2012-03-21 14:25:23 -03:00
|
|
|
/*
|
2020-06-05 14:43:01 -03:00
|
|
|
* Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
|
2012-03-21 14:25:23 -03:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "mpdecimal.h"
|
2020-06-05 14:43:01 -03:00
|
|
|
|
2012-03-21 14:25:23 -03:00
|
|
|
#include <assert.h>
|
2020-06-05 14:43:01 -03:00
|
|
|
|
|
|
|
#include "constants.h"
|
|
|
|
#include "crt.h"
|
2012-03-21 14:25:23 -03:00
|
|
|
#include "numbertheory.h"
|
2020-06-05 14:43:01 -03:00
|
|
|
#include "typearith.h"
|
2021-03-30 13:11:06 -03:00
|
|
|
#include "umodarith.h"
|
2012-03-21 14:25:23 -03:00
|
|
|
|
|
|
|
|
|
|
|
/* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */
|
|
|
|
|
|
|
|
|
|
|
|
/* Multiply P1P2 by v, store result in w. */
|
|
|
|
static inline void
|
|
|
|
_crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v)
|
|
|
|
{
|
|
|
|
mpd_uint_t hi1, hi2, lo;
|
|
|
|
|
|
|
|
_mpd_mul_words(&hi1, &lo, LH_P1P2, v);
|
|
|
|
w[0] = lo;
|
|
|
|
|
|
|
|
_mpd_mul_words(&hi2, &lo, UH_P1P2, v);
|
|
|
|
lo = hi1 + lo;
|
|
|
|
if (lo < hi1) hi2++;
|
|
|
|
|
|
|
|
w[1] = lo;
|
|
|
|
w[2] = hi2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add 3 words from v to w. The result is known to fit in w. */
|
|
|
|
static inline void
|
|
|
|
_crt_add3(mpd_uint_t w[3], mpd_uint_t v[3])
|
|
|
|
{
|
|
|
|
mpd_uint_t carry;
|
|
|
|
|
2021-03-30 13:11:06 -03:00
|
|
|
w[0] = w[0] + v[0];
|
|
|
|
carry = (w[0] < v[0]);
|
|
|
|
|
|
|
|
w[1] = w[1] + v[1];
|
|
|
|
if (w[1] < v[1]) w[2]++;
|
2012-03-21 14:25:23 -03:00
|
|
|
|
2021-03-30 13:11:06 -03:00
|
|
|
w[1] = w[1] + carry;
|
|
|
|
if (w[1] < carry) w[2]++;
|
2012-03-21 14:25:23 -03:00
|
|
|
|
2021-03-30 13:11:06 -03:00
|
|
|
w[2] += v[2];
|
2012-03-21 14:25:23 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Divide 3 words in u by v, store result in w, return remainder. */
|
|
|
|
static inline mpd_uint_t
|
|
|
|
_crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v)
|
|
|
|
{
|
|
|
|
mpd_uint_t r1 = u[2];
|
|
|
|
mpd_uint_t r2;
|
|
|
|
|
|
|
|
if (r1 < v) {
|
|
|
|
w[2] = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
_mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */
|
|
|
|
}
|
|
|
|
|
|
|
|
_mpd_div_words(&w[1], &r2, r1, u[1], v);
|
|
|
|
_mpd_div_words(&w[0], &r1, r2, u[0], v);
|
|
|
|
|
|
|
|
return r1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Chinese Remainder Theorem:
|
|
|
|
* Algorithm from Joerg Arndt, "Matters Computational",
|
|
|
|
* Chapter 37.4.1 [http://www.jjj.de/fxt/]
|
|
|
|
*
|
|
|
|
* See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each
|
|
|
|
* triple of members of the arrays, find the unique z modulo p1*p2*p3, with
|
|
|
|
* zmax = p1*p2*p3 - 1.
|
|
|
|
*
|
|
|
|
* In each iteration of the loop, split z into result[i] = z % MPD_RADIX
|
|
|
|
* and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the
|
|
|
|
* maximum carry.
|
|
|
|
*
|
|
|
|
* Limits for the 32-bit build:
|
|
|
|
*
|
|
|
|
* N = 2**96
|
|
|
|
* cmax = 7711435591312380274
|
|
|
|
*
|
|
|
|
* Limits for the 64 bit build:
|
|
|
|
*
|
|
|
|
* N = 2**192
|
|
|
|
* cmax = 627710135393475385904124401220046371710
|
|
|
|
*
|
|
|
|
* The following statements hold for both versions:
|
|
|
|
*
|
|
|
|
* 1) cmax + zmax < N, so the addition does not overflow.
|
|
|
|
*
|
|
|
|
* 2) (cmax + zmax) / MPD_RADIX == cmax.
|
|
|
|
*
|
|
|
|
* 3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize)
|
|
|
|
{
|
|
|
|
mpd_uint_t p1 = mpd_moduli[P1];
|
|
|
|
mpd_uint_t umod;
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_uint_t a1, a2, a3;
|
|
|
|
mpd_uint_t s;
|
|
|
|
mpd_uint_t z[3], t[3];
|
|
|
|
mpd_uint_t carry[3] = {0,0,0};
|
|
|
|
mpd_uint_t hi, lo;
|
|
|
|
mpd_size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < rsize; i++) {
|
|
|
|
|
|
|
|
a1 = x1[i];
|
|
|
|
a2 = x2[i];
|
|
|
|
a3 = x3[i];
|
|
|
|
|
|
|
|
SETMODULUS(P2);
|
|
|
|
s = ext_submod(a2, a1, umod);
|
|
|
|
s = MULMOD(s, INV_P1_MOD_P2);
|
|
|
|
|
|
|
|
_mpd_mul_words(&hi, &lo, s, p1);
|
|
|
|
lo = lo + a1;
|
|
|
|
if (lo < a1) hi++;
|
|
|
|
|
|
|
|
SETMODULUS(P3);
|
|
|
|
s = dw_submod(a3, hi, lo, umod);
|
|
|
|
s = MULMOD(s, INV_P1P2_MOD_P3);
|
|
|
|
|
|
|
|
z[0] = lo;
|
|
|
|
z[1] = hi;
|
|
|
|
z[2] = 0;
|
|
|
|
|
|
|
|
_crt_mulP1P2_3(t, s);
|
|
|
|
_crt_add3(z, t);
|
|
|
|
_crt_add3(carry, z);
|
|
|
|
|
|
|
|
x1[i] = _crt_div3(carry, carry, MPD_RADIX);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0);
|
|
|
|
}
|