cpython/Objects/codeobject.c

2676 lines
82 KiB
C
Raw Normal View History

#include <stdbool.h>
#include "Python.h"
#include "opcode.h"
#include "pycore_code.h" // _PyCodeConstructor
#include "pycore_frame.h" // FRAME_SPECIALS_SIZE
#include "pycore_hashtable.h" // _Py_hashtable_t
#include "pycore_initconfig.h" // _PyStatus_OK()
#include "pycore_interp.h" // PyInterpreterState.co_extra_freefuncs
#include "pycore_object.h" // _PyObject_SetDeferredRefcount
#include "pycore_opcode_metadata.h" // _PyOpcode_Deopt, _PyOpcode_Caches
#include "pycore_opcode_utils.h" // RESUME_AT_FUNC_START
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#include "pycore_setobject.h" // _PySet_NextEntry()
#include "pycore_tuple.h" // _PyTuple_ITEMS()
#include "clinic/codeobject.c.h"
static const char *
code_event_name(PyCodeEvent event) {
switch (event) {
#define CASE(op) \
case PY_CODE_EVENT_##op: \
return "PY_CODE_EVENT_" #op;
PY_FOREACH_CODE_EVENT(CASE)
#undef CASE
}
Py_UNREACHABLE();
}
static void
notify_code_watchers(PyCodeEvent event, PyCodeObject *co)
{
assert(Py_REFCNT(co) > 0);
PyInterpreterState *interp = _PyInterpreterState_GET();
assert(interp->_initialized);
uint8_t bits = interp->active_code_watchers;
int i = 0;
while (bits) {
assert(i < CODE_MAX_WATCHERS);
if (bits & 1) {
PyCode_WatchCallback cb = interp->code_watchers[i];
// callback must be non-null if the watcher bit is set
assert(cb != NULL);
if (cb(event, co) < 0) {
PyErr_FormatUnraisable(
"Exception ignored in %s watcher callback for %R",
code_event_name(event), co);
}
}
i++;
bits >>= 1;
}
}
int
PyCode_AddWatcher(PyCode_WatchCallback callback)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
assert(interp->_initialized);
for (int i = 0; i < CODE_MAX_WATCHERS; i++) {
if (!interp->code_watchers[i]) {
interp->code_watchers[i] = callback;
interp->active_code_watchers |= (1 << i);
return i;
}
}
PyErr_SetString(PyExc_RuntimeError, "no more code watcher IDs available");
return -1;
}
static inline int
validate_watcher_id(PyInterpreterState *interp, int watcher_id)
{
if (watcher_id < 0 || watcher_id >= CODE_MAX_WATCHERS) {
PyErr_Format(PyExc_ValueError, "Invalid code watcher ID %d", watcher_id);
return -1;
}
if (!interp->code_watchers[watcher_id]) {
PyErr_Format(PyExc_ValueError, "No code watcher set for ID %d", watcher_id);
return -1;
}
return 0;
}
int
PyCode_ClearWatcher(int watcher_id)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
assert(interp->_initialized);
if (validate_watcher_id(interp, watcher_id) < 0) {
return -1;
}
interp->code_watchers[watcher_id] = NULL;
interp->active_code_watchers &= ~(1 << watcher_id);
return 0;
}
/******************
* generic helpers
******************/
static int
should_intern_string(PyObject *o)
{
#ifdef Py_GIL_DISABLED
// The free-threaded build interns (and immortalizes) all string constants
// unless we've disabled immortalizing objects that use deferred reference
// counting.
PyInterpreterState *interp = _PyInterpreterState_GET();
if (_Py_atomic_load_int(&interp->gc.immortalize) < 0) {
return 1;
}
#endif
// compute if s matches [a-zA-Z0-9_]
const unsigned char *s, *e;
2011-09-28 02:41:54 -03:00
if (!PyUnicode_IS_ASCII(o))
2011-09-28 02:41:54 -03:00
return 0;
s = PyUnicode_1BYTE_DATA(o);
e = s + PyUnicode_GET_LENGTH(o);
for (; s != e; s++) {
if (!Py_ISALNUM(*s) && *s != '_')
return 0;
}
return 1;
}
#ifdef Py_GIL_DISABLED
static PyObject *intern_one_constant(PyObject *op);
#endif
static int
intern_strings(PyObject *tuple)
{
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
PyInterpreterState *interp = _PyInterpreterState_GET();
Py_ssize_t i;
for (i = PyTuple_GET_SIZE(tuple); --i >= 0; ) {
PyObject *v = PyTuple_GET_ITEM(tuple, i);
if (v == NULL || !PyUnicode_CheckExact(v)) {
PyErr_SetString(PyExc_SystemError,
"non-string found in code slot");
return -1;
}
_PyUnicode_InternImmortal(interp, &_PyTuple_ITEMS(tuple)[i]);
}
return 0;
}
/* Intern constants. In the default build, this interns selected string
constants. In the free-threaded build, this also interns non-string
constants. */
static int
intern_constants(PyObject *tuple, int *modified)
{
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
PyInterpreterState *interp = _PyInterpreterState_GET();
for (Py_ssize_t i = PyTuple_GET_SIZE(tuple); --i >= 0; ) {
PyObject *v = PyTuple_GET_ITEM(tuple, i);
if (PyUnicode_CheckExact(v)) {
if (should_intern_string(v)) {
PyObject *w = v;
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
_PyUnicode_InternMortal(interp, &v);
if (w != v) {
PyTuple_SET_ITEM(tuple, i, v);
if (modified) {
*modified = 1;
}
}
}
}
else if (PyTuple_CheckExact(v)) {
if (intern_constants(v, NULL) < 0) {
return -1;
}
}
else if (PyFrozenSet_CheckExact(v)) {
PyObject *w = v;
PyObject *tmp = PySequence_Tuple(v);
if (tmp == NULL) {
return -1;
}
int tmp_modified = 0;
if (intern_constants(tmp, &tmp_modified) < 0) {
Py_DECREF(tmp);
return -1;
}
if (tmp_modified) {
v = PyFrozenSet_New(tmp);
if (v == NULL) {
Py_DECREF(tmp);
return -1;
}
PyTuple_SET_ITEM(tuple, i, v);
Py_DECREF(w);
if (modified) {
*modified = 1;
}
}
Py_DECREF(tmp);
}
#ifdef Py_GIL_DISABLED
else if (PySlice_Check(v)) {
PySliceObject *slice = (PySliceObject *)v;
PyObject *tmp = PyTuple_New(3);
if (tmp == NULL) {
return -1;
}
PyTuple_SET_ITEM(tmp, 0, Py_NewRef(slice->start));
PyTuple_SET_ITEM(tmp, 1, Py_NewRef(slice->stop));
PyTuple_SET_ITEM(tmp, 2, Py_NewRef(slice->step));
int tmp_modified = 0;
if (intern_constants(tmp, &tmp_modified) < 0) {
Py_DECREF(tmp);
return -1;
}
if (tmp_modified) {
v = PySlice_New(PyTuple_GET_ITEM(tmp, 0),
PyTuple_GET_ITEM(tmp, 1),
PyTuple_GET_ITEM(tmp, 2));
if (v == NULL) {
Py_DECREF(tmp);
return -1;
}
PyTuple_SET_ITEM(tuple, i, v);
Py_DECREF(slice);
if (modified) {
*modified = 1;
}
}
Py_DECREF(tmp);
}
2024-06-24 14:47:00 -03:00
// Intern non-string constants in the free-threaded build, but only if
// we are also immortalizing objects that use deferred reference
// counting.
PyThreadState *tstate = PyThreadState_GET();
if (!_Py_IsImmortal(v) && !PyCode_Check(v) &&
!PyUnicode_CheckExact(v) &&
_Py_atomic_load_int(&tstate->interp->gc.immortalize) >= 0)
{
PyObject *interned = intern_one_constant(v);
if (interned == NULL) {
return -1;
}
else if (interned != v) {
PyTuple_SET_ITEM(tuple, i, interned);
Py_SETREF(v, interned);
if (modified) {
*modified = 1;
}
}
}
#endif
}
return 0;
}
/* Return a shallow copy of a tuple that is
guaranteed to contain exact strings, by converting string subclasses
to exact strings and complaining if a non-string is found. */
static PyObject*
validate_and_copy_tuple(PyObject *tup)
{
PyObject *newtuple;
PyObject *item;
Py_ssize_t i, len;
len = PyTuple_GET_SIZE(tup);
newtuple = PyTuple_New(len);
if (newtuple == NULL)
return NULL;
for (i = 0; i < len; i++) {
item = PyTuple_GET_ITEM(tup, i);
if (PyUnicode_CheckExact(item)) {
Py_INCREF(item);
}
else if (!PyUnicode_Check(item)) {
PyErr_Format(
PyExc_TypeError,
"name tuples must contain only "
"strings, not '%.500s'",
Py_TYPE(item)->tp_name);
Py_DECREF(newtuple);
return NULL;
}
else {
item = _PyUnicode_Copy(item);
if (item == NULL) {
Py_DECREF(newtuple);
return NULL;
}
}
PyTuple_SET_ITEM(newtuple, i, item);
}
return newtuple;
}
static int
init_co_cached(PyCodeObject *self) {
if (self->_co_cached == NULL) {
self->_co_cached = PyMem_New(_PyCoCached, 1);
if (self->_co_cached == NULL) {
PyErr_NoMemory();
return -1;
}
self->_co_cached->_co_code = NULL;
self->_co_cached->_co_cellvars = NULL;
self->_co_cached->_co_freevars = NULL;
self->_co_cached->_co_varnames = NULL;
}
return 0;
}
/******************
* _PyCode_New()
******************/
// This is also used in compile.c.
