E+emax])
|
||
|
-- 3. Addition tests (first operand is 1)
|
||
|
-- The multiply and addition tests are extensive because FMA may have
|
||
|
-- its own dedicated multiplication or addition routine(s), and they
|
||
|
-- also inherently check the left-to-right properties.
|
||
|
|
||
|
-- Sanity checks
|
||
|
dqfma0001 fma 1 1 1 -> 2
|
||
|
dqfma0002 fma 1 1 2 -> 3
|
||
|
dqfma0003 fma 2 2 3 -> 7
|
||
|
dqfma0004 fma 9 9 9 -> 90
|
||
|
dqfma0005 fma -1 1 1 -> 0
|
||
|
dqfma0006 fma -1 1 2 -> 1
|
||
|
dqfma0007 fma -2 2 3 -> -1
|
||
|
dqfma0008 fma -9 9 9 -> -72
|
||
|
dqfma0011 fma 1 -1 1 -> 0
|
||
|
dqfma0012 fma 1 -1 2 -> 1
|
||
|
dqfma0013 fma 2 -2 3 -> -1
|
||
|
dqfma0014 fma 9 -9 9 -> -72
|
||
|
dqfma0015 fma 1 1 -1 -> 0
|
||
|
dqfma0016 fma 1 1 -2 -> -1
|
||
|
dqfma0017 fma 2 2 -3 -> 1
|
||
|
dqfma0018 fma 9 9 -9 -> 72
|
||
|
|
||
|
-- non-integer exacts
|
||
|
dqfma0100 fma 25.2 63.6 -438 -> 1164.72
|
||
|
dqfma0101 fma 0.301 0.380 334 -> 334.114380
|
||
|
dqfma0102 fma 49.2 -4.8 23.3 -> -212.86
|
||
|
dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662
|
||
|
dqfma0104 fma 903 0.797 0.887 -> 720.578
|
||
|
dqfma0105 fma 6.13 -161 65.9 -> -921.03
|
||
|
dqfma0106 fma 28.2 727 5.45 -> 20506.85
|
||
|
dqfma0107 fma 4 605 688 -> 3108
|
||
|
dqfma0108 fma 93.3 0.19 0.226 -> 17.953
|
||
|
dqfma0109 fma 0.169 -341 5.61 -> -52.019
|
||
|
dqfma0110 fma -72.2 30 -51.2 -> -2217.2
|
||
|
dqfma0111 fma -0.409 13 20.4 -> 15.083
|
||
|
dqfma0112 fma 317 77.0 19.0 -> 24428.0
|
||
|
dqfma0113 fma 47 6.58 1.62 -> 310.88
|
||
|
dqfma0114 fma 1.36 0.984 0.493 -> 1.83124
|
||
|
dqfma0115 fma 72.7 274 1.56 -> 19921.36
|
||
|
dqfma0116 fma 335 847 83 -> 283828
|
||
|
dqfma0117 fma 666 0.247 25.4 -> 189.902
|
||
|
dqfma0118 fma -3.87 3.06 78.0 -> 66.1578
|
||
|
dqfma0119 fma 0.742 192 35.6 -> 178.064
|
||
|
dqfma0120 fma -91.6 5.29 0.153 -> -484.411
|
||
|
|
||
|
-- cases where result is different from separate multiply + add; each
|
||
|
-- is preceded by the result of unfused multiply and add
|
||
|
-- [this is about 20% of all similar cases in general]
|
||
|
-- -> 4.500119002100000209469729375698778E+38
|
||
|
dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded
|
||
|
-- -> 5.996248469584594346858881620185514E+41
|
||
|
dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded
|
||
|
-- -> 1.899242968678256924021594770874070E+34
|
||
|
dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded
|
||
|
-- -> 7.078596978842809537929699954860309E+37
|
||
|
dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded
|
||
|
-- -> 1.224955667581427559754106862350743E+37
|
||
|
dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded
|
||
|
-- -> -2.530094043253148806272276368579144E+42
|
||
|
dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded
|
||
|
-- -> 1.713387085759711954319391412788454E+37
|
||
|
dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded
|
||
|
-- -> 4.062275663405823716411579117771547E+35
|
||
|
dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded
|
||
|
-- -> 6.002604327732568490562249875306823E+47
|
||
|
dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded
|
||
|
-- -> -2.027022514381452197510103395283874E+39
|
||
|
dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded
|
||
|
-- -> -7.856525039803554001144089842730361E+37
|
||
|
dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded
|
||
|
-- -> 1.695515562011520746125607502237559E+38
|
||
|
dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded
|
||
|
-- -> -8.448422935783289219748115038014710E+38
|
||
|
dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded
|
||
|
|
||
|
-- Cases where multiply would overflow or underflow if separate
|
||
|
dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped
|
||
|
dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
|
||
|
-- subnormal etc.
|
||
|
dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
|
||
|
-- Infinite combinations
|
||
|
dqfma0800 fma Inf Inf Inf -> Infinity
|
||
|
dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
|
||
|
dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
|
||
|
dqfma0803 fma Inf -Inf -Inf -> -Infinity
|
||
|
dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
|
||
|
dqfma0805 fma -Inf Inf -Inf -> -Infinity
|
||
|
dqfma0806 fma -Inf -Inf Inf -> Infinity
|
||
|
dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
|
||
|
|
||
|
-- Triple NaN propagation
|
||
|
dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2
|
||
|
dqfma0901 fma 0 NaN3 NaN5 -> NaN3
|
||
|
dqfma0902 fma 0 0 NaN5 -> NaN5
|
||
|
-- first sNaN wins (consider qNaN from earlier sNaN being
|
||
|
-- overridden by an sNaN in third operand)
|
||
|
dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
|
||
|
dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
|
||
|
dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
|
||
|
dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
|
||
|
dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
|
||
|
dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
|
||
|
|
||
|
-- MULTIPLICATION TESTS ------------------------------------------------
|
||
|
rounding: half_even
|
||
|
|
||
|
-- sanity checks
|
||
|
dqfma2000 fma 2 2 0e+6144 -> 4
|
||
|
dqfma2001 fma 2 3 0e+6144 -> 6
|
||
|
dqfma2002 fma 5 1 0e+6144 -> 5
|
||
|
dqfma2003 fma 5 2 0e+6144 -> 10
|
||
|
dqfma2004 fma 1.20 2 0e+6144 -> 2.40
|
||
|
dqfma2005 fma 1.20 0 0e+6144 -> 0.00
|
||
|
dqfma2006 fma 1.20 -2 0e+6144 -> -2.40
|
||
|
dqfma2007 fma -1.20 2 0e+6144 -> -2.40
|
||
|
dqfma2008 fma -1.20 0 0e+6144 -> 0.00
|
||
|
dqfma2009 fma -1.20 -2 0e+6144 -> 2.40
|
||
|
dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139
|
||
|
dqfma2011 fma 2.5 4 0e+6144 -> 10.0
|
||
|
dqfma2012 fma 2.50 4 0e+6144 -> 10.00
|
||
|
dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded
|
||
|
dqfma2015 fma 2.50 4 0e+6144 -> 10.00
|
||
|
dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
|
||
|
dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
|
||
|
dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
|
||
|
dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
|
||
|
|
||
|
-- zeros, etc.
