2012-03-21 14:25:23 -03:00
|
|
|
/*
|
2020-06-05 14:43:01 -03:00
|
|
|
* Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
|
2012-03-21 14:25:23 -03:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "mpdecimal.h"
|
|
|
|
#include "bits.h"
|
|
|
|
#include "constants.h"
|
2020-06-05 14:43:01 -03:00
|
|
|
#include "convolute.h"
|
2012-03-21 14:25:23 -03:00
|
|
|
#include "fnt.h"
|
|
|
|
#include "fourstep.h"
|
|
|
|
#include "numbertheory.h"
|
|
|
|
#include "sixstep.h"
|
|
|
|
#include "umodarith.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Bignum: Fast convolution using the Number Theoretic Transform. Used for
|
|
|
|
the multiplication of very large coefficients. */
|
|
|
|
|
|
|
|
|
|
|
|
/* Convolute the data in c1 and c2. Result is in c1. */
|
|
|
|
int
|
|
|
|
fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum)
|
|
|
|
{
|
|
|
|
int (*fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
|
|
int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_uint_t n_inv, umod;
|
|
|
|
mpd_size_t i;
|
|
|
|
|
|
|
|
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
n_inv = POWMOD(n, (umod-2));
|
|
|
|
|
|
|
|
if (ispower2(n)) {
|
|
|
|
if (n > SIX_STEP_THRESHOLD) {
|
|
|
|
fnt = six_step_fnt;
|
|
|
|
inv_fnt = inv_six_step_fnt;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
fnt = std_fnt;
|
|
|
|
inv_fnt = std_inv_fnt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
fnt = four_step_fnt;
|
|
|
|
inv_fnt = inv_four_step_fnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!fnt(c1, n, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (!fnt(c2, n, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (i = 0; i < n-1; i += 2) {
|
|
|
|
mpd_uint_t x0 = c1[i];
|
|
|
|
mpd_uint_t y0 = c2[i];
|
|
|
|
mpd_uint_t x1 = c1[i+1];
|
|
|
|
mpd_uint_t y1 = c2[i+1];
|
|
|
|
MULMOD2(&x0, y0, &x1, y1);
|
|
|
|
c1[i] = x0;
|
|
|
|
c1[i+1] = x1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!inv_fnt(c1, n, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (i = 0; i < n-3; i += 4) {
|
|
|
|
mpd_uint_t x0 = c1[i];
|
|
|
|
mpd_uint_t x1 = c1[i+1];
|
|
|
|
mpd_uint_t x2 = c1[i+2];
|
|
|
|
mpd_uint_t x3 = c1[i+3];
|
|
|
|
MULMOD2C(&x0, &x1, n_inv);
|
|
|
|
MULMOD2C(&x2, &x3, n_inv);
|
|
|
|
c1[i] = x0;
|
|
|
|
c1[i+1] = x1;
|
|
|
|
c1[i+2] = x2;
|
|
|
|
c1[i+3] = x3;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Autoconvolute the data in c1. Result is in c1. */
|
|
|
|
int
|
|
|
|
fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum)
|
|
|
|
{
|
|
|
|
int (*fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
|
|
int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_uint_t n_inv, umod;
|
|
|
|
mpd_size_t i;
|
|
|
|
|
|
|
|
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
n_inv = POWMOD(n, (umod-2));
|
|
|
|
|
|
|
|
if (ispower2(n)) {
|
|
|
|
if (n > SIX_STEP_THRESHOLD) {
|
|
|
|
fnt = six_step_fnt;
|
|
|
|
inv_fnt = inv_six_step_fnt;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
fnt = std_fnt;
|
|
|
|
inv_fnt = std_inv_fnt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
fnt = four_step_fnt;
|
|
|
|
inv_fnt = inv_four_step_fnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!fnt(c1, n, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (i = 0; i < n-1; i += 2) {
|
|
|
|
mpd_uint_t x0 = c1[i];
|
|
|
|
mpd_uint_t x1 = c1[i+1];
|
|
|
|
MULMOD2(&x0, x0, &x1, x1);
|
|
|
|
c1[i] = x0;
|
|
|
|
c1[i+1] = x1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!inv_fnt(c1, n, modnum)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (i = 0; i < n-3; i += 4) {
|
|
|
|
mpd_uint_t x0 = c1[i];
|
|
|
|
mpd_uint_t x1 = c1[i+1];
|
|
|
|
mpd_uint_t x2 = c1[i+2];
|
|
|
|
mpd_uint_t x3 = c1[i+3];
|
|
|
|
MULMOD2C(&x0, &x1, n_inv);
|
|
|
|
MULMOD2C(&x2, &x3, n_inv);
|
|
|
|
c1[i] = x0;
|
|
|
|
c1[i+1] = x1;
|
|
|
|
c1[i+2] = x2;
|
|
|
|
c1[i+3] = x3;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|