void
_Py_set_localsplus_info(int offset, PyObject *name, _PyLocals_Kind kind,
PyObject *names, PyObject *kinds)
{
PyTuple_SET_ITEM(names, offset, Py_NewRef(name));
_PyLocals_SetKind(kinds, offset, kind);
}
static void
get_localsplus_counts(PyObject *names, PyObject *kinds,
int *pnlocals, int *pncellvars,
int *pnfreevars)
{
int nlocals = 0;
int ncellvars = 0;
int nfreevars = 0;
Py_ssize_t nlocalsplus = PyTuple_GET_SIZE(names);
for (int i = 0; i < nlocalsplus; i++) {
_PyLocals_Kind kind = _PyLocals_GetKind(kinds, i);
if (kind & CO_FAST_LOCAL) {
nlocals += 1;
if (kind & CO_FAST_CELL) {
ncellvars += 1;
}
}
else if (kind & CO_FAST_CELL) {
ncellvars += 1;
}
else if (kind & CO_FAST_FREE) {
nfreevars += 1;
}
}
if (pnlocals != NULL) {
*pnlocals = nlocals;
}
if (pncellvars != NULL) {
*pncellvars = ncellvars;
}
if (pnfreevars != NULL) {
*pnfreevars = nfreevars;
}
}
static PyObject *
get_localsplus_names(PyCodeObject *co, _PyLocals_Kind kind, int num)
{
PyObject *names = PyTuple_New(num);
if (names == NULL) {
return NULL;
}
int index = 0;
for (int offset = 0; offset < co->co_nlocalsplus; offset++) {
_PyLocals_Kind k = _PyLocals_GetKind(co->co_localspluskinds, offset);
if ((k & kind) == 0) {
continue;
}
assert(index < num);
PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, offset);
PyTuple_SET_ITEM(names, index, Py_NewRef(name));
index += 1;
}
assert(index == num);
return names;
}
int
_PyCode_Validate(struct _PyCodeConstructor *con)
{
/* Check argument types */
if (con->argcount < con->posonlyargcount || con->posonlyargcount < 0 ||
con->kwonlyargcount < 0 ||
con->stacksize < 0 || con->flags < 0 ||
con->code == NULL || !PyBytes_Check(con->code) ||
con->consts == NULL || !PyTuple_Check(con->consts) ||
con->names == NULL || !PyTuple_Check(con->names) ||
con->localsplusnames == NULL || !PyTuple_Check(con->localsplusnames) ||
con->localspluskinds == NULL || !PyBytes_Check(con->localspluskinds) ||
PyTuple_GET_SIZE(con->localsplusnames)
!= PyBytes_GET_SIZE(con->localspluskinds) ||
con->name == NULL || !PyUnicode_Check(con->name) ||
con->qualname == NULL || !PyUnicode_Check(con->qualname) ||
con->filename == NULL || !PyUnicode_Check(con->filename) ||
con->linetable == NULL || !PyBytes_Check(con->linetable) ||
con->exceptiontable == NULL || !PyBytes_Check(con->exceptiontable)
) {
PyErr_BadInternalCall();
return -1;
}
/* Make sure that code is indexable with an int, this is
a long running assumption in ceval.c and many parts of
the interpreter. */
if (PyBytes_GET_SIZE(con->code) > INT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"code: co_code larger than INT_MAX");
return -1;
}
if (PyBytes_GET_SIZE(con->code) % sizeof(_Py_CODEUNIT) != 0 ||
!_Py_IS_ALIGNED(PyBytes_AS_STRING(con->code), sizeof(_Py_CODEUNIT))
) {
PyErr_SetString(PyExc_ValueError, "code: co_code is malformed");
return -1;
}
/* Ensure that the co_varnames has enough names to cover the arg counts.
* Note that totalargs = nlocals - nplainlocals. We check nplainlocals
* here to avoid the possibility of overflow (however remote). */
int nlocals;
get_localsplus_counts(con->localsplusnames, con->localspluskinds,
&nlocals, NULL, NULL);
int nplainlocals = nlocals -
con->argcount -
con->kwonlyargcount -
((con->flags & CO_VARARGS) != 0) -
((con->flags & CO_VARKEYWORDS) != 0);
if (nplainlocals < 0) {
PyErr_SetString(PyExc_ValueError, "code: co_varnames is too small");
return -1;
}
return 0;
}
extern void _PyCode_Quicken(PyCodeObject *code);
static void
init_code(PyCodeObject *co, struct _PyCodeConstructor *con)
{
int nlocalsplus = (int)PyTuple_GET_SIZE(con->localsplusnames);
int nlocals, ncellvars, nfreevars;
get_localsplus_counts(con->localsplusnames, con->localspluskinds,
&nlocals, &ncellvars, &nfreevars);
if (con->stacksize == 0) {
con->stacksize = 1;
}
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
PyInterpreterState *interp = _PyInterpreterState_GET();
co->co_filename = Py_NewRef(con->filename);
co->co_name = Py_NewRef(con->name);
co->co_qualname = Py_NewRef(con->qualname);
gh-113993: Allow interned strings to be mortal, and fix related issues (GH-120520) * Add an InternalDocs file describing how interning should work and how to use it. * Add internal functions to *explicitly* request what kind of interning is done: - `_PyUnicode_InternMortal` - `_PyUnicode_InternImmortal` - `_PyUnicode_InternStatic` * Switch uses of `PyUnicode_InternInPlace` to those. * Disallow using `_Py_SetImmortal` on strings directly. You should use `_PyUnicode_InternImmortal` instead: - Strings should be interned before immortalization, otherwise you're possibly interning a immortalizing copy. - `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to `SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in backports, as they are now part of public API and version-specific ABI. * Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery. * Make sure the statically allocated string singletons are unique. This means these sets are now disjoint: - `_Py_ID` - `_Py_STR` (including the empty string) - one-character latin-1 singletons Now, when you intern a singleton, that exact singleton will be interned. * Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic). * Intern `_Py_STR` singletons at startup. * For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup. * Beef up the tests. Cover internal details (marked with `@cpython_only`). * Add lots of assertions Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
2024-06-21 12:19:31 -03:00
_PyUnicode_InternMortal(interp, &co->co_filename);
_PyUnicode_InternMortal(interp, &co->co_name);
_PyUnicode_InternMortal(interp, &co->co_qualname);
co->co_flags = con->flags;
co->co_firstlineno = con->firstlineno;
co->co_linetable = Py_NewRef(con->linetable);
co->co_consts = Py_NewRef(con->consts);
co->co_names = Py_NewRef(con->names);
co->co_localsplusnames = Py_NewRef(con->localsplusnames);
co->co_localspluskinds = Py_NewRef(con->localspluskinds);
co->co_argcount = con->argcount;
co->co_posonlyargcount = con->posonlyargcount;
co->co_kwonlyargcount = con->kwonlyargcount;
co->co_stacksize = con->stacksize;
co->co_exceptiontable = Py_NewRef(con->exceptiontable);
/* derived values */
co->co_nlocalsplus = nlocalsplus;
co->co_nlocals = nlocals;
co->co_framesize = nlocalsplus + con->stacksize + FRAME_SPECIALS_SIZE;
co->co_ncellvars = ncellvars;
co->co_nfreevars = nfreevars;
#ifdef Py_GIL_DISABLED
PyMutex_Lock(&interp->func_state.mutex);
#endif
co->co_version = interp->func_state.next_version;
if (interp->func_state.next_version != 0) {
interp->func_state.next_version++;
}
#ifdef Py_GIL_DISABLED
PyMutex_Unlock(&interp->func_state.mutex);
#endif
co->_co_monitoring = NULL;
co->_co_instrumentation_version = 0;
/* not set */
co->co_weakreflist = NULL;
co->co_extra = NULL;
co->_co_cached = NULL;
co->co_executors = NULL;
memcpy(_PyCode_CODE(co), PyBytes_AS_STRING(con->code),
PyBytes_GET_SIZE(con->code));
int entry_point = 0;
while (entry_point < Py_SIZE(co) &&
_PyCode_CODE(co)[entry_point].op.code != RESUME) {
entry_point++;
}
co->_co_firsttraceable = entry_point;
_PyCode_Quicken(co);
notify_code_watchers(PY_CODE_EVENT_CREATE, co);
}
static int
scan_varint(const uint8_t *ptr)
{
unsigned int read = *ptr++;
unsigned int val = read & 63;
unsigned int shift = 0;
while (read & 64) {
read = *ptr++;
shift += 6;
val |= (read & 63) << shift;
}
return val;
}
static int
scan_signed_varint(const uint8_t *ptr)
{
unsigned int uval = scan_varint(ptr);
if (uval & 1) {
return -(int)(uval >> 1);
}
else {
return uval >> 1;
}
}
static int
get_line_delta(const uint8_t *ptr)
{
int code = ((*ptr) >> 3) & 15;
switch (code) {
case PY_CODE_LOCATION_INFO_NONE:
return 0;
case PY_CODE_LOCATION_INFO_NO_COLUMNS:
case PY_CODE_LOCATION_INFO_LONG:
return scan_signed_varint(ptr+1);
case PY_CODE_LOCATION_INFO_ONE_LINE0:
return 0;
case PY_CODE_LOCATION_INFO_ONE_LINE1:
return 1;
case PY_CODE_LOCATION_INFO_ONE_LINE2:
return 2;
default:
/* Same line */
return 0;
}
}
static PyObject *
remove_column_info(PyObject *locations)
{
Py_ssize_t offset = 0;
const uint8_t *data = (const uint8_t *)PyBytes_AS_STRING(locations);
PyObject *res = PyBytes_FromStringAndSize(NULL, 32);
if (res == NULL) {
PyErr_NoMemory();
return NULL;
}
uint8_t *output = (uint8_t *)PyBytes_AS_STRING(res);
while (offset < PyBytes_GET_SIZE(locations)) {
Py_ssize_t write_offset = output - (uint8_t *)PyBytes_AS_STRING(res);
if (write_offset + 16 >= PyBytes_GET_SIZE(res)) {
if (_PyBytes_Resize(&res, PyBytes_GET_SIZE(res) * 2) < 0) {
return NULL;
}
output = (uint8_t *)PyBytes_AS_STRING(res) + write_offset;
}
int code = (data[offset] >> 3) & 15;
if (code == PY_CODE_LOCATION_INFO_NONE) {
*output++ = data[offset];
}
else {
int blength = (data[offset] & 7)+1;
output += write_location_entry_start(
output, PY_CODE_LOCATION_INFO_NO_COLUMNS, blength);
int ldelta = get_line_delta(&data[offset]);
output += write_signed_varint(output, ldelta);
}
offset++;
while (offset < PyBytes_GET_SIZE(locations) &&
(data[offset] & 128) == 0) {
offset++;
}
}
Py_ssize_t write_offset = output - (uint8_t *)PyBytes_AS_STRING(res);
if (_PyBytes_Resize(&res, write_offset)) {
return NULL;
}
return res;
}
static int
intern_code_constants(struct _PyCodeConstructor *con)
{
#ifdef Py_GIL_DISABLED
PyInterpreterState *interp = _PyInterpreterState_GET();
struct _py_code_state *state = &interp->code_state;
PyMutex_Lock(&state->mutex);
#endif
if (intern_strings(con->names) < 0) {
goto error;
}
if (intern_constants(con->consts, NULL) < 0) {
goto error;
}
if (intern_strings(con->localsplusnames) < 0) {
goto error;
}
#ifdef Py_GIL_DISABLED
PyMutex_Unlock(&state->mutex);
#endif
return 0;
error:
#ifdef Py_GIL_DISABLED
PyMutex_Unlock(&state->mutex);
#endif
return -1;
}
/* The caller is responsible for ensuring that the given data is valid. */
PyCodeObject *
_PyCode_New(struct _PyCodeConstructor *con)
{
if (intern_code_constants(con) < 0) {
return NULL;
}
PyObject *replacement_locations = NULL;
// Compact the linetable if we are opted out of debug
// ranges.