|
||
|
dqfma2021 fma 0 0 0e+6144 -> 0
|
||
|
dqfma2022 fma 0 -0 0e+6144 -> 0
|
||
|
dqfma2023 fma -0 0 0e+6144 -> 0
|
||
|
dqfma2024 fma -0 -0 0e+6144 -> 0
|
||
|
dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500
|
||
|
dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000
|
||
|
dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
||
|
dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
|
||
|
dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500
|
||
|
dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000
|
||
|
dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
||
|
dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
|
||
|
dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500
|
||
|
dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000
|
||
|
dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
||
|
dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
|
||
|
dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500
|
||
|
dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000
|
||
|
dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
|
||
|
dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
|
||
|
|
||
|
-- examples from decarith
|
||
|
dqfma2050 fma 1.20 3 0e+6144 -> 3.60
|
||
|
dqfma2051 fma 7 3 0e+6144 -> 21
|
||
|
dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72
|
||
|
dqfma2053 fma 0.9 -0 0e+6144 -> 0.0
|
||
|
dqfma2054 fma 654321 654321 0e+6144 -> 428135971041
|
||
|
|
||
|
dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9
|
||
|
dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10
|
||
|
dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11
|
||
|
dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12
|
||
|
dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13
|
||
|
dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14
|
||
|
dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15
|
||
|
|
||
|
|
||
|
-- test some intermediate lengths
|
||
|
-- 1234567890123456
|
||
|
dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
|
||
|
dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
|
||
|
dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
|
||
|
dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
|
||
|
|
||
|
-- test some more edge cases and carries
|
||
|
dqfma2101 fma 9 9 0e+6144 -> 81
|
||
|
dqfma2102 fma 9 90 0e+6144 -> 810
|
||
|
dqfma2103 fma 9 900 0e+6144 -> 8100
|
||
|
dqfma2104 fma 9 9000 0e+6144 -> 81000
|
||
|
dqfma2105 fma 9 90000 0e+6144 -> 810000
|
||
|
dqfma2106 fma 9 900000 0e+6144 -> 8100000
|
||
|
dqfma2107 fma 9 9000000 0e+6144 -> 81000000
|
||
|
dqfma2108 fma 9 90000000 0e+6144 -> 810000000
|
||
|
dqfma2109 fma 9 900000000 0e+6144 -> 8100000000
|
||
|
dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000
|
||
|
dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000
|
||
|
dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000
|
||
|
dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000
|
||
|
dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000
|
||
|
dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000
|
||
|
--dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000
|
||
|
--dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000
|
||
|
--dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000
|
||
|
--dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000
|
||
|
--dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000
|
||
|
--dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000
|
||
|
--dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000
|
||
|
--dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000
|
||
|
-- test some more edge cases without carries
|
||
|
dqfma2131 fma 3 3 0e+6144 -> 9
|
||
|
dqfma2132 fma 3 30 0e+6144 -> 90
|
||
|
dqfma2133 fma 3 300 0e+6144 -> 900
|
||
|
dqfma2134 fma 3 3000 0e+6144 -> 9000
|
||
|
dqfma2135 fma 3 30000 0e+6144 -> 90000
|
||
|
dqfma2136 fma 3 300000 0e+6144 -> 900000
|
||
|
dqfma2137 fma 3 3000000 0e+6144 -> 9000000
|
||
|
dqfma2138 fma 3 30000000 0e+6144 -> 90000000
|
||
|
dqfma2139 fma 3 300000000 0e+6144 -> 900000000
|
||
|
dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000
|
||
|
dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000
|
||
|
dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000
|
||
|
dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000
|
||
|
dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000
|
||
|
dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000
|
||
|
dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000
|
||
|
dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000
|
||
|
dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000
|
||
|
dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000
|
||
|
dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000
|
||
|
dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000
|
||
|
dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000
|
||
|
dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000
|
||
|
|
||
|
dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded
|
||
|
|
||
|
-- test some edge cases with exact rounding
|
||
|
dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000
|
||
|
dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000
|
||
|
dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000
|
||
|
dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000
|
||
|
dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000
|
||
|
dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000
|
||
|
dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000
|
||
|
dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000
|
||
|
dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000
|
||
|
dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000
|
||
|
dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000
|
||
|
dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000
|
||
|
dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000
|
||
|
dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000
|
||
|
dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000
|
||
|
dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000
|
||
|
dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded
|
||
|
dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded
|
||
|
dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded
|
||
|
dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded
|
||
|
dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded
|
||
|
dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded
|
||
|
dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded
|
||
|
|
||
|
-- tryzeros cases
|
||
|
dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped
|
||
|
dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped
|
||
|
|
||
|
-- mixed with zeros
|
||
|
dqfma2541 fma 0 -1 0e+6144 -> 0
|
||
|
dqfma2542 fma -0 -1 0e+6144 -> 0
|
||
|
dqfma2543 fma 0 1 0e+6144 -> 0
|
||
|
dqfma2544 fma -0 1 0e+6144 -> 0
|
||
|
dqfma2545 fma -1 0 0e+6144 -> 0
|
||
|
dqfma2546 fma -1 -0 0e+6144 -> 0
|
||
|
dqfma2547 fma 1 0 0e+6144 -> 0
|
||
|
dqfma2548 fma 1 -0 0e+6144 -> 0
|
||
|
|
||
|
dqfma2551 fma 0.0 -1 0e+6144 -> 0.0
|
||
|
dqfma2552 fma -0.0 -1 0e+6144 -> 0.0
|
||
|
dqfma2553 fma 0.0 1 0e+6144 -> 0.0
|
||
|
dqfma2554 fma -0.0 1 0e+6144 -> 0.0
|
||
|
dqfma2555 fma -1.0 0 0e+6144 -> 0.0
|
||
|
dqfma2556 fma -1.0 -0 0e+6144 -> 0.0
|
||
|
dqfma2557 fma 1.0 0 0e+6144 -> 0.0
|
||
|
dqfma2558 fma 1.0 -0 0e+6144 -> 0.0
|
||
|
|
||
|
dqfma2561 fma 0 -1.0 0e+6144 -> 0.0
|
||
|
dqfma2562 fma -0 -1.0 0e+6144 -> 0.0
|
||
|
dqfma2563 fma 0 1.0 0e+6144 -> 0.0
|
||
|
dqfma2564 fma -0 1.0 0e+6144 -> 0.0
|
||
|
dqfma2565 fma -1 0.0 0e+6144 -> 0.0
|
||
|
dqfma2566 fma -1 -0.0 0e+6144 -> 0.0
|
||
|
dqfma2567 fma 1 0.0 0e+6144 -> 0.0
|
||
|
dqfma2568 fma 1 -0.0 0e+6144 -> 0.0
|
||
|
|
||
|
dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00
|
||
|
dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00
|
||
|
dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00
|
||
|
dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00
|
||
|
dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00
|
||
|
dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00
|
||
|
dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00
|
||
|
dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00
|
||
|
dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00
|
||
|
dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00
|
||
|
dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00
|
||
|
dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00
|
||
|
dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00
|
||
|
|
||
|
|
||
|
-- Specials
|
||
|
dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity
|
||
|
dqfma2581 fma Inf -1000 0e+6144 -> -Infinity
|
||
|
dqfma2582 fma Inf -1 0e+6144 -> -Infinity
|
||
|
dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2585 fma Inf 1 0e+6144 -> Infinity
|
||
|
dqfma2586 fma Inf 1000 0e+6144 -> Infinity
|
||
|
dqfma2587 fma Inf Inf 0e+6144 -> Infinity
|
||
|
dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity
|
||
|
dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity
|
||
|
dqfma2590 fma -1 Inf 0e+6144 -> -Infinity
|
||
|
dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2593 fma 1 Inf 0e+6144 -> Infinity
|
||
|
dqfma2594 fma 1000 Inf 0e+6144 -> Infinity
|
||
|
dqfma2595 fma Inf Inf 0e+6144 -> Infinity
|
||
|
|
||
|
dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity
|
||
|
dqfma2601 fma -Inf -1000 0e+6144 -> Infinity
|
||
|
dqfma2602 fma -Inf -1 0e+6144 -> Infinity
|
||
|
dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2605 fma -Inf 1 0e+6144 -> -Infinity
|
||
|
dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity
|
||
|
dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity
|
||
|
dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity
|
||
|
dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity
|
||
|
dqfma2610 fma -1 -Inf 0e+6144 -> Infinity
|
||
|
dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity
|
||
|
dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity
|
||
|
dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity
|
||
|
|
||
|
dqfma2621 fma NaN -Inf 0e+6144 -> NaN
|
||
|
dqfma2622 fma NaN -1000 0e+6144 -> NaN
|
||
|
dqfma2623 fma NaN -1 0e+6144 -> NaN
|
||
|
dqfma2624 fma NaN -0 0e+6144 -> NaN
|
||
|
dqfma2625 fma NaN 0 0e+6144 -> NaN
|
||
|
dqfma2626 fma NaN 1 0e+6144 -> NaN
|
||
|
dqfma2627 fma NaN 1000 0e+6144 -> NaN
|
||
|
dqfma2628 fma NaN Inf 0e+6144 -> NaN
|
||
|
dqfma2629 fma NaN NaN 0e+6144 -> NaN
|
||
|
dqfma2630 fma -Inf NaN 0e+6144 -> NaN
|
||
|
dqfma2631 fma -1000 NaN 0e+6144 -> NaN
|
||
|
dqfma2632 fma -1 NaN 0e+6144 -> NaN
|
||
|
dqfma2633 fma -0 NaN 0e+6144 -> NaN
|
||
|
dqfma2634 fma 0 NaN 0e+6144 -> NaN
|
||
|
dqfma2635 fma 1 NaN 0e+6144 -> NaN
|
||
|
dqfma2636 fma 1000 NaN 0e+6144 -> NaN
|
||
|
dqfma2637 fma Inf NaN 0e+6144 -> NaN
|
||
|
|
||
|
dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
|
||
|
|
||
|
-- propagating NaNs
|
||
|
dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9
|
||
|
dqfma2662 fma NaN8 999 0e+6144 -> NaN8
|
||
|
dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71
|
||
|
dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6
|
||
|
dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4
|
||
|
dqfma2666 fma -999 NaN33 0e+6144 -> NaN33
|
||
|
dqfma2667 fma Inf NaN2 0e+6144 -> NaN2
|
||
|
|
||
|
dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation
|
||
|
dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation
|
||
|
dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation
|
||
|
dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation
|
||
|
dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation
|
||
|
dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation
|
||
|
dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation
|
||
|
dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation
|
||
|
dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation
|
||
|
|
||
|
dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9
|
||
|
dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8
|
||
|
dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71
|
||
|
dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6
|
||
|
dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4
|
||
|
dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33
|
||
|
dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2
|
||
|
|
||
|
dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation
|
||
|
dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation
|
||
|
dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation
|
||
|
dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation
|
||
|
dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation
|
||
|
dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation
|
||
|
dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation
|
||
|
dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation
|
||
|
dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation
|
||
|
|
||
|
dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN
|
||
|
dqfma2702 fma -NaN 999 0e+6144 -> -NaN
|
||
|
dqfma2703 fma -NaN Inf 0e+6144 -> -NaN
|
||
|
dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN
|
||
|
dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN
|
||
|
dqfma2706 fma -999 -NaN 0e+6144 -> -NaN
|
||
|
dqfma2707 fma Inf -NaN 0e+6144 -> -NaN
|
||
|
|
||
|
dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation
|
||
|
dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
|
||
|
|
||
|
-- overflow and underflow tests .. note subnormal results
|
||
|
-- signs
|
||
|
dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
|
||
|
dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
|
||
|
dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
|
||
|
-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
|
||
|
dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal
|
||
|
dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal
|
||
|
dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal
|
||
|
dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal
|
||
|
dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal
|
||
|
dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal
|
||
|
dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal
|
||
|
dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
-- [no equivalent of 'subnormal' for overflow]
|
||
|
dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped
|
||
|
dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped
|
||
|
dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped
|
||
|
dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
|
||
|
dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded
|
||
|
|
||
|
dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal
|
||
|
dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal
|
||
|
dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal
|
||
|
dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal
|
||
|
dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded
|
||
|
dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
|
||
|
|
||
|
dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal
|
||
|
dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
|
||
|
dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal
|
||
|
dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
|
||
|
dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
|
||
|
dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
|
||
|
dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded
|
||
|
dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal
|
||
|
dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal
|
||
|
dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal
|
||
|
dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal
|
||
|
dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal
|
||
|
dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal
|
||
|
dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal
|
||
|
dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143
|
||
|
|
||
|
-- Long operand overflow may be a different path
|
||
|
dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded
|
||
|
dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded
|
||
|
dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded
|
||
|
dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded
|
||
|
|
||
|
-- check for double-rounded subnormals
|
||
|
dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal
|
||
|
dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal
|
||
|
dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow
|
||
|
dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow
|
||
|
dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow
|
||
|
dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow
|
||
|
dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow
|
||
|
|
||
|
dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
|
||
|
dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
|
||
|
|
||
|
-- Now explore the case where we get a normal result with Underflow
|
||
|
-- prove operands are exact
|
||
|
dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143
|
||
|
dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999
|
||
|
-- the next rounds to Nmin
|
||
|
dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded
|
||
|
|
||
|
-- hugest
|
||
|
dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded
|
||
|
|
||
|
-- Examples from SQL proposal (Krishna Kulkarni)
|
||
|
precision: 34
|
||
|
rounding: half_up
|
||
|
maxExponent: 6144
|
||
|
minExponent: -6143
|
||
|
dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600
|
||
|
dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560
|
||
|
dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30
|
||
|
dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6
|
||
|
|
||
|
-- Null tests
|
||
|
dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation
|
||
|
dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation
|
||
|
|
||
|
|
||
|
-- ADDITION TESTS ------------------------------------------------------
|
||
|
rounding: half_even
|
||
|
|
||
|
-- [first group are 'quick confidence check']
|
||
|
dqadd3001 fma 1 1 1 -> 2
|
||
|
dqadd3002 fma 1 2 3 -> 5
|
||
|
dqadd3003 fma 1 '5.75' '3.3' -> 9.05
|
||
|
dqadd3004 fma 1 '5' '-3' -> 2
|
||
|
dqadd3005 fma 1 '-5' '-3' -> -8
|
||
|
dqadd3006 fma 1 '-7' '2.5' -> -4.5
|
||
|
dqadd3007 fma 1 '0.7' '0.3' -> 1.0
|
||
|
dqadd3008 fma 1 '1.25' '1.25' -> 2.50
|
||
|
dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
|
||
|
dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
|
||
|
|
||
|
-- 1234567890123456 1234567890123456
|
||
|
dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded
|
||
|
dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded
|
||
|
dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
|
||
|
dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded
|
||
|
dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded
|
||
|
dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded
|
||
|
dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded
|
||
|
dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded
|
||
|
dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded
|
||
|
dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded
|
||
|
|
||
|
dqadd3021 fma 1 0 1 -> 1
|
||
|
dqadd3022 fma 1 1 1 -> 2
|
||
|
dqadd3023 fma 1 2 1 -> 3
|
||
|
dqadd3024 fma 1 3 1 -> 4
|
||
|
dqadd3025 fma 1 4 1 -> 5
|
||
|
dqadd3026 fma 1 5 1 -> 6
|
||
|
dqadd3027 fma 1 6 1 -> 7
|
||
|
dqadd3028 fma 1 7 1 -> 8
|
||
|
dqadd3029 fma 1 8 1 -> 9
|
||
|
dqadd3030 fma 1 9 1 -> 10
|
||
|
|
||
|
-- some carrying effects
|
||
|
dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998'
|
||
|
dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999'
|
||
|
dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000'
|
||
|
dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001'
|
||
|
|
||
|
dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
||
|
dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
||
|
dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
||
|
dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
|
||
|
dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded
|
||
|
|
||
|
-- symmetry:
|
||
|
dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
||
|
dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
||
|
dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
|
||
|
dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
|
||
|
dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded
|
||
|
|
||
|
-- same, without rounding
|
||
|
dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007'
|
||
|
dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070'
|
||
|
dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700'
|
||
|
dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000'
|
||
|
dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000'
|
||
|
dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000'
|
||
|
dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
|
||
|
|
||
|
-- examples from decarith
|
||
|
dqadd3053 fma 1 '12' '7.00' -> '19.00'
|
||
|
dqadd3054 fma 1 '1.3' '-1.07' -> '0.23'
|
||
|
dqadd3055 fma 1 '1.3' '-1.30' -> '0.00'
|
||
|
dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77'
|
||
|
dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
|
||
|
|
||
|
-- leading zero preservation
|
||
|
dqadd3061 fma 1 1 '0.0001' -> '1.0001'
|
||
|
dqadd3062 fma 1 1 '0.00001' -> '1.00001'
|
||
|
dqadd3063 fma 1 1 '0.000001' -> '1.000001'
|
||
|
dqadd3064 fma 1 1 '0.0000001' -> '1.0000001'
|
||
|
dqadd3065 fma 1 1 '0.00000001' -> '1.00000001'
|
||
|
|
||
|
-- some funny zeros [in case of bad signum]
|
||
|
dqadd3070 fma 1 1 0 -> 1
|
||
|
dqadd3071 fma 1 1 0. -> 1
|
||
|
dqadd3072 fma 1 1 .0 -> 1.0
|
||
|
dqadd3073 fma 1 1 0.0 -> 1.0
|
||
|
dqadd3074 fma 1 1 0.00 -> 1.00
|
||
|
dqadd3075 fma 1 0 1 -> 1
|
||
|
dqadd3076 fma 1 0. 1 -> 1
|
||
|
dqadd3077 fma 1 .0 1 -> 1.0
|
||
|
dqadd3078 fma 1 0.0 1 -> 1.0
|
||
|
dqadd3079 fma 1 0.00 1 -> 1.00
|
||
|
|
||
|
-- some carries
|
||
|
dqadd3080 fma 1 999999998 1 -> 999999999
|
||
|
dqadd3081 fma 1 999999999 1 -> 1000000000