if (!_Py_GetConfig()->code_debug_ranges) {
replacement_locations = remove_column_info(con->linetable);
if (replacement_locations == NULL) {
return NULL;
}
con->linetable = replacement_locations;
}
Py_ssize_t size = PyBytes_GET_SIZE(con->code) / sizeof(_Py_CODEUNIT);
PyCodeObject *co;
#ifdef Py_GIL_DISABLED
co = PyObject_GC_NewVar(PyCodeObject, &PyCode_Type, size);
#else
co = PyObject_NewVar(PyCodeObject, &PyCode_Type, size);
#endif
if (co == NULL) {
Py_XDECREF(replacement_locations);
PyErr_NoMemory();
return NULL;
}
init_code(co, con);
#ifdef Py_GIL_DISABLED
_PyObject_SetDeferredRefcount((PyObject *)co);
_PyObject_GC_TRACK(co);
#endif
Py_XDECREF(replacement_locations);
return co;
}
/******************
* the legacy "constructors"
******************/
PyCodeObject *
PyUnstable_Code_NewWithPosOnlyArgs(
int argcount, int posonlyargcount, int kwonlyargcount,
int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name,
PyObject *qualname, int firstlineno,
PyObject *linetable,
PyObject *exceptiontable)
{
PyCodeObject *co = NULL;
PyObject *localsplusnames = NULL;
PyObject *localspluskinds = NULL;
if (varnames == NULL || !PyTuple_Check(varnames) ||
cellvars == NULL || !PyTuple_Check(cellvars) ||
freevars == NULL || !PyTuple_Check(freevars)
) {
PyErr_BadInternalCall();
return NULL;
}
// Set the "fast locals plus" info.
int nvarnames = (int)PyTuple_GET_SIZE(varnames);
int ncellvars = (int)PyTuple_GET_SIZE(cellvars);
int nfreevars = (int)PyTuple_GET_SIZE(freevars);
int nlocalsplus = nvarnames + ncellvars + nfreevars;
localsplusnames = PyTuple_New(nlocalsplus);
if (localsplusnames == NULL) {
goto error;
}
localspluskinds = PyBytes_FromStringAndSize(NULL, nlocalsplus);
if (localspluskinds == NULL) {
goto error;
}
int offset = 0;
for (int i = 0; i < nvarnames; i++, offset++) {
PyObject *name = PyTuple_GET_ITEM(varnames, i);
_Py_set_localsplus_info(offset, name, CO_FAST_LOCAL,
localsplusnames, localspluskinds);
}
for (int i = 0; i < ncellvars; i++, offset++) {
PyObject *name = PyTuple_GET_ITEM(cellvars, i);
int argoffset = -1;
for (int j = 0; j < nvarnames; j++) {
int cmp = PyUnicode_Compare(PyTuple_GET_ITEM(varnames, j),
name);
assert(!PyErr_Occurred());
if (cmp == 0) {
argoffset = j;
break;
}
}
if (argoffset >= 0) {
// Merge the localsplus indices.
nlocalsplus -= 1;
offset -= 1;
_PyLocals_Kind kind = _PyLocals_GetKind(localspluskinds, argoffset);
_PyLocals_SetKind(localspluskinds, argoffset, kind | CO_FAST_CELL);
continue;
}
_Py_set_localsplus_info(offset, name, CO_FAST_CELL,
localsplusnames, localspluskinds);
}
for (int i = 0; i < nfreevars; i++, offset++) {
PyObject *name = PyTuple_GET_ITEM(freevars, i);
_Py_set_localsplus_info(offset, name, CO_FAST_FREE,
localsplusnames, localspluskinds);
}
// gh-110543: Make sure the CO_FAST_HIDDEN flag is set correctly.
if (!(flags & CO_OPTIMIZED)) {
Py_ssize_t code_len = PyBytes_GET_SIZE(code);
_Py_CODEUNIT *code_data = (_Py_CODEUNIT *)PyBytes_AS_STRING(code);
Py_ssize_t num_code_units = code_len / sizeof(_Py_CODEUNIT);
int extended_arg = 0;
for (int i = 0; i < num_code_units; i += 1 + _PyOpcode_Caches[code_data[i].op.code]) {
_Py_CODEUNIT *instr = &code_data[i];
uint8_t opcode = instr->op.code;
if (opcode == EXTENDED_ARG) {
extended_arg = extended_arg << 8 | instr->op.arg;
continue;
}
if (opcode == LOAD_FAST_AND_CLEAR) {
int oparg = extended_arg << 8 | instr->op.arg;
if (oparg >= nlocalsplus) {
PyErr_Format(PyExc_ValueError,
"code: LOAD_FAST_AND_CLEAR oparg %d out of range",
oparg);
goto error;
}
_PyLocals_Kind kind = _PyLocals_GetKind(localspluskinds, oparg);
_PyLocals_SetKind(localspluskinds, oparg, kind | CO_FAST_HIDDEN);
}
extended_arg = 0;
}
}
// If any cells were args then nlocalsplus will have shrunk.
if (nlocalsplus != PyTuple_GET_SIZE(localsplusnames)) {
if (_PyTuple_Resize(&localsplusnames, nlocalsplus) < 0
|| _PyBytes_Resize(&localspluskinds, nlocalsplus) < 0) {
goto error;
}
}
struct _PyCodeConstructor con = {
.filename = filename,
.name = name,
.qualname = qualname,
.flags = flags,
.code = code,
.firstlineno = firstlineno,
.linetable = linetable,
.consts = consts,
.names = names,
.localsplusnames = localsplusnames,
.localspluskinds = localspluskinds,
.argcount = argcount,
.posonlyargcount = posonlyargcount,
.kwonlyargcount = kwonlyargcount,
.stacksize = stacksize,
.exceptiontable = exceptiontable,
};
if (_PyCode_Validate(&con) < 0) {
goto error;
}
assert(PyBytes_GET_SIZE(code) % sizeof(_Py_CODEUNIT) == 0);
assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(code), sizeof(_Py_CODEUNIT)));
if (nlocals != PyTuple_GET_SIZE(varnames)) {
PyErr_SetString(PyExc_ValueError,
"code: co_nlocals != len(co_varnames)");
goto error;
}
co = _PyCode_New(&con);
if (co == NULL) {
goto error;
}
error:
Py_XDECREF(localsplusnames);
Py_XDECREF(localspluskinds);
return co;
}
PyCodeObject *
PyUnstable_Code_New(int argcount, int kwonlyargcount,
int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, PyObject *qualname,
int firstlineno,
PyObject *linetable,
PyObject *exceptiontable)
{
return PyCode_NewWithPosOnlyArgs(argcount, 0, kwonlyargcount, nlocals,
stacksize, flags, code, consts, names,
varnames, freevars, cellvars, filename,
name, qualname, firstlineno,
linetable,
exceptiontable);
}
// NOTE: When modifying the construction of PyCode_NewEmpty, please also change
// test.test_code.CodeLocationTest.test_code_new_empty to keep it in sync!
static const uint8_t assert0[6] = {
RESUME, RESUME_AT_FUNC_START,
LOAD_COMMON_CONSTANT, CONSTANT_ASSERTIONERROR,
RAISE_VARARGS, 1
};
static const uint8_t linetable[2] = {
(1 << 7) // New entry.
| (PY_CODE_LOCATION_INFO_NO_COLUMNS << 3)
| (3 - 1), // Three code units.
0, // Offset from co_firstlineno.
};
Merged revisions 72487-72488,72879 via svnmerge from svn+ssh://pythondev@svn.python.org/python/trunk ........ r72487 | jeffrey.yasskin | 2009-05-08 17:51:06 -0400 (Fri, 08 May 2009) | 7 lines PyCode_NewEmpty: Most uses of PyCode_New found by http://www.google.com/codesearch?q=PyCode_New are trying to build an empty code object, usually to put it in a dummy frame object. This patch adds a PyCode_NewEmpty wrapper which lets the user specify just the filename, function name, and first line number, instead of also requiring lots of code internals. ........ r72488 | jeffrey.yasskin | 2009-05-08 18:23:21 -0400 (Fri, 08 May 2009) | 13 lines Issue 5954, PyFrame_GetLineNumber: Most uses of PyCode_Addr2Line (http://www.google.com/codesearch?q=PyCode_Addr2Line) are just trying to get the line number of a specified frame, but there's no way to do that directly. Forcing people to go through the code object makes them know more about the guts of the interpreter than they should need. The remaining uses of PyCode_Addr2Line seem to be getting the line from a traceback (for example, http://www.google.com/codesearch/p?hl=en#u_9_nDrchrw/pygame-1.7.1release/src/base.c&q=PyCode_Addr2Line), which is replaced by the tb_lineno field. So we may be able to deprecate PyCode_Addr2Line entirely for external use. ........ r72879 | jeffrey.yasskin | 2009-05-23 19:23:01 -0400 (Sat, 23 May 2009) | 14 lines Issue #6042: lnotab-based tracing is very complicated and isn't documented very well. There were at least 3 comment blocks purporting to document co_lnotab, and none did a very good job. This patch unifies them into Objects/lnotab_notes.txt which tries to completely capture the current state of affairs. I also discovered that we've attached 2 layers of patches to the basic tracing scheme. The first layer avoids jumping to instructions that don't start a line, to avoid problems in if statements and while loops. The second layer discovered that jumps backward do need to trace at instructions that don't start a line, so it added extra lnotab entries for 'while' and 'for' loops, and added a special case for backward jumps within the same line. I replaced these patches by just treating forward and backward jumps differently. ........
2009-07-21 01:30:03 -03:00
PyCodeObject *
PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
{
PyObject *nulltuple = NULL;
PyObject *filename_ob = NULL;
PyObject *funcname_ob = NULL;
PyObject *code_ob = NULL;
PyObject *linetable_ob = NULL;
PyCodeObject *result = NULL;
nulltuple = PyTuple_New(0);
if (nulltuple == NULL) {
goto failed;
}
funcname_ob = PyUnicode_FromString(funcname);
if (funcname_ob == NULL) {
goto failed;
}
filename_ob = PyUnicode_DecodeFSDefault(filename);
if (filename_ob == NULL) {
goto failed;
}
code_ob = PyBytes_FromStringAndSize((const char *)assert0, 6);
if (code_ob == NULL) {
goto failed;
}
linetable_ob = PyBytes_FromStringAndSize((const char *)linetable, 2);
if (linetable_ob == NULL) {
goto failed;
}
#define emptystring (PyObject *)&_Py_SINGLETON(bytes_empty)
struct _PyCodeConstructor con = {
.filename = filename_ob,
.name = funcname_ob,
.qualname = funcname_ob,
.code = code_ob,
.firstlineno = firstlineno,
.linetable = linetable_ob,
.consts = nulltuple,
.names = nulltuple,
.localsplusnames = nulltuple,
.localspluskinds = emptystring,
.exceptiontable = emptystring,
.stacksize = 1,
};
result = _PyCode_New(&con);
Merged revisions 72487-72488,72879 via svnmerge from svn+ssh://pythondev@svn.python.org/python/trunk ........ r72487 | jeffrey.yasskin | 2009-05-08 17:51:06 -0400 (Fri, 08 May 2009) | 7 lines PyCode_NewEmpty: Most uses of PyCode_New found by http://www.google.com/codesearch?q=PyCode_New are trying to build an empty code object, usually to put it in a dummy frame object. This patch adds a PyCode_NewEmpty wrapper which lets the user specify just the filename, function name, and first line number, instead of also requiring lots of code internals. ........ r72488 | jeffrey.yasskin | 2009-05-08 18:23:21 -0400 (Fri, 08 May 2009) | 13 lines Issue 5954, PyFrame_GetLineNumber: Most uses of PyCode_Addr2Line (http://www.google.com/codesearch?q=PyCode_Addr2Line) are just trying to get the line number of a specified frame, but there's no way to do that directly. Forcing people to go through the code object makes them know more about the guts of the interpreter than they should need. The remaining uses of PyCode_Addr2Line seem to be getting the line from a traceback (for example, http://www.google.com/codesearch/p?hl=en#u_9_nDrchrw/pygame-1.7.1release/src/base.c&q=PyCode_Addr2Line), which is replaced by the tb_lineno field. So we may be able to deprecate PyCode_Addr2Line entirely for external use. ........ r72879 | jeffrey.yasskin | 2009-05-23 19:23:01 -0400 (Sat, 23 May 2009) | 14 lines Issue #6042: lnotab-based tracing is very complicated and isn't documented very well. There were at least 3 comment blocks purporting to document co_lnotab, and none did a very good job. This patch unifies them into Objects/lnotab_notes.txt which tries to completely capture the current state of affairs. I also discovered that we've attached 2 layers of patches to the basic tracing scheme. The first layer avoids jumping to instructions that don't start a line, to avoid problems in if statements and while loops. The second layer discovered that jumps backward do need to trace at instructions that don't start a line, so it added extra lnotab entries for 'while' and 'for' loops, and added a special case for backward jumps within the same line. I replaced these patches by just treating forward and backward jumps differently. ........