|
||
|
dqadd3082 fma 1 99999999 1 -> 100000000
|
||
|
dqadd3083 fma 1 9999999 1 -> 10000000
|
||
|
dqadd3084 fma 1 999999 1 -> 1000000
|
||
|
dqadd3085 fma 1 99999 1 -> 100000
|
||
|
dqadd3086 fma 1 9999 1 -> 10000
|
||
|
dqadd3087 fma 1 999 1 -> 1000
|
||
|
dqadd3088 fma 1 99 1 -> 100
|
||
|
dqadd3089 fma 1 9 1 -> 10
|
||
|
|
||
|
|
||
|
-- more LHS swaps
|
||
|
dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
|
||
|
dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267'
|
||
|
dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267'
|
||
|
dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267'
|
||
|
dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267'
|
||
|
dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67'
|
||
|
dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7'
|
||
|
dqadd3097 fma 1 '-56267E-0' 0 -> '-56267'
|
||
|
dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10'
|
||
|
dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7'
|
||
|
dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005'
|
||
|
dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005'
|
||
|
dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005'
|
||
|
dqadd3103 fma 1 '-5E-1' 0 -> '-0.5'
|
||
|
dqadd3104 fma 1 '-5E0' 0 -> '-5'
|
||
|
dqadd3105 fma 1 '-5E1' 0 -> '-50'
|
||
|
dqadd3106 fma 1 '-5E5' 0 -> '-500000'
|
||
|
dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000'
|
||
|
dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
|
||
|
dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
|
||
|
dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
|
||
|
dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
|
||
|
|
||
|
-- more RHS swaps
|
||
|
dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
|
||
|
dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267'
|
||
|
dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267'
|
||
|
dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267'
|
||
|
dqadd3119 fma 1 0 '-56267E-3' -> '-56.267'
|
||
|
dqadd3120 fma 1 0 '-56267E-2' -> '-562.67'
|
||
|
dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7'
|
||
|
dqadd3122 fma 1 0 '-56267E-0' -> '-56267'
|
||
|
dqadd3123 fma 1 0 '-5E-10' -> '-5E-10'
|
||
|
dqadd3124 fma 1 0 '-5E-7' -> '-5E-7'
|
||
|
dqadd3125 fma 1 0 '-5E-6' -> '-0.000005'
|
||
|
dqadd3126 fma 1 0 '-5E-5' -> '-0.00005'
|
||
|
dqadd3127 fma 1 0 '-5E-4' -> '-0.0005'
|
||
|
dqadd3128 fma 1 0 '-5E-1' -> '-0.5'
|
||
|
dqadd3129 fma 1 0 '-5E0' -> '-5'
|
||
|
dqadd3130 fma 1 0 '-5E1' -> '-50'
|
||
|
dqadd3131 fma 1 0 '-5E5' -> '-500000'
|
||
|
dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000'
|
||
|
dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded
|
||
|
dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded
|
||
|
dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded
|
||
|
dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded
|
||
|
|
||
|
-- related
|
||
|
dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded
|
||
|
dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded
|
||
|
dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded
|
||
|
dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded
|
||
|
dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000'
|
||
|
dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded
|
||
|
dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000'
|
||
|
dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded
|
||
|
|
||
|
-- [some of the next group are really constructor tests]
|
||
|
dqadd3146 fma 1 '00.0' 0 -> '0.0'
|
||
|
dqadd3147 fma 1 '0.00' 0 -> '0.00'
|
||
|
dqadd3148 fma 1 0 '0.00' -> '0.00'
|
||
|
dqadd3149 fma 1 0 '00.0' -> '0.0'
|
||
|
dqadd3150 fma 1 '00.0' '0.00' -> '0.00'
|
||
|
dqadd3151 fma 1 '0.00' '00.0' -> '0.00'
|
||
|
dqadd3152 fma 1 '3' '.3' -> '3.3'
|
||
|
dqadd3153 fma 1 '3.' '.3' -> '3.3'
|
||
|
dqadd3154 fma 1 '3.0' '.3' -> '3.3'
|
||
|
dqadd3155 fma 1 '3.00' '.3' -> '3.30'
|
||
|
dqadd3156 fma 1 '3' '3' -> '6'
|
||
|
dqadd3157 fma 1 '3' '+3' -> '6'
|
||
|
dqadd3158 fma 1 '3' '-3' -> '0'
|
||
|
dqadd3159 fma 1 '0.3' '-0.3' -> '0.0'
|
||
|
dqadd3160 fma 1 '0.03' '-0.03' -> '0.00'
|
||
|
|
||
|
-- try borderline precision, with carries, etc.
|
||
|
dqadd3161 fma 1 '1E+12' '-1' -> '999999999999'
|
||
|
dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
|
||
|
dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
|
||
|
dqadd3164 fma 1 '-1' '1E+12' -> '999999999999'
|
||
|
dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999'
|
||
|
dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
|
||
|
dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
|
||
|
dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999'
|
||
|
|
||
|
rounding: half_up
|
||
|
dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded
|
||
|
dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded
|
||
|
dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded
|
||
|
dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded
|
||
|
dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded
|
||
|
dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded
|
||
|
dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded
|
||
|
dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded
|
||
|
dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded
|
||
|
dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded
|
||
|
dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded
|
||
|
dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded
|
||
|
dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded
|
||
|
dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded
|
||
|
|
||
|
-- and some more, including residue effects and different roundings
|
||
|
rounding: half_up
|
||
|
dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
|
||
|
dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3205 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3206 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3207 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3208 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3209 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3210 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3211 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3212 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3213 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3214 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3215 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3216 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
|
||
|
dqadd3217 fma 1 '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3218 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3219 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
|
||
|
rounding: half_even
|
||
|
dqadd3220 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
|
||
|
dqadd3221 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3222 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3223 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3224 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3225 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3226 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3227 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3228 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3229 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3230 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3231 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3232 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3233 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3234 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3235 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3236 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
|
||
|
dqadd3237 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3238 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3239 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
-- critical few with even bottom digit...
|
||
|
dqadd3240 fma 1 '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded
|
||
|
dqadd3241 fma 1 '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded
|
||
|
dqadd3242 fma 1 '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
|
||
|
rounding: down
|
||
|
dqadd3250 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
|
||
|
dqadd3251 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3252 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3253 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3254 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3255 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3256 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3257 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3258 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3259 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3260 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3261 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3262 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3263 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3264 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3265 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded
|
||
|
dqadd3266 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
|
||
|
dqadd3267 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3268 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
dqadd3269 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
|
||
|
|
||
|
-- 1 in last place tests
|
||
|
rounding: half_up
|
||
|
dqadd3301 fma 1 -1 1 -> 0
|
||
|
dqadd3302 fma 1 0 1 -> 1
|
||
|
dqadd3303 fma 1 1 1 -> 2
|
||
|
dqadd3304 fma 1 12 1 -> 13
|
||
|
dqadd3305 fma 1 98 1 -> 99
|
||
|
dqadd3306 fma 1 99 1 -> 100
|
||
|
dqadd3307 fma 1 100 1 -> 101
|
||
|
dqadd3308 fma 1 101 1 -> 102
|
||
|
dqadd3309 fma 1 -1 -1 -> -2
|
||
|
dqadd3310 fma 1 0 -1 -> -1
|
||
|
dqadd3311 fma 1 1 -1 -> 0
|
||
|
dqadd3312 fma 1 12 -1 -> 11
|
||
|
dqadd3313 fma 1 98 -1 -> 97
|
||
|
dqadd3314 fma 1 99 -1 -> 98
|
||
|
dqadd3315 fma 1 100 -1 -> 99
|
||
|
dqadd3316 fma 1 101 -1 -> 100
|
||
|
|
||
|
dqadd3321 fma 1 -0.01 0.01 -> 0.00
|
||
|
dqadd3322 fma 1 0.00 0.01 -> 0.01
|
||
|
dqadd3323 fma 1 0.01 0.01 -> 0.02
|
||
|
dqadd3324 fma 1 0.12 0.01 -> 0.13
|
||
|
dqadd3325 fma 1 0.98 0.01 -> 0.99
|
||
|
dqadd3326 fma 1 0.99 0.01 -> 1.00
|
||
|
dqadd3327 fma 1 1.00 0.01 -> 1.01
|
||
|
dqadd3328 fma 1 1.01 0.01 -> 1.02
|
||
|
dqadd3329 fma 1 -0.01 -0.01 -> -0.02
|
||
|
dqadd3330 fma 1 0.00 -0.01 -> -0.01
|
||
|
dqadd3331 fma 1 0.01 -0.01 -> 0.00
|
||
|
dqadd3332 fma 1 0.12 -0.01 -> 0.11
|
||
|
dqadd3333 fma 1 0.98 -0.01 -> 0.97
|
||
|
dqadd3334 fma 1 0.99 -0.01 -> 0.98
|
||
|
dqadd3335 fma 1 1.00 -0.01 -> 0.99
|
||
|
dqadd3336 fma 1 1.01 -0.01 -> 1.00
|
||
|
|
||
|
-- some more cases where adding 0 affects the coefficient
|
||
|
dqadd3340 fma 1 1E+3 0 -> 1000
|
||
|
dqadd3341 fma 1 1E+33 0 -> 1000000000000000000000000000000000
|
||
|
dqadd3342 fma 1 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded
|
||
|
dqadd3343 fma 1 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded
|
||
|
-- which simply follow from these cases ...
|
||
|
dqadd3344 fma 1 1E+3 1 -> 1001
|
||
|
dqadd3345 fma 1 1E+33 1 -> 1000000000000000000000000000000001
|
||
|
dqadd3346 fma 1 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd3347 fma 1 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
|
||
|
dqadd3348 fma 1 1E+3 7 -> 1007
|
||
|
dqadd3349 fma 1 1E+33 7 -> 1000000000000000000000000000000007
|
||
|
dqadd3350 fma 1 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded
|
||
|
dqadd3351 fma 1 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
|
||
|
|
||
|
-- tryzeros cases
|
||
|
rounding: half_up
|
||
|
dqadd3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
|
||
|
dqadd3361 fma 1 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded
|
||
|
dqadd3362 fma 1 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded
|
||
|
dqadd3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact
|
||
|
dqadd3364 fma 1 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111
|
||
|
-- 1 234567890123456789012345678901234
|
||
|
|
||
|
-- a curiosity from JSR 13 testing
|
||
|
rounding: half_down
|
||
|
dqadd3370 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
|
||
|
dqadd3371 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
|
||
|
rounding: half_up
|
||
|
dqadd3372 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
|
||
|
dqadd3373 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
|
||
|
rounding: half_even
|
||
|
dqadd3374 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
|
||
|
dqadd3375 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
|
||
|
|
||
|
-- ulp replacement tests
|
||
|
dqadd3400 fma 1 1 77e-32 -> 1.00000000000000000000000000000077
|
||
|
dqadd3401 fma 1 1 77e-33 -> 1.000000000000000000000000000000077
|
||
|
dqadd3402 fma 1 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded
|
||
|
dqadd3403 fma 1 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded
|
||
|
dqadd3404 fma 1 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3405 fma 1 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3406 fma 1 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd3410 fma 1 10 77e-32 -> 10.00000000000000000000000000000077
|
||
|
dqadd3411 fma 1 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded
|
||
|
dqadd3412 fma 1 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded
|
||
|
dqadd3413 fma 1 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3414 fma 1 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3415 fma 1 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3416 fma 1 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd3420 fma 1 77e-32 1 -> 1.00000000000000000000000000000077
|
||
|
dqadd3421 fma 1 77e-33 1 -> 1.000000000000000000000000000000077
|
||
|
dqadd3422 fma 1 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded
|
||
|
dqadd3423 fma 1 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded
|
||
|
dqadd3424 fma 1 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3425 fma 1 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3426 fma 1 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd3430 fma 1 77e-32 10 -> 10.00000000000000000000000000000077
|
||
|
dqadd3431 fma 1 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded
|
||
|
dqadd3432 fma 1 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded
|
||
|
dqadd3433 fma 1 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3434 fma 1 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3435 fma 1 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd3436 fma 1 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
-- negative ulps
|
||
|
dqadd36440 fma 1 1 -77e-32 -> 0.99999999999999999999999999999923
|
||
|
dqadd36441 fma 1 1 -77e-33 -> 0.999999999999999999999999999999923
|
||
|
dqadd36442 fma 1 1 -77e-34 -> 0.9999999999999999999999999999999923
|
||
|
dqadd36443 fma 1 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36444 fma 1 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36445 fma 1 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36446 fma 1 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd36450 fma 1 10 -77e-32 -> 9.99999999999999999999999999999923
|
||
|
dqadd36451 fma 1 10 -77e-33 -> 9.999999999999999999999999999999923
|
||
|
dqadd36452 fma 1 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36453 fma 1 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36454 fma 1 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36455 fma 1 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36456 fma 1 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd36460 fma 1 -77e-32 1 -> 0.99999999999999999999999999999923
|
||
|
dqadd36461 fma 1 -77e-33 1 -> 0.999999999999999999999999999999923
|
||
|
dqadd36462 fma 1 -77e-34 1 -> 0.9999999999999999999999999999999923
|
||
|
dqadd36463 fma 1 -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36464 fma 1 -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36465 fma 1 -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36466 fma 1 -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd36470 fma 1 -77e-32 10 -> 9.99999999999999999999999999999923
|
||
|
dqadd36471 fma 1 -77e-33 10 -> 9.999999999999999999999999999999923
|
||
|
dqadd36472 fma 1 -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36473 fma 1 -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36474 fma 1 -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36475 fma 1 -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36476 fma 1 -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
-- negative ulps
|
||
|
dqadd36480 fma 1 -1 77e-32 -> -0.99999999999999999999999999999923
|
||
|
dqadd36481 fma 1 -1 77e-33 -> -0.999999999999999999999999999999923
|
||
|
dqadd36482 fma 1 -1 77e-34 -> -0.9999999999999999999999999999999923
|
||
|
dqadd36483 fma 1 -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36484 fma 1 -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36485 fma 1 -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36486 fma 1 -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd36490 fma 1 -10 77e-32 -> -9.99999999999999999999999999999923
|
||
|
dqadd36491 fma 1 -10 77e-33 -> -9.999999999999999999999999999999923
|
||
|
dqadd36492 fma 1 -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36493 fma 1 -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36494 fma 1 -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36495 fma 1 -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36496 fma 1 -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd36500 fma 1 77e-32 -1 -> -0.99999999999999999999999999999923
|
||
|
dqadd36501 fma 1 77e-33 -1 -> -0.999999999999999999999999999999923
|
||
|
dqadd36502 fma 1 77e-34 -1 -> -0.9999999999999999999999999999999923
|
||
|
dqadd36503 fma 1 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36504 fma 1 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36505 fma 1 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36506 fma 1 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
dqadd36510 fma 1 77e-32 -10 -> -9.99999999999999999999999999999923
|
||
|
dqadd36511 fma 1 77e-33 -10 -> -9.999999999999999999999999999999923
|
||
|
dqadd36512 fma 1 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded
|
||
|
dqadd36513 fma 1 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd36514 fma 1 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36515 fma 1 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
|
||
|
dqadd36516 fma 1 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
|
||
|
|
||
|
-- and some more residue effects and different roundings
|
||
|
rounding: half_up
|
||
|
dqadd36540 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
|
||
|
dqadd36541 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36542 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36543 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36544 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36545 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36546 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36547 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36548 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36549 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36550 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36551 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36552 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36553 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36554 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36555 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36556 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
|
||
|
dqadd36557 fma 1 '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36558 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36559 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
|
||
|
rounding: half_even
|
||
|
dqadd36560 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
|
||
|
dqadd36561 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36562 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36563 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36564 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36565 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36566 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36567 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd36568 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36569 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36570 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36571 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36572 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36573 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36574 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36575 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36576 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
|
||
|
dqadd36577 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36578 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd36579 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
|
||
|
-- critical few with even bottom digit...
|
||
|
dqadd37540 fma 1 '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded
|
||
|
dqadd37541 fma 1 '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded
|
||
|
dqadd37542 fma 1 '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
|
||
|
rounding: down
|
||
|
dqadd37550 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
|
||
|
dqadd37551 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37552 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37553 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37554 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37555 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37556 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37557 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37558 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37559 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37560 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37561 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37562 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37563 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37564 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37565 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded
|
||
|
dqadd37566 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
|
||
|
dqadd37567 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd37568 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
dqadd37569 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
|
||
|
|
||
|
-- more zeros, etc.