2009-07-21 01:30:03 -03:00
failed:
Py_XDECREF(nulltuple);
Py_XDECREF(funcname_ob);
Py_XDECREF(filename_ob);
Py_XDECREF(code_ob);
Py_XDECREF(linetable_ob);
return result;
Merged revisions 72487-72488,72879 via svnmerge from svn+ssh://pythondev@svn.python.org/python/trunk ........ r72487 | jeffrey.yasskin | 2009-05-08 17:51:06 -0400 (Fri, 08 May 2009) | 7 lines PyCode_NewEmpty: Most uses of PyCode_New found by http://www.google.com/codesearch?q=PyCode_New are trying to build an empty code object, usually to put it in a dummy frame object. This patch adds a PyCode_NewEmpty wrapper which lets the user specify just the filename, function name, and first line number, instead of also requiring lots of code internals. ........ r72488 | jeffrey.yasskin | 2009-05-08 18:23:21 -0400 (Fri, 08 May 2009) | 13 lines Issue 5954, PyFrame_GetLineNumber: Most uses of PyCode_Addr2Line (http://www.google.com/codesearch?q=PyCode_Addr2Line) are just trying to get the line number of a specified frame, but there's no way to do that directly. Forcing people to go through the code object makes them know more about the guts of the interpreter than they should need. The remaining uses of PyCode_Addr2Line seem to be getting the line from a traceback (for example, http://www.google.com/codesearch/p?hl=en#u_9_nDrchrw/pygame-1.7.1release/src/base.c&q=PyCode_Addr2Line), which is replaced by the tb_lineno field. So we may be able to deprecate PyCode_Addr2Line entirely for external use. ........ r72879 | jeffrey.yasskin | 2009-05-23 19:23:01 -0400 (Sat, 23 May 2009) | 14 lines Issue #6042: lnotab-based tracing is very complicated and isn't documented very well. There were at least 3 comment blocks purporting to document co_lnotab, and none did a very good job. This patch unifies them into Objects/lnotab_notes.txt which tries to completely capture the current state of affairs. I also discovered that we've attached 2 layers of patches to the basic tracing scheme. The first layer avoids jumping to instructions that don't start a line, to avoid problems in if statements and while loops. The second layer discovered that jumps backward do need to trace at instructions that don't start a line, so it added extra lnotab entries for 'while' and 'for' loops, and added a special case for backward jumps within the same line. I replaced these patches by just treating forward and backward jumps differently. ........
2009-07-21 01:30:03 -03:00
}
/******************
* source location tracking (co_lines/co_positions)
******************/
int
PyCode_Addr2Line(PyCodeObject *co, int addrq)
{
if (addrq < 0) {
return co->co_firstlineno;
}
assert(addrq >= 0 && addrq < _PyCode_NBYTES(co));
PyCodeAddressRange bounds;
_PyCode_InitAddressRange(co, &bounds);
return _PyCode_CheckLineNumber(addrq, &bounds);
}
void
_PyLineTable_InitAddressRange(const char *linetable, Py_ssize_t length, int firstlineno, PyCodeAddressRange *range)
{
range->opaque.lo_next = (const uint8_t *)linetable;
range->opaque.limit = range->opaque.lo_next + length;
range->ar_start = -1;
range->ar_end = 0;
range->opaque.computed_line = firstlineno;
range->ar_line = -1;
}
int
_PyCode_InitAddressRange(PyCodeObject* co, PyCodeAddressRange *bounds)
{
assert(co->co_linetable != NULL);
2021-06-12 10:11:59 -03:00
const char *linetable = PyBytes_AS_STRING(co->co_linetable);
Py_ssize_t length = PyBytes_GET_SIZE(co->co_linetable);
_PyLineTable_InitAddressRange(linetable, length, co->co_firstlineno, bounds);
return bounds->ar_line;
}
/* Update *bounds to describe the first and one-past-the-last instructions in
the same line as lasti. Return the number of that line, or -1 if lasti is out of bounds. */
int
_PyCode_CheckLineNumber(int lasti, PyCodeAddressRange *bounds)
{
while (bounds->ar_end <= lasti) {
if (!_PyLineTable_NextAddressRange(bounds)) {
return -1;
}
}
while (bounds->ar_start > lasti) {
if (!_PyLineTable_PreviousAddressRange(bounds)) {
return -1;
}
}
return bounds->ar_line;
}
static int
is_no_line_marker(uint8_t b)
{
return (b >> 3) == 0x1f;
}
#define ASSERT_VALID_BOUNDS(bounds) \
assert(bounds->opaque.lo_next <= bounds->opaque.limit && \
(bounds->ar_line == -1 || bounds->ar_line == bounds->opaque.computed_line) && \
(bounds->opaque.lo_next == bounds->opaque.limit || \
(*bounds->opaque.lo_next) & 128))
static int
next_code_delta(PyCodeAddressRange *bounds)
{
assert((*bounds->opaque.lo_next) & 128);
return (((*bounds->opaque.lo_next) & 7) + 1) * sizeof(_Py_CODEUNIT);
}
static int
previous_code_delta(PyCodeAddressRange *bounds)
{
if (bounds->ar_start == 0) {
// If we looking at the first entry, the
// "previous" entry has an implicit length of 1.
return 1;
}
const uint8_t *ptr = bounds->opaque.lo_next-1;
while (((*ptr) & 128) == 0) {
ptr--;
}
return (((*ptr) & 7) + 1) * sizeof(_Py_CODEUNIT);
}
static int
read_byte(PyCodeAddressRange *bounds)
{
return *bounds->opaque.lo_next++;
}
static int
read_varint(PyCodeAddressRange *bounds)
{
unsigned int read = read_byte(bounds);
unsigned int val = read & 63;
unsigned int shift = 0;
while (read & 64) {
read = read_byte(bounds);
shift += 6;
val |= (read & 63) << shift;
}
return val;
}
static int
read_signed_varint(PyCodeAddressRange *bounds)
{
unsigned int uval = read_varint(bounds);
if (uval & 1) {
return -(int)(uval >> 1);
}
else {
return uval >> 1;
}
}
static void
retreat(PyCodeAddressRange *bounds)
{
ASSERT_VALID_BOUNDS(bounds);
assert(bounds->ar_start >= 0);
do {
bounds->opaque.lo_next--;
} while (((*bounds->opaque.lo_next) & 128) == 0);
bounds->opaque.computed_line -= get_line_delta(bounds->opaque.lo_next);
bounds->ar_end = bounds->ar_start;
bounds->ar_start -= previous_code_delta(bounds);
if (is_no_line_marker(bounds->opaque.lo_next[-1])) {
bounds->ar_line = -1;
}
else {
bounds->ar_line = bounds->opaque.computed_line;
}
ASSERT_VALID_BOUNDS(bounds);
}
static void
advance(PyCodeAddressRange *bounds)
{
ASSERT_VALID_BOUNDS(bounds);
bounds->opaque.computed_line += get_line_delta(bounds->opaque.lo_next);
if (is_no_line_marker(*bounds->opaque.lo_next)) {
bounds->ar_line = -1;
}
else {
bounds->ar_line = bounds->opaque.computed_line;
}
bounds->ar_start = bounds->ar_end;
bounds->ar_end += next_code_delta(bounds);
do {
bounds->opaque.lo_next++;
} while (bounds->opaque.lo_next < bounds->opaque.limit &&
((*bounds->opaque.lo_next) & 128) == 0);
ASSERT_VALID_BOUNDS(bounds);
}
static void
advance_with_locations(PyCodeAddressRange *bounds, int *endline, int *column, int *endcolumn)
{
ASSERT_VALID_BOUNDS(bounds);
int first_byte = read_byte(bounds);
int code = (first_byte >> 3) & 15;
bounds->ar_start = bounds->ar_end;
bounds->ar_end = bounds->ar_start + ((first_byte & 7) + 1) * sizeof(_Py_CODEUNIT);
switch(code) {
case PY_CODE_LOCATION_INFO_NONE:
bounds->ar_line = *endline = -1;
*column = *endcolumn = -1;
break;
case PY_CODE_LOCATION_INFO_LONG:
{
bounds->opaque.computed_line += read_signed_varint(bounds);
bounds->ar_line = bounds->opaque.computed_line;
*endline = bounds->ar_line + read_varint(bounds);
*column = read_varint(bounds)-1;
*endcolumn = read_varint(bounds)-1;
break;
}
case PY_CODE_LOCATION_INFO_NO_COLUMNS:
{
/* No column */
bounds->opaque.computed_line += read_signed_varint(bounds);
*endline = bounds->ar_line = bounds->opaque.computed_line;
*column = *endcolumn = -1;
break;
}
case PY_CODE_LOCATION_INFO_ONE_LINE0:
case PY_CODE_LOCATION_INFO_ONE_LINE1:
case PY_CODE_LOCATION_INFO_ONE_LINE2:
{
/* one line form */
int line_delta = code - 10;
bounds->opaque.computed_line += line_delta;
*endline = bounds->ar_line = bounds->opaque.computed_line;
*column = read_byte(bounds);
*endcolumn = read_byte(bounds);
break;
}
default:
{
/* Short forms */
int second_byte = read_byte(bounds);
assert((second_byte & 128) == 0);
*endline = bounds->ar_line = bounds->opaque.computed_line;
*column = code << 3 | (second_byte >> 4);
*endcolumn = *column + (second_byte & 15);
}
}
ASSERT_VALID_BOUNDS(bounds);
}
int
PyCode_Addr2Location(PyCodeObject *co, int addrq,
int *start_line, int *start_column,
int *end_line, int *end_column)
{
if (addrq < 0) {
*start_line = *end_line = co->co_firstlineno;
*start_column = *end_column = 0;
return 1;
}
assert(addrq >= 0 && addrq < _PyCode_NBYTES(co));
PyCodeAddressRange bounds;
_PyCode_InitAddressRange(co, &bounds);
_PyCode_CheckLineNumber(addrq, &bounds);
retreat(&bounds);
advance_with_locations(&bounds, end_line, start_column, end_column);
*start_line = bounds.ar_line;
return 1;
}
static inline int
at_end(PyCodeAddressRange *bounds) {
return bounds->opaque.lo_next >= bounds->opaque.limit;
}
int
_PyLineTable_PreviousAddressRange(PyCodeAddressRange *range)
{
if (range->ar_start <= 0) {
return 0;
}
retreat(range);
assert(range->ar_end > range->ar_start);
return 1;
}
int
_PyLineTable_NextAddressRange(PyCodeAddressRange *range)
{
if (at_end(range)) {
return 0;
}
advance(range);
assert(range->ar_end > range->ar_start);
return 1;
}
static int
emit_pair(PyObject **bytes, int *offset, int a, int b)
{
Py_ssize_t len = PyBytes_GET_SIZE(*bytes);
if (*offset + 2 >= len) {
if (_PyBytes_Resize(bytes, len * 2) < 0)
return 0;
}
unsigned char *lnotab = (unsigned char *) PyBytes_AS_STRING(*bytes);
lnotab += *offset;
*lnotab++ = a;
*lnotab++ = b;
*offset += 2;
return 1;
}
static int
emit_delta(PyObject **bytes, int bdelta, int ldelta, int *offset)
{
while (bdelta > 255) {
if (!emit_pair(bytes, offset, 255, 0)) {
return 0;