|
||
|
rounding: half_even
|
||
|
|
||
|
dqadd37701 fma 1 5.00 1.00E-3 -> 5.00100
|
||
|
dqadd37702 fma 1 00.00 0.000 -> 0.000
|
||
|
dqadd37703 fma 1 00.00 0E-3 -> 0.000
|
||
|
dqadd37704 fma 1 0E-3 00.00 -> 0.000
|
||
|
|
||
|
dqadd37710 fma 1 0E+3 00.00 -> 0.00
|
||
|
dqadd37711 fma 1 0E+3 00.0 -> 0.0
|
||
|
dqadd37712 fma 1 0E+3 00. -> 0
|
||
|
dqadd37713 fma 1 0E+3 00.E+1 -> 0E+1
|
||
|
dqadd37714 fma 1 0E+3 00.E+2 -> 0E+2
|
||
|
dqadd37715 fma 1 0E+3 00.E+3 -> 0E+3
|
||
|
dqadd37716 fma 1 0E+3 00.E+4 -> 0E+3
|
||
|
dqadd37717 fma 1 0E+3 00.E+5 -> 0E+3
|
||
|
dqadd37718 fma 1 0E+3 -00.0 -> 0.0
|
||
|
dqadd37719 fma 1 0E+3 -00. -> 0
|
||
|
dqadd37731 fma 1 0E+3 -00.E+1 -> 0E+1
|
||
|
|
||
|
dqadd37720 fma 1 00.00 0E+3 -> 0.00
|
||
|
dqadd37721 fma 1 00.0 0E+3 -> 0.0
|
||
|
dqadd37722 fma 1 00. 0E+3 -> 0
|
||
|
dqadd37723 fma 1 00.E+1 0E+3 -> 0E+1
|
||
|
dqadd37724 fma 1 00.E+2 0E+3 -> 0E+2
|
||
|
dqadd37725 fma 1 00.E+3 0E+3 -> 0E+3
|
||
|
dqadd37726 fma 1 00.E+4 0E+3 -> 0E+3
|
||
|
dqadd37727 fma 1 00.E+5 0E+3 -> 0E+3
|
||
|
dqadd37728 fma 1 -00.00 0E+3 -> 0.00
|
||
|
dqadd37729 fma 1 -00.0 0E+3 -> 0.0
|
||
|
dqadd37730 fma 1 -00. 0E+3 -> 0
|
||
|
|
||
|
dqadd37732 fma 1 0 0 -> 0
|
||
|
dqadd37733 fma 1 0 -0 -> 0
|
||
|
dqadd37734 fma 1 -0 0 -> 0
|
||
|
dqadd37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
|
||
|
|
||
|
dqadd37736 fma 1 1 -1 -> 0
|
||
|
dqadd37737 fma 1 -1 -1 -> -2
|
||
|
dqadd37738 fma 1 1 1 -> 2
|
||
|
dqadd37739 fma 1 -1 1 -> 0
|
||
|
|
||
|
dqadd37741 fma 1 0 -1 -> -1
|
||
|
dqadd37742 fma 1 -0 -1 -> -1
|
||
|
dqadd37743 fma 1 0 1 -> 1
|
||
|
dqadd37744 fma 1 -0 1 -> 1
|
||
|
dqadd37745 fma 1 -1 0 -> -1
|
||
|
dqadd37746 fma 1 -1 -0 -> -1
|
||
|
dqadd37747 fma 1 1 0 -> 1
|
||
|
dqadd37748 fma 1 1 -0 -> 1
|
||
|
|
||
|
dqadd37751 fma 1 0.0 -1 -> -1.0
|
||
|
dqadd37752 fma 1 -0.0 -1 -> -1.0
|
||
|
dqadd37753 fma 1 0.0 1 -> 1.0
|
||
|
dqadd37754 fma 1 -0.0 1 -> 1.0
|
||
|
dqadd37755 fma 1 -1.0 0 -> -1.0
|
||
|
dqadd37756 fma 1 -1.0 -0 -> -1.0
|
||
|
dqadd37757 fma 1 1.0 0 -> 1.0
|
||
|
dqadd37758 fma 1 1.0 -0 -> 1.0
|
||
|
|
||
|
dqadd37761 fma 1 0 -1.0 -> -1.0
|
||
|
dqadd37762 fma 1 -0 -1.0 -> -1.0
|
||
|
dqadd37763 fma 1 0 1.0 -> 1.0
|
||
|
dqadd37764 fma 1 -0 1.0 -> 1.0
|
||
|
dqadd37765 fma 1 -1 0.0 -> -1.0
|
||
|
dqadd37766 fma 1 -1 -0.0 -> -1.0
|
||
|
dqadd37767 fma 1 1 0.0 -> 1.0
|
||
|
dqadd37768 fma 1 1 -0.0 -> 1.0
|
||
|
|
||
|
dqadd37771 fma 1 0.0 -1.0 -> -1.0
|
||
|
dqadd37772 fma 1 -0.0 -1.0 -> -1.0
|
||
|
dqadd37773 fma 1 0.0 1.0 -> 1.0
|
||
|
dqadd37774 fma 1 -0.0 1.0 -> 1.0
|
||
|
dqadd37775 fma 1 -1.0 0.0 -> -1.0
|
||
|
dqadd37776 fma 1 -1.0 -0.0 -> -1.0
|
||
|
dqadd37777 fma 1 1.0 0.0 -> 1.0
|
||
|
dqadd37778 fma 1 1.0 -0.0 -> 1.0
|
||
|
|
||
|
-- Specials
|
||
|
dqadd37780 fma 1 -Inf -Inf -> -Infinity
|
||
|
dqadd37781 fma 1 -Inf -1000 -> -Infinity
|
||
|
dqadd37782 fma 1 -Inf -1 -> -Infinity
|
||
|
dqadd37783 fma 1 -Inf -0 -> -Infinity
|
||
|
dqadd37784 fma 1 -Inf 0 -> -Infinity
|
||
|
dqadd37785 fma 1 -Inf 1 -> -Infinity
|
||
|
dqadd37786 fma 1 -Inf 1000 -> -Infinity
|
||
|
dqadd37787 fma 1 -1000 -Inf -> -Infinity
|
||
|
dqadd37788 fma 1 -Inf -Inf -> -Infinity
|
||
|
dqadd37789 fma 1 -1 -Inf -> -Infinity
|
||
|
dqadd37790 fma 1 -0 -Inf -> -Infinity
|
||
|
dqadd37791 fma 1 0 -Inf -> -Infinity
|
||
|
dqadd37792 fma 1 1 -Inf -> -Infinity
|
||
|
dqadd37793 fma 1 1000 -Inf -> -Infinity
|
||
|
dqadd37794 fma 1 Inf -Inf -> NaN Invalid_operation
|
||
|
|
||
|
dqadd37800 fma 1 Inf -Inf -> NaN Invalid_operation
|
||
|
dqadd37801 fma 1 Inf -1000 -> Infinity
|
||
|
dqadd37802 fma 1 Inf -1 -> Infinity
|
||
|
dqadd37803 fma 1 Inf -0 -> Infinity
|
||
|
dqadd37804 fma 1 Inf 0 -> Infinity
|
||
|
dqadd37805 fma 1 Inf 1 -> Infinity
|
||
|
dqadd37806 fma 1 Inf 1000 -> Infinity
|
||
|
dqadd37807 fma 1 Inf Inf -> Infinity
|
||
|
dqadd37808 fma 1 -1000 Inf -> Infinity
|
||
|
dqadd37809 fma 1 -Inf Inf -> NaN Invalid_operation
|
||
|
dqadd37810 fma 1 -1 Inf -> Infinity
|
||
|
dqadd37811 fma 1 -0 Inf -> Infinity
|
||
|
dqadd37812 fma 1 0 Inf -> Infinity
|
||
|
dqadd37813 fma 1 1 Inf -> Infinity
|
||
|
dqadd37814 fma 1 1000 Inf -> Infinity
|
||
|
dqadd37815 fma 1 Inf Inf -> Infinity
|
||
|
|
||
|
dqadd37821 fma 1 NaN -Inf -> NaN
|
||
|
dqadd37822 fma 1 NaN -1000 -> NaN
|
||
|
dqadd37823 fma 1 NaN -1 -> NaN
|
||
|
dqadd37824 fma 1 NaN -0 -> NaN
|
||
|
dqadd37825 fma 1 NaN 0 -> NaN
|
||
|
dqadd37826 fma 1 NaN 1 -> NaN
|
||
|
dqadd37827 fma 1 NaN 1000 -> NaN
|
||
|
dqadd37828 fma 1 NaN Inf -> NaN
|
||
|
dqadd37829 fma 1 NaN NaN -> NaN
|
||
|
dqadd37830 fma 1 -Inf NaN -> NaN
|
||
|
dqadd37831 fma 1 -1000 NaN -> NaN
|
||
|
dqadd37832 fma 1 -1 NaN -> NaN
|
||
|
dqadd37833 fma 1 -0 NaN -> NaN
|
||
|
dqadd37834 fma 1 0 NaN -> NaN
|
||
|
dqadd37835 fma 1 1 NaN -> NaN
|
||
|
dqadd37836 fma 1 1000 NaN -> NaN
|
||
|
dqadd37837 fma 1 Inf NaN -> NaN
|
||
|
|
||
|
dqadd37841 fma 1 sNaN -Inf -> NaN Invalid_operation
|
||
|
dqadd37842 fma 1 sNaN -1000 -> NaN Invalid_operation
|
||
|
dqadd37843 fma 1 sNaN -1 -> NaN Invalid_operation
|
||
|
dqadd37844 fma 1 sNaN -0 -> NaN Invalid_operation
|
||
|
dqadd37845 fma 1 sNaN 0 -> NaN Invalid_operation
|
||
|
dqadd37846 fma 1 sNaN 1 -> NaN Invalid_operation
|
||
|
dqadd37847 fma 1 sNaN 1000 -> NaN Invalid_operation
|
||
|
dqadd37848 fma 1 sNaN NaN -> NaN Invalid_operation
|
||
|
dqadd37849 fma 1 sNaN sNaN -> NaN Invalid_operation
|
||
|
dqadd37850 fma 1 NaN sNaN -> NaN Invalid_operation
|
||
|
dqadd37851 fma 1 -Inf sNaN -> NaN Invalid_operation
|
||
|
dqadd37852 fma 1 -1000 sNaN -> NaN Invalid_operation
|
||
|
dqadd37853 fma 1 -1 sNaN -> NaN Invalid_operation
|
||
|
dqadd37854 fma 1 -0 sNaN -> NaN Invalid_operation
|
||
|
dqadd37855 fma 1 0 sNaN -> NaN Invalid_operation
|
||
|
dqadd37856 fma 1 1 sNaN -> NaN Invalid_operation
|
||
|
dqadd37857 fma 1 1000 sNaN -> NaN Invalid_operation
|
||
|
dqadd37858 fma 1 Inf sNaN -> NaN Invalid_operation
|
||
|
dqadd37859 fma 1 NaN sNaN -> NaN Invalid_operation
|
||
|
|
||
|
-- propagating NaNs
|
||
|
dqadd37861 fma 1 NaN1 -Inf -> NaN1
|
||
|
dqadd37862 fma 1 +NaN2 -1000 -> NaN2
|
||
|
dqadd37863 fma 1 NaN3 1000 -> NaN3
|
||
|
dqadd37864 fma 1 NaN4 Inf -> NaN4
|
||
|
dqadd37865 fma 1 NaN5 +NaN6 -> NaN5
|
||
|
dqadd37866 fma 1 -Inf NaN7 -> NaN7
|
||
|
dqadd37867 fma 1 -1000 NaN8 -> NaN8
|
||
|
dqadd37868 fma 1 1000 NaN9 -> NaN9
|
||
|
dqadd37869 fma 1 Inf +NaN10 -> NaN10
|
||
|
dqadd37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
|
||
|
dqadd37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
|
||
|
dqadd37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
|
||
|
dqadd37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
|
||
|
dqadd37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
|
||
|
dqadd37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
|
||
|
dqadd37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
|
||
|
dqadd37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
|
||
|
dqadd37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
|
||
|
dqadd37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
|
||
|
dqadd37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
|
||
|
dqadd37882 fma 1 -NaN26 NaN28 -> -NaN26
|
||
|
dqadd37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
|
||
|
dqadd37884 fma 1 1000 -NaN30 -> -NaN30
|
||
|
dqadd37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
|
||
|
|
||
|
-- Here we explore near the boundary of rounding a subnormal to Nmin
|
||
|
dqadd37575 fma 1 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal
|
||
|
dqadd37576 fma 1 -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal
|
||
|
|
||
|
-- check overflow edge case
|
||
|
-- 1234567890123456
|
||
|
dqadd37972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
|
||
|
dqadd37973 fma 1 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37974 fma 1 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37975 fma 1 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd37976 fma 1 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd37977 fma 1 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd37978 fma 1 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd37979 fma 1 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd37980 fma 1 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd37981 fma 1 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37982 fma 1 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37983 fma 1 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37984 fma 1 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
|
||
|
dqadd37985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
|
||
|
dqadd37986 fma 1 -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37987 fma 1 -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37988 fma 1 -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded
|
||
|
dqadd37989 fma 1 -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded
|
||
|
dqadd37990 fma 1 -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded
|
||
|
dqadd37991 fma 1 -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded
|
||
|
dqadd37992 fma 1 -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded
|
||
|
dqadd37993 fma 1 -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded
|
||
|
dqadd37994 fma 1 -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37995 fma 1 -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37996 fma 1 -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
dqadd37997 fma 1 -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
|
||
|
|
||
|
-- And for round down full and subnormal results
|
||
|
rounding: down
|
||
|
dqadd371100 fma 1 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371101 fma 1 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371103 fma 1 +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371104 fma 1 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371105 fma 1 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371106 fma 1 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371107 fma 1 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371108 fma 1 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371109 fma 1 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact
|
||
|
|
||
|
rounding: ceiling
|
||
|
dqadd371110 fma 1 -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371111 fma 1 -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371113 fma 1 -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371114 fma 1 -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371115 fma 1 -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371116 fma 1 -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371117 fma 1 -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371118 fma 1 -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact
|
||
|
dqadd371119 fma 1 -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact
|
||
|
|
||
|
-- tests based on Gunnar Degnbol's edge case
|
||
|
rounding: half_even
|
||
|
|
||
|
dqadd371300 fma 1 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371310 fma 1 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371311 fma 1 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371312 fma 1 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371313 fma 1 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371314 fma 1 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371315 fma 1 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371316 fma 1 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371317 fma 1 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371318 fma 1 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371319 fma 1 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371320 fma 1 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371321 fma 1 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371322 fma 1 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371323 fma 1 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371324 fma 1 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371325 fma 1 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371326 fma 1 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371327 fma 1 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371328 fma 1 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371329 fma 1 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371330 fma 1 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371331 fma 1 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371332 fma 1 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371333 fma 1 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371334 fma 1 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371335 fma 1 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371336 fma 1 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371337 fma 1 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371338 fma 1 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371339 fma 1 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