}
bdelta -= 255;
}
while (ldelta > 127) {
if (!emit_pair(bytes, offset, bdelta, 127)) {
return 0;
}
bdelta = 0;
ldelta -= 127;
}
while (ldelta < -128) {
if (!emit_pair(bytes, offset, bdelta, -128)) {
return 0;
}
bdelta = 0;
ldelta += 128;
}
return emit_pair(bytes, offset, bdelta, ldelta);
}
static PyObject *
decode_linetable(PyCodeObject *code)
{
PyCodeAddressRange bounds;
PyObject *bytes;
int table_offset = 0;
int code_offset = 0;
int line = code->co_firstlineno;
bytes = PyBytes_FromStringAndSize(NULL, 64);
if (bytes == NULL) {
return NULL;
}
_PyCode_InitAddressRange(code, &bounds);
while (_PyLineTable_NextAddressRange(&bounds)) {
if (bounds.opaque.computed_line != line) {
int bdelta = bounds.ar_start - code_offset;
int ldelta = bounds.opaque.computed_line - line;
if (!emit_delta(&bytes, bdelta, ldelta, &table_offset)) {
Py_DECREF(bytes);
return NULL;
}
code_offset = bounds.ar_start;
line = bounds.opaque.computed_line;
}
}
_PyBytes_Resize(&bytes, table_offset);
return bytes;
}
typedef struct {
PyObject_HEAD
PyCodeObject *li_code;
PyCodeAddressRange li_line;
} lineiterator;
static void
lineiter_dealloc(lineiterator *li)
{
Py_DECREF(li->li_code);
Py_TYPE(li)->tp_free(li);
}
static PyObject *
_source_offset_converter(int *value) {
if (*value == -1) {
Py_RETURN_NONE;
}
return PyLong_FromLong(*value);
}
static PyObject *
lineiter_next(lineiterator *li)
{
PyCodeAddressRange *bounds = &li->li_line;
if (!_PyLineTable_NextAddressRange(bounds)) {
return NULL;
}
int start = bounds->ar_start;
int line = bounds->ar_line;
// Merge overlapping entries:
while (_PyLineTable_NextAddressRange(bounds)) {
if (bounds->ar_line != line) {
_PyLineTable_PreviousAddressRange(bounds);
break;
}
}
return Py_BuildValue("iiO&", start, bounds->ar_end,
_source_offset_converter, &line);
}
PyTypeObject _PyLineIterator = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"line_iterator", /* tp_name */
sizeof(lineiterator), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)lineiter_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)lineiter_next, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
PyObject_Del, /* tp_free */
};
static lineiterator *
new_linesiterator(PyCodeObject *code)
{
lineiterator *li = (lineiterator *)PyType_GenericAlloc(&_PyLineIterator, 0);
if (li == NULL) {
return NULL;
}
li->li_code = (PyCodeObject*)Py_NewRef(code);
_PyCode_InitAddressRange(code, &li->li_line);
return li;
}
/* co_positions iterator object. */
typedef struct {
PyObject_HEAD
PyCodeObject* pi_code;
PyCodeAddressRange pi_range;
int pi_offset;
int pi_endline;
int pi_column;
int pi_endcolumn;
} positionsiterator;
static void
positionsiter_dealloc(positionsiterator* pi)
{
Py_DECREF(pi->pi_code);
Py_TYPE(pi)->tp_free(pi);
}
static PyObject*
positionsiter_next(positionsiterator* pi)
{
if (pi->pi_offset >= pi->pi_range.ar_end) {
assert(pi->pi_offset == pi->pi_range.ar_end);
if (at_end(&pi->pi_range)) {
return NULL;
}
advance_with_locations(&pi->pi_range, &pi->pi_endline, &pi->pi_column, &pi->pi_endcolumn);
}
pi->pi_offset += 2;
return Py_BuildValue("(O&O&O&O&)",
_source_offset_converter, &pi->pi_range.ar_line,
_source_offset_converter, &pi->pi_endline,
_source_offset_converter, &pi->pi_column,
_source_offset_converter, &pi->pi_endcolumn);
}
PyTypeObject _PyPositionsIterator = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"positions_iterator", /* tp_name */
sizeof(positionsiterator), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)positionsiter_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)positionsiter_next, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
PyObject_Del, /* tp_free */
};
static PyObject*
code_positionsiterator(PyCodeObject* code, PyObject* Py_UNUSED(args))
{
positionsiterator* pi = (positionsiterator*)PyType_GenericAlloc(&_PyPositionsIterator, 0);
if (pi == NULL) {
return NULL;
}
pi->pi_code = (PyCodeObject*)Py_NewRef(code);
_PyCode_InitAddressRange(code, &pi->pi_range);
pi->pi_offset = pi->pi_range.ar_end;
return (PyObject*)pi;
}
/******************
* "extra" frame eval info (see PEP 523)
******************/
/* Holder for co_extra information */
typedef struct {
Py_ssize_t ce_size;
void *ce_extras[1];
} _PyCodeObjectExtra;
int
PyUnstable_Code_GetExtra(PyObject *code, Py_ssize_t index, void **extra)
{
if (!PyCode_Check(code)) {
PyErr_BadInternalCall();
return -1;
}
PyCodeObject *o = (PyCodeObject*) code;
_PyCodeObjectExtra *co_extra = (_PyCodeObjectExtra*) o->co_extra;
if (co_extra == NULL || index < 0 || co_extra->ce_size <= index) {
*extra = NULL;
return 0;
}
*extra = co_extra->ce_extras[index];
return 0;
}
int
PyUnstable_Code_SetExtra(PyObject *code, Py_ssize_t index, void *extra)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
if (!PyCode_Check(code) || index < 0 ||
index >= interp->co_extra_user_count) {
PyErr_BadInternalCall();
return -1;
}
PyCodeObject *o = (PyCodeObject*) code;
_PyCodeObjectExtra *co_extra = (_PyCodeObjectExtra *) o->co_extra;
if (co_extra == NULL || co_extra->ce_size <= index) {
Py_ssize_t i = (co_extra == NULL ? 0 : co_extra->ce_size);
co_extra = PyMem_Realloc(
co_extra,
sizeof(_PyCodeObjectExtra) +
(interp->co_extra_user_count-1) * sizeof(void*));
if (co_extra == NULL) {
return -1;
}
for (; i < interp->co_extra_user_count; i++) {
co_extra->ce_extras[i] = NULL;
}
co_extra->ce_size = interp->co_extra_user_count;
o->co_extra = co_extra;
}
if (co_extra->ce_extras[index] != NULL) {
freefunc free = interp->co_extra_freefuncs[index];
if (free != NULL) {
free(co_extra->ce_extras[index]);
}
}
co_extra->ce_extras[index] = extra;
return 0;
}
/******************
* other PyCodeObject accessor functions
******************/
static PyObject *
get_cached_locals(PyCodeObject *co, PyObject **cached_field,
_PyLocals_Kind kind, int num)
{
assert(cached_field != NULL);
assert(co->_co_cached != NULL);
if (*cached_field != NULL) {
return Py_NewRef(*cached_field);
}
assert(*cached_field == NULL);
PyObject *varnames = get_localsplus_names(co, kind, num);
if (varnames == NULL) {
return NULL;
}
*cached_field = Py_NewRef(varnames);
return varnames;
}
PyObject *
_PyCode_GetVarnames(PyCodeObject *co)
{
if (init_co_cached(co)) {
return NULL;
}
return get_cached_locals(co, &co->_co_cached->_co_varnames, CO_FAST_LOCAL, co->co_nlocals);
}
PyObject *
PyCode_GetVarnames(PyCodeObject *code)
{
return _PyCode_GetVarnames(code);
}
PyObject *
_PyCode_GetCellvars(PyCodeObject *co)
{
if (init_co_cached(co)) {
return NULL;
}
return get_cached_locals(co, &co->_co_cached->_co_cellvars, CO_FAST_CELL, co->co_ncellvars);
}
PyObject *
PyCode_GetCellvars(PyCodeObject *code)
{
return _PyCode_GetCellvars(code);
}
PyObject *
_PyCode_GetFreevars(PyCodeObject *co)
{
if (init_co_cached(co)) {
return NULL;
}
return get_cached_locals(co, &co->_co_cached->_co_freevars, CO_FAST_FREE, co->co_nfreevars);
}
PyObject *
PyCode_GetFreevars(PyCodeObject *code)
{
return _PyCode_GetFreevars(code);
}
#ifdef _Py_TIER2
static void
clear_executors(PyCodeObject *co)
{
assert(co->co_executors);
for (int i = 0; i < co->co_executors->size; i++) {
if (co->co_executors->executors[i]) {
_Py_ExecutorDetach(co->co_executors->executors[i]);
assert(co->co_executors->executors[i] == NULL);
}
}
PyMem_Free(co->co_executors);
co->co_executors = NULL;
}
void
_PyCode_Clear_Executors(PyCodeObject *code)
{
clear_executors(code);
}
#endif
static void
deopt_code(PyCodeObject *code, _Py_CODEUNIT *instructions)
{
Py_ssize_t len = Py_SIZE(code);
for (int i = 0; i < len; i++) {
int opcode = _Py_GetBaseOpcode(code, i);
if (opcode == ENTER_EXECUTOR) {
_PyExecutorObject *exec = code->co_executors->executors[instructions[i].op.arg];
opcode = _PyOpcode_Deopt[exec->vm_data.opcode];
instructions[i].op.arg = exec->vm_data.oparg;
}
assert(opcode != ENTER_EXECUTOR);
int caches = _PyOpcode_Caches[opcode];
instructions[i].op.code = opcode;
for (int j = 1; j <= caches; j++) {
instructions[i+j].cache = 0;
}
i += caches;
}
}
PyObject *
_PyCode_GetCode(PyCodeObject *co)
{
if (init_co_cached(co)) {
return NULL;
}
if (co->_co_cached->_co_code != NULL) {
return Py_NewRef(co->_co_cached->_co_code);
}
PyObject *code = PyBytes_FromStringAndSize((const char *)_PyCode_CODE(co),
_PyCode_NBYTES(co));
if (code == NULL) {
return NULL;
}
deopt_code(co, (_Py_CODEUNIT *)PyBytes_AS_STRING(code));
assert(co->_co_cached->_co_code == NULL);
co->_co_cached->_co_code = Py_NewRef(code);
return code;
}
PyObject *
PyCode_GetCode(PyCodeObject *co)
{
return _PyCode_GetCode(co);
}
/******************
* PyCode_Type
******************/
/*[clinic input]
class code "PyCodeObject *" "&PyCode_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=78aa5d576683bb4b]*/
/*[clinic input]
@classmethod
code.__new__ as code_new
argcount: int
posonlyargcount: int
kwonlyargcount: int
nlocals: int
stacksize: int
flags: int
codestring as code: object(subclass_of="&PyBytes_Type")
constants as consts: object(subclass_of="&PyTuple_Type")
names: object(subclass_of="&PyTuple_Type")
varnames: object(subclass_of="&PyTuple_Type")
filename: unicode
name: unicode
qualname: unicode
firstlineno: int
linetable: object(subclass_of="&PyBytes_Type")
exceptiontable: object(subclass_of="&PyBytes_Type")
freevars: object(subclass_of="&PyTuple_Type", c_default="NULL") = ()
cellvars: object(subclass_of="&PyTuple_Type", c_default="NULL") = ()
/
Create a code object. Not for the faint of heart.