|
||
|
dqadd371340 fma 1 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded
|
||
|
dqadd371341 fma 1 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded
|
||
|
|
||
|
dqadd371349 fma 1 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371350 fma 1 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371351 fma 1 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371352 fma 1 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371353 fma 1 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371354 fma 1 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371355 fma 1 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371356 fma 1 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371357 fma 1 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371358 fma 1 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371359 fma 1 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371360 fma 1 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371361 fma 1 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371362 fma 1 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371363 fma 1 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371364 fma 1 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
|
||
|
dqadd371365 fma 1 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371367 fma 1 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371368 fma 1 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371369 fma 1 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371370 fma 1 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371371 fma 1 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371372 fma 1 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371373 fma 1 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371374 fma 1 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371375 fma 1 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371376 fma 1 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371377 fma 1 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371378 fma 1 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371379 fma 1 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371380 fma 1 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371381 fma 1 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371382 fma 1 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371383 fma 1 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371384 fma 1 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371385 fma 1 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371386 fma 1 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371387 fma 1 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371388 fma 1 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371389 fma 1 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371390 fma 1 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371391 fma 1 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371392 fma 1 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371393 fma 1 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371394 fma 1 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371395 fma 1 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
dqadd371396 fma 1 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
|
||
|
|
||
|
-- More GD edge cases, where difference between the unadjusted
|
||
|
-- exponents is larger than the maximum precision and one side is 0
|
||
|
dqadd371420 fma 1 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345
|
||
|
dqadd371421 fma 1 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345
|
||
|
dqadd371422 fma 1 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345
|
||
|
dqadd371423 fma 1 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345
|
||
|
dqadd371424 fma 1 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345
|
||
|
dqadd371425 fma 1 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345
|
||
|
dqadd371426 fma 1 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345
|
||
|
dqadd371427 fma 1 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7
|
||
|
dqadd371428 fma 1 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8
|
||
|
dqadd371429 fma 1 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9
|
||
|
dqadd371430 fma 1 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10
|
||
|
dqadd371431 fma 1 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11
|
||
|
dqadd371432 fma 1 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12
|
||
|
dqadd371433 fma 1 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13
|
||
|
dqadd371434 fma 1 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14
|
||
|
dqadd371435 fma 1 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15
|
||
|
dqadd371436 fma 1 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16
|
||
|
dqadd371437 fma 1 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17
|
||
|
dqadd371438 fma 1 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18
|
||
|
dqadd371439 fma 1 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19
|
||
|
dqadd371440 fma 1 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20
|
||
|
dqadd371441 fma 1 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21
|
||
|
dqadd371442 fma 1 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22
|
||
|
dqadd371443 fma 1 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23
|
||
|
dqadd371444 fma 1 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24
|
||
|
dqadd371445 fma 1 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25
|
||
|
dqadd371446 fma 1 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26
|
||
|
dqadd371447 fma 1 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27
|
||
|
dqadd371448 fma 1 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28
|
||
|
dqadd371449 fma 1 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29
|
||
|
dqadd371450 fma 1 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30
|
||
|
dqadd371451 fma 1 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31
|
||
|
dqadd371452 fma 1 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32
|
||
|
dqadd371453 fma 1 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33
|
||
|
dqadd371454 fma 1 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34
|
||
|
dqadd371455 fma 1 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35
|
||
|
dqadd371456 fma 1 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36
|
||
|
|
||
|
-- same, reversed 0
|
||
|
dqadd371460 fma 1 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345
|
||
|
dqadd371461 fma 1 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345
|
||
|
dqadd371462 fma 1 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345
|
||
|
dqadd371463 fma 1 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345
|
||
|
dqadd371464 fma 1 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345
|
||
|
dqadd371465 fma 1 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345
|
||
|
dqadd371466 fma 1 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345
|
||
|
dqadd371467 fma 1 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7
|
||
|
dqadd371468 fma 1 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8
|
||
|
dqadd371469 fma 1 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9
|
||
|
dqadd371470 fma 1 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10
|
||
|
dqadd371471 fma 1 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11
|
||
|
dqadd371472 fma 1 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12
|
||
|
dqadd371473 fma 1 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13
|
||
|
dqadd371474 fma 1 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14
|
||
|
dqadd371475 fma 1 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15
|
||
|
dqadd371476 fma 1 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16
|
||
|
dqadd371477 fma 1 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17
|
||
|
dqadd371478 fma 1 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18
|
||
|
dqadd371479 fma 1 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19
|
||
|
dqadd371480 fma 1 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20
|
||
|
dqadd371481 fma 1 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21
|
||
|
dqadd371482 fma 1 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22
|
||
|
dqadd371483 fma 1 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23
|
||
|
dqadd371484 fma 1 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24
|
||
|
dqadd371485 fma 1 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25
|
||
|
dqadd371486 fma 1 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26
|
||
|
dqadd371487 fma 1 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27
|
||
|
dqadd371488 fma 1 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28
|
||
|
dqadd371489 fma 1 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29
|
||
|
dqadd371490 fma 1 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30
|
||
|
dqadd371491 fma 1 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31
|
||
|
dqadd371492 fma 1 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32
|
||
|
dqadd371493 fma 1 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33
|
||
|
dqadd371494 fma 1 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34
|
||
|
dqadd371495 fma 1 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35
|
||
|
dqadd371496 fma 1 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36
|
||
|
|
||
|
-- same, Es on the 0
|
||
|
dqadd371500 fma 1 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345
|
||
|
dqadd371501 fma 1 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345
|
||
|
dqadd371502 fma 1 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345
|
||
|
dqadd371503 fma 1 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345
|
||
|
dqadd371504 fma 1 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345
|
||
|
dqadd371505 fma 1 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345
|
||
|
dqadd371506 fma 1 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345
|
||
|
dqadd371507 fma 1 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345
|
||
|
dqadd371508 fma 1 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345
|
||
|
dqadd371509 fma 1 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345
|
||
|
dqadd371510 fma 1 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345
|
||
|
dqadd371511 fma 1 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345
|
||
|
dqadd371512 fma 1 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345
|
||
|
dqadd371513 fma 1 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345
|
||
|
dqadd371514 fma 1 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345
|
||
|
dqadd371515 fma 1 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345
|
||
|
dqadd371516 fma 1 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345
|
||
|
dqadd371517 fma 1 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345
|
||
|
dqadd371518 fma 1 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345
|
||
|
dqadd371519 fma 1 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345
|
||
|
dqadd371520 fma 1 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345
|
||
|
dqadd371521 fma 1 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345
|
||
|
dqadd371522 fma 1 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345
|
||
|
dqadd371523 fma 1 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345