[clinic start generated code]*/
static PyObject *
code_new_impl(PyTypeObject *type, int argcount, int posonlyargcount,
int kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PyObject *varnames, PyObject *filename, PyObject *name,
PyObject *qualname, int firstlineno, PyObject *linetable,
PyObject *exceptiontable, PyObject *freevars,
PyObject *cellvars)
/*[clinic end generated code: output=069fa20d299f9dda input=e31da3c41ad8064a]*/
{
PyObject *co = NULL;
PyObject *ournames = NULL;
PyObject *ourvarnames = NULL;
PyObject *ourfreevars = NULL;
PyObject *ourcellvars = NULL;
if (PySys_Audit("code.__new__", "OOOiiiiii",
code, filename, name, argcount, posonlyargcount,
kwonlyargcount, nlocals, stacksize, flags) < 0) {
goto cleanup;
}
if (argcount < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: argcount must not be negative");
goto cleanup;
}
if (posonlyargcount < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: posonlyargcount must not be negative");
goto cleanup;
}
if (kwonlyargcount < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: kwonlyargcount must not be negative");
goto cleanup;
}
if (nlocals < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: nlocals must not be negative");
goto cleanup;
}
ournames = validate_and_copy_tuple(names);
if (ournames == NULL)
goto cleanup;
ourvarnames = validate_and_copy_tuple(varnames);
if (ourvarnames == NULL)
goto cleanup;
if (freevars)
ourfreevars = validate_and_copy_tuple(freevars);
else
ourfreevars = PyTuple_New(0);
if (ourfreevars == NULL)
goto cleanup;
if (cellvars)
ourcellvars = validate_and_copy_tuple(cellvars);
else
ourcellvars = PyTuple_New(0);
if (ourcellvars == NULL)
goto cleanup;
co = (PyObject *)PyCode_NewWithPosOnlyArgs(argcount, posonlyargcount,
kwonlyargcount,
nlocals, stacksize, flags,
code, consts, ournames,
ourvarnames, ourfreevars,
ourcellvars, filename,
name, qualname, firstlineno,
linetable,
exceptiontable
);
cleanup:
Py_XDECREF(ournames);
Py_XDECREF(ourvarnames);
Py_XDECREF(ourfreevars);
Py_XDECREF(ourcellvars);
return co;
}
static void
free_monitoring_data(_PyCoMonitoringData *data)
{
if (data == NULL) {
return;
}
if (data->tools) {
PyMem_Free(data->tools);
}
if (data->lines) {
PyMem_Free(data->lines);
}
if (data->line_tools) {
PyMem_Free(data->line_tools);
}
if (data->per_instruction_opcodes) {
PyMem_Free(data->per_instruction_opcodes);
}
if (data->per_instruction_tools) {
PyMem_Free(data->per_instruction_tools);
}
PyMem_Free(data);
}
static void
code_dealloc(PyCodeObject *co)
{
assert(Py_REFCNT(co) == 0);
Py_SET_REFCNT(co, 1);
notify_code_watchers(PY_CODE_EVENT_DESTROY, co);
if (Py_REFCNT(co) > 1) {
Py_SET_REFCNT(co, Py_REFCNT(co) - 1);
return;
}
Py_SET_REFCNT(co, 0);
#ifdef Py_GIL_DISABLED
PyObject_GC_UnTrack(co);
#endif
_PyFunction_ClearCodeByVersion(co->co_version);
if (co->co_extra != NULL) {
PyInterpreterState *interp = _PyInterpreterState_GET();
_PyCodeObjectExtra *co_extra = co->co_extra;
for (Py_ssize_t i = 0; i < co_extra->ce_size; i++) {
freefunc free_extra = interp->co_extra_freefuncs[i];
if (free_extra != NULL) {
free_extra(co_extra->ce_extras[i]);
}
}
PyMem_Free(co_extra);
}
#ifdef _Py_TIER2
if (co->co_executors != NULL) {
clear_executors(co);
}
#endif
Py_XDECREF(co->co_consts);
Py_XDECREF(co->co_names);
Py_XDECREF(co->co_localsplusnames);
Py_XDECREF(co->co_localspluskinds);
Py_XDECREF(co->co_filename);
Py_XDECREF(co->co_name);
Py_XDECREF(co->co_qualname);
Py_XDECREF(co->co_linetable);
Py_XDECREF(co->co_exceptiontable);
if (co->_co_cached != NULL) {
Py_XDECREF(co->_co_cached->_co_code);
Py_XDECREF(co->_co_cached->_co_cellvars);
Py_XDECREF(co->_co_cached->_co_freevars);
Py_XDECREF(co->_co_cached->_co_varnames);
PyMem_Free(co->_co_cached);
}
if (co->co_weakreflist != NULL) {
PyObject_ClearWeakRefs((PyObject*)co);
}
free_monitoring_data(co->_co_monitoring);
PyObject_Free(co);
}
#ifdef Py_GIL_DISABLED
static int
code_traverse(PyCodeObject *co, visitproc visit, void *arg)
{
Py_VISIT(co->co_consts);
return 0;
}
#endif
static PyObject *
code_repr(PyCodeObject *co)
{
int lineno;
if (co->co_firstlineno != 0)
lineno = co->co_firstlineno;
else
lineno = -1;
if (co->co_filename && PyUnicode_Check(co->co_filename)) {
return PyUnicode_FromFormat(
"<code object %U at %p, file \"%U\", line %d>",
co->co_name, co, co->co_filename, lineno);
} else {
return PyUnicode_FromFormat(
"<code object %U at %p, file ???, line %d>",
co->co_name, co, lineno);
}
}
static PyObject *
code_richcompare(PyObject *self, PyObject *other, int op)
{
PyCodeObject *co, *cp;
int eq;
PyObject *consts1, *consts2;
PyObject *res;
if ((op != Py_EQ && op != Py_NE) ||
!PyCode_Check(self) ||
!PyCode_Check(other)) {
Py_RETURN_NOTIMPLEMENTED;
}
co = (PyCodeObject *)self;
cp = (PyCodeObject *)other;
eq = PyObject_RichCompareBool(co->co_name, cp->co_name, Py_EQ);
if (!eq) goto unequal;
eq = co->co_argcount == cp->co_argcount;
if (!eq) goto unequal;
eq = co->co_posonlyargcount == cp->co_posonlyargcount;
if (!eq) goto unequal;
eq = co->co_kwonlyargcount == cp->co_kwonlyargcount;
if (!eq) goto unequal;
eq = co->co_flags == cp->co_flags;
if (!eq) goto unequal;
eq = co->co_firstlineno == cp->co_firstlineno;
if (!eq) goto unequal;
eq = Py_SIZE(co) == Py_SIZE(cp);
if (!eq) {
goto unequal;
}
for (int i = 0; i < Py_SIZE(co); i++) {
_Py_CODEUNIT co_instr = _PyCode_CODE(co)[i];
_Py_CODEUNIT cp_instr = _PyCode_CODE(cp)[i];
uint8_t co_code = _Py_GetBaseOpcode(co, i);
uint8_t co_arg = co_instr.op.arg;
uint8_t cp_code = _Py_GetBaseOpcode(cp, i);
uint8_t cp_arg = cp_instr.op.arg;
if (co_code == ENTER_EXECUTOR) {
const int exec_index = co_arg;
_PyExecutorObject *exec = co->co_executors->executors[exec_index];
co_code = _PyOpcode_Deopt[exec->vm_data.opcode];
co_arg = exec->vm_data.oparg;
}
assert(co_code != ENTER_EXECUTOR);
if (cp_code == ENTER_EXECUTOR) {
const int exec_index = cp_arg;
_PyExecutorObject *exec = cp->co_executors->executors[exec_index];
cp_code = _PyOpcode_Deopt[exec->vm_data.opcode];
cp_arg = exec->vm_data.oparg;
}
assert(cp_code != ENTER_EXECUTOR);
if (co_code != cp_code || co_arg != cp_arg) {
goto unequal;
}
i += _PyOpcode_Caches[co_code];
}
/* compare constants */
consts1 = _PyCode_ConstantKey(co->co_consts);
if (!consts1)
return NULL;
consts2 = _PyCode_ConstantKey(cp->co_consts);
if (!consts2) {
Py_DECREF(consts1);
return NULL;
}
eq = PyObject_RichCompareBool(consts1, consts2, Py_EQ);
Py_DECREF(consts1);
Py_DECREF(consts2);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_names, cp->co_names, Py_EQ);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_localsplusnames,
cp->co_localsplusnames, Py_EQ);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_linetable, cp->co_linetable, Py_EQ);
if (eq <= 0) {
goto unequal;
}
eq = PyObject_RichCompareBool(co->co_exceptiontable,
cp->co_exceptiontable, Py_EQ);
if (eq <= 0) {
goto unequal;
}
if (op == Py_EQ)
res = Py_True;
else
res = Py_False;
goto done;
unequal:
if (eq < 0)
return NULL;
if (op == Py_NE)
res = Py_True;
else
res = Py_False;
done:
return Py_NewRef(res);
}
static Py_hash_t
code_hash(PyCodeObject *co)
{
Py_uhash_t uhash = 20221211;
#define SCRAMBLE_IN(H) do { \
uhash ^= (Py_uhash_t)(H); \
uhash *= PyHASH_MULTIPLIER; \
} while (0)
#define SCRAMBLE_IN_HASH(EXPR) do { \
Py_hash_t h = PyObject_Hash(EXPR); \
if (h == -1) { \
return -1; \
} \
SCRAMBLE_IN(h); \
} while (0)
SCRAMBLE_IN_HASH(co->co_name);
SCRAMBLE_IN_HASH(co->co_consts);
SCRAMBLE_IN_HASH(co->co_names);
SCRAMBLE_IN_HASH(co->co_localsplusnames);
SCRAMBLE_IN_HASH(co->co_linetable);