|
||
|
dqadd371524 fma 1 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345
|
||
|
dqadd371525 fma 1 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345
|
||
|
dqadd371526 fma 1 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345
|
||
|
dqadd371527 fma 1 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345
|
||
|
dqadd371528 fma 1 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345
|
||
|
dqadd371529 fma 1 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345
|
||
|
dqadd371530 fma 1 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345
|
||
|
dqadd371531 fma 1 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345
|
||
|
dqadd371532 fma 1 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345
|
||
|
dqadd371533 fma 1 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345
|
||
|
-- next four flag Rounded because the 0 extends the result
|
||
|
dqadd371534 fma 1 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded
|
||
|
dqadd371535 fma 1 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded
|
||
|
dqadd371536 fma 1 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded
|
||
|
dqadd371537 fma 1 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded
|
||
|
|
||
|
-- sum of two opposite-sign operands is exactly 0 and floor => -0
|
||
|
rounding: half_up
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371600 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371601 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371602 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371603 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371611 fma 1 -11 11 -> 0
|
||
|
dqadd371612 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371613 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd371614 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
||
|
|
||
|
rounding: half_down
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371620 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371621 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371622 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371623 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371631 fma 1 -11 11 -> 0
|
||
|
dqadd371632 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371633 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd371634 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
||
|
|
||
|
rounding: half_even
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371640 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371641 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371642 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371643 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371651 fma 1 -11 11 -> 0
|
||
|
dqadd371652 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371653 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd371654 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
||
|
|
||
|
rounding: up
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371660 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371661 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371662 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371663 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371671 fma 1 -11 11 -> 0
|
||
|
dqadd371672 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371673 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd371674 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
||
|
|
||
|
rounding: down
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371680 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371681 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371682 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371683 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371691 fma 1 -11 11 -> 0
|
||
|
dqadd371692 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371693 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
||
|
dqadd371694 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
||
|
|
||
|
rounding: ceiling
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371700 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371701 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371702 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371703 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371711 fma 1 -11 11 -> 0
|
||
|
dqadd371712 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371713 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
|
||
|
dqadd371714 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
||
|
|
||
|
-- and the extra-special ugly case; unusual minuses marked by -- *
|
||
|
rounding: floor
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371720 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371721 fma 1 -0 0E-19 -> -0E-19 -- *
|
||
|
dqadd371722 fma 1 0 -0E-19 -> -0E-19 -- *
|
||
|
dqadd371723 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371731 fma 1 -11 11 -> -0 -- *
|
||
|
dqadd371732 fma 1 11 -11 -> -0 -- *
|
||
|
-- overflow
|
||
|
dqadd371733 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
||
|
dqadd371734 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
|
||
|
|
||
|
rounding: 05up
|
||
|
-- exact zeros from zeros
|
||
|
dqadd371740 fma 1 0 0E-19 -> 0E-19
|
||
|
dqadd371741 fma 1 -0 0E-19 -> 0E-19
|
||
|
dqadd371742 fma 1 0 -0E-19 -> 0E-19
|
||
|
dqadd371743 fma 1 -0 -0E-19 -> -0E-19
|
||
|
-- exact zeros from non-zeros
|
||
|
dqadd371751 fma 1 -11 11 -> 0
|
||
|
dqadd371752 fma 1 11 -11 -> 0
|
||
|
-- overflow
|
||
|
dqadd371753 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
||
|
dqadd371754 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
|
||
|
|
||
|
-- Examples from SQL proposal (Krishna Kulkarni)
|
||
|
dqadd371761 fma 1 130E-2 120E-2 -> 2.50
|
||
|
dqadd371762 fma 1 130E-2 12E-1 -> 2.50
|
||
|
dqadd371763 fma 1 130E-2 1E0 -> 2.30
|
||
|
dqadd371764 fma 1 1E2 1E4 -> 1.01E+4
|
||
|
dqadd371765 fma 1 130E-2 -120E-2 -> 0.10
|
||
|
dqadd371766 fma 1 130E-2 -12E-1 -> 0.10
|
||
|
dqadd371767 fma 1 130E-2 -1E0 -> 0.30
|
||
|
dqadd371768 fma 1 1E2 -1E4 -> -9.9E+3
|
||
|
|
||
|
-- Gappy coefficients; check residue handling even with full coefficient gap
|
||
|
rounding: half_even
|
||
|
|
||
|
dqadd375001 fma 1 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457
|
||
|
dqadd375002 fma 1 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded
|
||
|
dqadd375003 fma 1 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375004 fma 1 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375005 fma 1 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375006 fma 1 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375007 fma 1 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375008 fma 1 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375009 fma 1 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375010 fma 1 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375011 fma 1 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375012 fma 1 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375013 fma 1 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375014 fma 1 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375015 fma 1 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375016 fma 1 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375017 fma 1 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375018 fma 1 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375019 fma 1 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375020 fma 1 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
dqadd375021 fma 1 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded
|
||
|
|
||
|
-- widening second argument at gap
|
||
|
dqadd375030 fma 1 12398765432112345678945678 1 -> 12398765432112345678945679
|
||
|
dqadd375031 fma 1 12398765432112345678945678 0.1 -> 12398765432112345678945678.1
|
||
|
dqadd375032 fma 1 12398765432112345678945678 0.12 -> 12398765432112345678945678.12
|
||
|
dqadd375033 fma 1 12398765432112345678945678 0.123 -> 12398765432112345678945678.123
|
||
|
dqadd375034 fma 1 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234
|
||
|
dqadd375035 fma 1 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345
|
||
|
dqadd375036 fma 1 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456
|
||
|
dqadd375037 fma 1 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567
|
||
|
dqadd375038 fma 1 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678
|
||
|
dqadd375039 fma 1 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375040 fma 1 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded
|
||
|
dqadd375041 fma 1 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded
|
||
|
dqadd375042 fma 1 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375043 fma 1 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375044 fma 1 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375045 fma 1 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375046 fma 1 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375047 fma 1 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375048 fma 1 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded
|
||
|
dqadd375049 fma 1 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded
|
||
|
-- 90123456
|
||
|
rounding: half_even
|
||
|
dqadd375050 fma 1 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded
|
||
|
dqadd375051 fma 1 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded
|
||
|
dqadd375052 fma 1 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded
|
||
|
dqadd375053 fma 1 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded
|
||
|
dqadd375054 fma 1 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded
|
||
|
dqadd375055 fma 1 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded
|
||
|
dqadd375056 fma 1 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded
|
||
|
dqadd375057 fma 1 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded
|
||
|
dqadd375060 fma 1 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded
|
||
|
dqadd375061 fma 1 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded
|
||
|
dqadd375062 fma 1 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded
|
||
|
dqadd375063 fma 1 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded
|
||
|
dqadd375064 fma 1 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded
|
||
|
dqadd375065 fma 1 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded
|
||
|
dqadd375066 fma 1 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded
|
||
|
dqadd375067 fma 1 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
-- far-out residues (full coefficient gap is 16+15 digits)
|
||
|
rounding: up
|
||
|
dqadd375070 fma 1 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001
|
||
|
dqadd375071 fma 1 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375072 fma 1 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375073 fma 1 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375074 fma 1 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375075 fma 1 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375076 fma 1 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375077 fma 1 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375078 fma 1 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375079 fma 1 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375080 fma 1 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375081 fma 1 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375082 fma 1 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375083 fma 1 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375084 fma 1 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375085 fma 1 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375086 fma 1 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375087 fma 1 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375088 fma 1 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
dqadd375089 fma 1 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded
|
||
|
|
||
|
-- Null tests
|
||
|
dqadd39990 fma 1 10 # -> NaN Invalid_operation
|
||
|
dqadd39991 fma 1 # 10 -> NaN Invalid_operation
|
||
|
|
||
|
|