SCRAMBLE_IN_HASH(co->co_exceptiontable);
SCRAMBLE_IN(co->co_argcount);
SCRAMBLE_IN(co->co_posonlyargcount);
SCRAMBLE_IN(co->co_kwonlyargcount);
SCRAMBLE_IN(co->co_flags);
SCRAMBLE_IN(co->co_firstlineno);
SCRAMBLE_IN(Py_SIZE(co));
for (int i = 0; i < Py_SIZE(co); i++) {
_Py_CODEUNIT co_instr = _PyCode_CODE(co)[i];
uint8_t co_code = co_instr.op.code;
uint8_t co_arg = co_instr.op.arg;
if (co_code == ENTER_EXECUTOR) {
_PyExecutorObject *exec = co->co_executors->executors[co_arg];
assert(exec != NULL);
assert(exec->vm_data.opcode != ENTER_EXECUTOR);
co_code = _PyOpcode_Deopt[exec->vm_data.opcode];
co_arg = exec->vm_data.oparg;
}
else {
co_code = _Py_GetBaseOpcode(co, i);
}
SCRAMBLE_IN(co_code);
SCRAMBLE_IN(co_arg);
i += _PyOpcode_Caches[co_code];
}
if ((Py_hash_t)uhash == -1) {
return -2;
}
return (Py_hash_t)uhash;
}
#define OFF(x) offsetof(PyCodeObject, x)
static PyMemberDef code_memberlist[] = {
{"co_argcount", Py_T_INT, OFF(co_argcount), Py_READONLY},
{"co_posonlyargcount", Py_T_INT, OFF(co_posonlyargcount), Py_READONLY},
{"co_kwonlyargcount", Py_T_INT, OFF(co_kwonlyargcount), Py_READONLY},
{"co_stacksize", Py_T_INT, OFF(co_stacksize), Py_READONLY},
{"co_flags", Py_T_INT, OFF(co_flags), Py_READONLY},
{"co_nlocals", Py_T_INT, OFF(co_nlocals), Py_READONLY},
{"co_consts", _Py_T_OBJECT, OFF(co_consts), Py_READONLY},
{"co_names", _Py_T_OBJECT, OFF(co_names), Py_READONLY},
{"co_filename", _Py_T_OBJECT, OFF(co_filename), Py_READONLY},
{"co_name", _Py_T_OBJECT, OFF(co_name), Py_READONLY},
{"co_qualname", _Py_T_OBJECT, OFF(co_qualname), Py_READONLY},
{"co_firstlineno", Py_T_INT, OFF(co_firstlineno), Py_READONLY},
{"co_linetable", _Py_T_OBJECT, OFF(co_linetable), Py_READONLY},
{"co_exceptiontable", _Py_T_OBJECT, OFF(co_exceptiontable), Py_READONLY},
{NULL} /* Sentinel */
};
static PyObject *
code_getlnotab(PyCodeObject *code, void *closure)
{
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"co_lnotab is deprecated, use co_lines instead.",
1) < 0) {
return NULL;
}
return decode_linetable(code);
}
static PyObject *
code_getvarnames(PyCodeObject *code, void *closure)
{
return _PyCode_GetVarnames(code);
}
static PyObject *
code_getcellvars(PyCodeObject *code, void *closure)
{
return _PyCode_GetCellvars(code);
}
static PyObject *
code_getfreevars(PyCodeObject *code, void *closure)
{
return _PyCode_GetFreevars(code);
}
static PyObject *
code_getcodeadaptive(PyCodeObject *code, void *closure)
{
return PyBytes_FromStringAndSize(code->co_code_adaptive,
_PyCode_NBYTES(code));
}
static PyObject *
code_getcode(PyCodeObject *code, void *closure)
{
return _PyCode_GetCode(code);
}
static PyGetSetDef code_getsetlist[] = {
{"co_lnotab", (getter)code_getlnotab, NULL, NULL},
{"_co_code_adaptive", (getter)code_getcodeadaptive, NULL, NULL},
// The following old names are kept for backward compatibility.
{"co_varnames", (getter)code_getvarnames, NULL, NULL},
{"co_cellvars", (getter)code_getcellvars, NULL, NULL},
{"co_freevars", (getter)code_getfreevars, NULL, NULL},
{"co_code", (getter)code_getcode, NULL, NULL},
{0}
};
static PyObject *
code_sizeof(PyCodeObject *co, PyObject *Py_UNUSED(args))
{
size_t res = _PyObject_VAR_SIZE(Py_TYPE(co), Py_SIZE(co));
_PyCodeObjectExtra *co_extra = (_PyCodeObjectExtra*) co->co_extra;
if (co_extra != NULL) {
res += sizeof(_PyCodeObjectExtra);
res += ((size_t)co_extra->ce_size - 1) * sizeof(co_extra->ce_extras[0]);
}
return PyLong_FromSize_t(res);
}
static PyObject *
code_linesiterator(PyCodeObject *code, PyObject *Py_UNUSED(args))
{
return (PyObject *)new_linesiterator(code);
}
/*[clinic input]
@text_signature "($self, /, **changes)"
code.replace
*
co_argcount: int(c_default="self->co_argcount") = unchanged
co_posonlyargcount: int(c_default="self->co_posonlyargcount") = unchanged
co_kwonlyargcount: int(c_default="self->co_kwonlyargcount") = unchanged
co_nlocals: int(c_default="self->co_nlocals") = unchanged
co_stacksize: int(c_default="self->co_stacksize") = unchanged
co_flags: int(c_default="self->co_flags") = unchanged
co_firstlineno: int(c_default="self->co_firstlineno") = unchanged
co_code: object(subclass_of="&PyBytes_Type", c_default="NULL") = unchanged
co_consts: object(subclass_of="&PyTuple_Type", c_default="self->co_consts") = unchanged
co_names: object(subclass_of="&PyTuple_Type", c_default="self->co_names") = unchanged
co_varnames: object(subclass_of="&PyTuple_Type", c_default="NULL") = unchanged
co_freevars: object(subclass_of="&PyTuple_Type", c_default="NULL") = unchanged
co_cellvars: object(subclass_of="&PyTuple_Type", c_default="NULL") = unchanged
co_filename: unicode(c_default="self->co_filename") = unchanged
co_name: unicode(c_default="self->co_name") = unchanged
co_qualname: unicode(c_default="self->co_qualname") = unchanged
co_linetable: object(subclass_of="&PyBytes_Type", c_default="self->co_linetable") = unchanged
co_exceptiontable: object(subclass_of="&PyBytes_Type", c_default="self->co_exceptiontable") = unchanged
2020-01-01 02:11:16 -04:00
Return a copy of the code object with new values for the specified fields.
[clinic start generated code]*/
static PyObject *
code_replace_impl(PyCodeObject *self, int co_argcount,
int co_posonlyargcount, int co_kwonlyargcount,
int co_nlocals, int co_stacksize, int co_flags,
int co_firstlineno, PyObject *co_code, PyObject *co_consts,
PyObject *co_names, PyObject *co_varnames,
PyObject *co_freevars, PyObject *co_cellvars,
PyObject *co_filename, PyObject *co_name,
PyObject *co_qualname, PyObject *co_linetable,
PyObject *co_exceptiontable)
/*[clinic end generated code: output=e75c48a15def18b9 input=18e280e07846c122]*/
{
#define CHECK_INT_ARG(ARG) \
if (ARG < 0) { \
PyErr_SetString(PyExc_ValueError, \
#ARG " must be a positive integer"); \
return NULL; \
}
CHECK_INT_ARG(co_argcount);
CHECK_INT_ARG(co_posonlyargcount);
CHECK_INT_ARG(co_kwonlyargcount);
CHECK_INT_ARG(co_nlocals);
CHECK_INT_ARG(co_stacksize);
CHECK_INT_ARG(co_flags);
CHECK_INT_ARG(co_firstlineno);
#undef CHECK_INT_ARG
PyObject *code = NULL;
if (co_code == NULL) {
code = _PyCode_GetCode(self);
if (code == NULL) {
return NULL;
}
co_code = code;
}
if (PySys_Audit("code.__new__", "OOOiiiiii",
co_code, co_filename, co_name, co_argcount,
co_posonlyargcount, co_kwonlyargcount, co_nlocals,
co_stacksize, co_flags) < 0) {
Py_XDECREF(code);
return NULL;
}
PyCodeObject *co = NULL;
PyObject *varnames = NULL;
PyObject *cellvars = NULL;
PyObject *freevars = NULL;
if (co_varnames == NULL) {
varnames = get_localsplus_names(self, CO_FAST_LOCAL, self->co_nlocals);
if (varnames == NULL) {
goto error;
}
co_varnames = varnames;
}
if (co_cellvars == NULL) {
cellvars = get_localsplus_names(self, CO_FAST_CELL, self->co_ncellvars);
if (cellvars == NULL) {
goto error;
}
co_cellvars = cellvars;
}
if (co_freevars == NULL) {
freevars = get_localsplus_names(self, CO_FAST_FREE, self->co_nfreevars);
if (freevars == NULL) {
goto error;
}
co_freevars = freevars;
}
co = PyCode_NewWithPosOnlyArgs(
co_argcount, co_posonlyargcount, co_kwonlyargcount, co_nlocals,
co_stacksize, co_flags, co_code, co_consts, co_names,
co_varnames, co_freevars, co_cellvars, co_filename, co_name,
co_qualname, co_firstlineno,
co_linetable, co_exceptiontable);
error:
Py_XDECREF(code);
Py_XDECREF(varnames);
Py_XDECREF(cellvars);
Py_XDECREF(freevars);
return (PyObject *)co;
}
/*[clinic input]
code._varname_from_oparg
oparg: int
(internal-only) Return the local variable name for the given oparg.
WARNING: this method is for internal use only and may change or go away.
[clinic start generated code]*/
static PyObject *
code__varname_from_oparg_impl(PyCodeObject *self, int oparg)
/*[clinic end generated code: output=1fd1130413184206 input=c5fa3ee9bac7d4ca]*/
{
PyObject *name = PyTuple_GetItem(self->co_localsplusnames, oparg);
if (name == NULL) {
return NULL;
}
return Py_NewRef(name);
}
/* XXX code objects need to participate in GC? */
static struct PyMethodDef code_methods[] = {
{"__sizeof__", (PyCFunction)code_sizeof, METH_NOARGS},
{"co_lines", (PyCFunction)code_linesiterator, METH_NOARGS},
{"co_positions", (PyCFunction)code_positionsiterator, METH_NOARGS},
CODE_REPLACE_METHODDEF
CODE__VARNAME_FROM_OPARG_METHODDEF
{"__replace__", _PyCFunction_CAST(code_replace), METH_FASTCALL|METH_KEYWORDS,
PyDoc_STR("__replace__($self, /, **changes)\n--\n\nThe same as replace().")},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyCode_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"code",
offsetof(PyCodeObject, co_code_adaptive),
sizeof(_Py_CODEUNIT),
(destructor)code_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)code_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)code_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
#ifdef Py_GIL_DISABLED
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
#else
Py_TPFLAGS_DEFAULT, /* tp_flags */
#endif
code_new__doc__, /* tp_doc */
#ifdef Py_GIL_DISABLED
(traverseproc)code_traverse, /* tp_traverse */
#else
0, /* tp_traverse */
#endif
0, /* tp_clear */
code_richcompare, /* tp_richcompare */
offsetof(PyCodeObject, co_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
code_methods, /* tp_methods */
code_memberlist, /* tp_members */
code_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
code_new, /* tp_new */
};
/******************
* other API
******************/
PyObject*
_PyCode_ConstantKey(PyObject *op)
{
PyObject *key;
/* Py_None and Py_Ellipsis are singletons. */
if (op == Py_None || op == Py_Ellipsis
|| PyLong_CheckExact(op)
|| PyUnicode_CheckExact(op)
/* code_richcompare() uses _PyCode_ConstantKey() internally */
|| PyCode_Check(op))
{
/* Objects of these types are always different from object of other
* type and from tuples. */
key = Py_NewRef(op);
}
else if (PyBool_Check(op) || PyBytes_CheckExact(op)) {
/* Make booleans different from integers 0 and 1.
* Avoid BytesWarning from comparing bytes with strings. */
key = PyTuple_Pack(2, Py_TYPE(op), op);
}
else if (PyFloat_CheckExact(op)) {
double d = PyFloat_AS_DOUBLE(op);
/* all we need is to make the tuple different in either the 0.0
* or -0.0 case from all others, just to avoid the "coercion".
*/
if (d == 0.0 && copysign(1.0, d) < 0.0)
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_None);
else
key = PyTuple_Pack(2, Py_TYPE(op), op);
}
else if (PyComplex_CheckExact(op)) {
Py_complex z;
int real_negzero, imag_negzero;
/* For the complex case we must make complex(x, 0.)
different from complex(x, -0.) and complex(0., y)
different from complex(-0., y), for any x and y.
All four complex zeros must be distinguished.*/
z = PyComplex_AsCComplex(op);
real_negzero = z.real == 0.0 && copysign(1.0, z.real) < 0.0;
imag_negzero = z.imag == 0.0 && copysign(1.0, z.imag) < 0.0;
/* use True, False and None singleton as tags for the real and imag
* sign, to make tuples different */
if (real_negzero && imag_negzero) {
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_True);
}
else if (imag_negzero) {
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_False);
}
else if (real_negzero) {
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_None);
}
else {
key = PyTuple_Pack(2, Py_TYPE(op), op);
}
}
else if (PyTuple_CheckExact(op)) {
Py_ssize_t i, len;
PyObject *tuple;
len = PyTuple_GET_SIZE(op);
tuple = PyTuple_New(len);
if (tuple == NULL)
return NULL;
for (i=0; i < len; i++) {
PyObject *item, *item_key;
item = PyTuple_GET_ITEM(op, i);
item_key = _PyCode_ConstantKey(item);
if (item_key == NULL) {
Py_DECREF(tuple);
return NULL;
}
PyTuple_SET_ITEM(tuple, i, item_key);
}
key = PyTuple_Pack(2, tuple, op);
Py_DECREF(tuple);
}
else if (PyFrozenSet_CheckExact(op)) {
Py_ssize_t pos = 0;
PyObject *item;
Py_hash_t hash;
Py_ssize_t i, len;
PyObject *tuple, *set;
len = PySet_GET_SIZE(op);
tuple = PyTuple_New(len);
if (tuple == NULL)
return NULL;
i = 0;
while (_PySet_NextEntry(op, &pos, &item, &hash)) {
PyObject *item_key;
item_key = _PyCode_ConstantKey(item);
if (item_key == NULL) {
Py_DECREF(tuple);
return NULL;
}
assert(i < len);
PyTuple_SET_ITEM(tuple, i, item_key);
i++;
}
set = PyFrozenSet_New(tuple);
Py_DECREF(tuple);
if (set == NULL)
return NULL;
key = PyTuple_Pack(2, set, op);
Py_DECREF(set);
return key;
}
else {
/* for other types, use the object identifier as a unique identifier
* to ensure that they are seen as unequal. */
PyObject *obj_id = PyLong_FromVoidPtr(op);
if (obj_id == NULL)
return NULL;
key = PyTuple_Pack(2, obj_id, op);
Py_DECREF(obj_id);
}
return key;
}
#ifdef Py_GIL_DISABLED
static PyObject *
intern_one_constant(PyObject *op)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
_Py_hashtable_t *consts = interp->code_state.constants;
assert(!PyUnicode_CheckExact(op)); // strings are interned separately
_Py_hashtable_entry_t *entry = _Py_hashtable_get_entry(consts, op);
if (entry == NULL) {
if (_Py_hashtable_set(consts, op, op) != 0) {
return NULL;
}
#ifdef Py_REF_DEBUG
Py_ssize_t refcnt = Py_REFCNT(op);
if (refcnt != 1) {
// Adjust the reftotal to account for the fact that we only
// restore a single reference in _PyCode_Fini.
_Py_AddRefTotal(_PyThreadState_GET(), -(refcnt - 1));
}
#endif
_Py_SetImmortal(op);
return op;
}
assert(_Py_IsImmortal(entry->value));
return (PyObject *)entry->value;
}
static int
compare_constants(const void *key1, const void *key2) {
PyObject *op1 = (PyObject *)key1;
PyObject *op2 = (PyObject *)key2;
if (op1 == op2) {
return 1;
}
if (Py_TYPE(op1) != Py_TYPE(op2)) {
return 0;
}
// We compare container contents by identity because we have already
// internalized the items.
if (PyTuple_CheckExact(op1)) {
Py_ssize_t size = PyTuple_GET_SIZE(op1);
if (size != PyTuple_GET_SIZE(op2)) {
return 0;
}
for (Py_ssize_t i = 0; i < size; i++) {
if (PyTuple_GET_ITEM(op1, i) != PyTuple_GET_ITEM(op2, i)) {
return 0;
}
}
return 1;
}
else if (PyFrozenSet_CheckExact(op1)) {
if (PySet_GET_SIZE(op1) != PySet_GET_SIZE(op2)) {
return 0;
}
Py_ssize_t pos1 = 0, pos2 = 0;
PyObject *obj1, *obj2;
Py_hash_t hash1, hash2;
while ((_PySet_NextEntry(op1, &pos1, &obj1, &hash1)) &&
(_PySet_NextEntry(op2, &pos2, &obj2, &hash2)))
{
if (obj1 != obj2) {
return 0;
}
}
return 1;
}
else if (PySlice_Check(op1)) {
PySliceObject *s1 = (PySliceObject *)op1;
PySliceObject *s2 = (PySliceObject *)op2;
return (s1->start == s2->start &&
s1->stop == s2->stop &&
s1->step == s2->step);
}
else if (PyBytes_CheckExact(op1) || PyLong_CheckExact(op1)) {
return PyObject_RichCompareBool(op1, op2, Py_EQ);
}
else if (PyFloat_CheckExact(op1)) {
// Ensure that, for example, +0.0 and -0.0 are distinct
double f1 = PyFloat_AS_DOUBLE(op1);
double f2 = PyFloat_AS_DOUBLE(op2);
return memcmp(&f1, &f2, sizeof(double)) == 0;
}
else if (PyComplex_CheckExact(op1)) {
Py_complex c1 = ((PyComplexObject *)op1)->cval;
Py_complex c2 = ((PyComplexObject *)op2)->cval;
return memcmp(&c1, &c2, sizeof(Py_complex)) == 0;
}
_Py_FatalErrorFormat("unexpected type in compare_constants: %s",
Py_TYPE(op1)->tp_name);
return 0;
}
static Py_uhash_t
hash_const(const void *key)
{
PyObject *op = (PyObject *)key;
if (PySlice_Check(op)) {
PySliceObject *s = (PySliceObject *)op;
PyObject *data[3] = { s->start, s->stop, s->step };
return _Py_HashBytes(&data, sizeof(data));
}
else if (PyTuple_CheckExact(op)) {
Py_ssize_t size = PyTuple_GET_SIZE(op);
PyObject **data = _PyTuple_ITEMS(op);
return _Py_HashBytes(data, sizeof(PyObject *) * size);
}
Py_hash_t h = PyObject_Hash(op);
if (h == -1) {
// This should never happen: all the constants we support have
// infallible hash functions.
Py_FatalError("code: hash failed");
}
return (Py_uhash_t)h;
}
static int
clear_containers(_Py_hashtable_t *ht, const void *key, const void *value,
void *user_data)
{
// First clear containers to avoid recursive deallocation later on in
// destroy_key.
PyObject *op = (PyObject *)key;
if (PyTuple_CheckExact(op)) {
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(op); i++) {
Py_CLEAR(_PyTuple_ITEMS(op)[i]);
}
}
else if (PySlice_Check(op)) {
PySliceObject *slice = (PySliceObject *)op;
Py_SETREF(slice->start, Py_None);
Py_SETREF(slice->stop, Py_None);
Py_SETREF(slice->step, Py_None);
}
else if (PyFrozenSet_CheckExact(op)) {
_PySet_ClearInternal((PySetObject *)op);
}
return 0;
}
static void
destroy_key(void *key)
{
_Py_ClearImmortal(key);
}
#endif
PyStatus
_PyCode_Init(PyInterpreterState *interp)
{
#ifdef Py_GIL_DISABLED
struct _py_code_state *state = &interp->code_state;
state->constants = _Py_hashtable_new_full(&hash_const, &compare_constants,
&destroy_key, NULL, NULL);
if (state->constants == NULL) {
return _PyStatus_NO_MEMORY();
}
#endif
return _PyStatus_OK();
}
void
_PyCode_Fini(PyInterpreterState *interp)
{
#ifdef Py_GIL_DISABLED
// Free interned constants
struct _py_code_state *state = &interp->code_state;
if (state->constants) {
_Py_hashtable_foreach(state->constants, &clear_containers, NULL);
_Py_hashtable_destroy(state->constants);
state->constants = NULL;
}
#endif
}