cpython/Modules/datetimemodule.c

5104 lines
132 KiB
C
Raw Normal View History

/* C implementation for the date/time type documented at
* http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
*/
#include "Python.h"
#include "modsupport.h"
#include "structmember.h"
#include <time.h>
#include "datetime.h"
/* We require that C int be at least 32 bits, and use int virtually
* everywhere. In just a few cases we use a temp long, where a Python
* API returns a C long. In such cases, we have to ensure that the
* final result fits in a C int (this can be an issue on 64-bit boxes).
*/
#if SIZEOF_INT < 4
# error "datetime.c requires that C int have at least 32 bits"
#endif
#define MINYEAR 1
#define MAXYEAR 9999
/* Nine decimal digits is easy to communicate, and leaves enough room
* so that two delta days can be added w/o fear of overflowing a signed
* 32-bit int, and with plenty of room left over to absorb any possible
* carries from adding seconds.
*/
#define MAX_DELTA_DAYS 999999999
/* Rename the long macros in datetime.h to more reasonable short names. */
#define GET_YEAR PyDateTime_GET_YEAR
#define GET_MONTH PyDateTime_GET_MONTH
#define GET_DAY PyDateTime_GET_DAY
#define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
#define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
#define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
#define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
/* Date accessors for date and datetime. */
#define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
((o)->data[1] = ((v) & 0x00ff)))
#define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
#define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
/* Date/Time accessors for datetime. */
#define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
#define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
#define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
#define DATE_SET_MICROSECOND(o, v) \
(((o)->data[7] = ((v) & 0xff0000) >> 16), \
((o)->data[8] = ((v) & 0x00ff00) >> 8), \
((o)->data[9] = ((v) & 0x0000ff)))
/* Time accessors for time. */
#define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
#define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
#define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
#define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
#define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
#define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
#define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
#define TIME_SET_MICROSECOND(o, v) \
(((o)->data[3] = ((v) & 0xff0000) >> 16), \
((o)->data[4] = ((v) & 0x00ff00) >> 8), \
((o)->data[5] = ((v) & 0x0000ff)))
/* Delta accessors for timedelta. */
#define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
#define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
#define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
#define SET_TD_DAYS(o, v) ((o)->days = (v))
#define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
#define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
/* Forward declarations. */
static PyTypeObject PyDateTime_DateType;
static PyTypeObject PyDateTime_DateTimeType;
static PyTypeObject PyDateTime_DateTimeTZType;
static PyTypeObject PyDateTime_DeltaType;
static PyTypeObject PyDateTime_TimeType;
static PyTypeObject PyDateTime_TZInfoType;
static PyTypeObject PyDateTime_TimeTZType;
/* ---------------------------------------------------------------------------
* Math utilities.
*/
/* k = i+j overflows iff k differs in sign from both inputs,
* iff k^i has sign bit set and k^j has sign bit set,
* iff (k^i)&(k^j) has sign bit set.
*/
#define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
/* Compute Python divmod(x, y), returning the quotient and storing the
* remainder into *r. The quotient is the floor of x/y, and that's
* the real point of this. C will probably truncate instead (C99
* requires truncation; C89 left it implementation-defined).
* Simplification: we *require* that y > 0 here. That's appropriate
* for all the uses made of it. This simplifies the code and makes
* the overflow case impossible (divmod(LONG_MIN, -1) is the only
* overflow case).
*/
static int
divmod(int x, int y, int *r)
{
int quo;
assert(y > 0);
quo = x / y;
*r = x - quo * y;
if (*r < 0) {
--quo;
*r += y;
}
assert(0 <= *r && *r < y);
return quo;
}
/* ---------------------------------------------------------------------------
* General calendrical helper functions
*/
/* For each month ordinal in 1..12, the number of days in that month,
* and the number of days before that month in the same year. These
* are correct for non-leap years only.
*/
static int _days_in_month[] = {
0, /* unused; this vector uses 1-based indexing */
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static int _days_before_month[] = {
0, /* unused; this vector uses 1-based indexing */
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
/* year -> 1 if leap year, else 0. */
static int
is_leap(int year)
{
/* Cast year to unsigned. The result is the same either way, but
* C can generate faster code for unsigned mod than for signed
* mod (especially for % 4 -- a good compiler should just grab
* the last 2 bits when the LHS is unsigned).
*/
const unsigned int ayear = (unsigned int)year;
return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
}
/* year, month -> number of days in that month in that year */
static int
days_in_month(int year, int month)
{
assert(month >= 1);
assert(month <= 12);
if (month == 2 && is_leap(year))
return 29;
else
return _days_in_month[month];
}
/* year, month -> number of days in year preceeding first day of month */
static int
days_before_month(int year, int month)
{
int days;
assert(month >= 1);
assert(month <= 12);
days = _days_before_month[month];
if (month > 2 && is_leap(year))
++days;
return days;
}
/* year -> number of days before January 1st of year. Remember that we
* start with year 1, so days_before_year(1) == 0.
*/
static int
days_before_year(int year)
{
int y = year - 1;
/* This is incorrect if year <= 0; we really want the floor
* here. But so long as MINYEAR is 1, the smallest year this
* can see is 0 (this can happen in some normalization endcases),
* so we'll just special-case that.
*/
assert (year >= 0);
if (y >= 0)
return y*365 + y/4 - y/100 + y/400;
else {
assert(y == -1);
return -366;
}
}
/* Number of days in 4, 100, and 400 year cycles. That these have
* the correct values is asserted in the module init function.
*/
#define DI4Y 1461 /* days_before_year(5); days in 4 years */
#define DI100Y 36524 /* days_before_year(101); days in 100 years */
#define DI400Y 146097 /* days_before_year(401); days in 400 years */
/* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
static void
ord_to_ymd(int ordinal, int *year, int *month, int *day)
{
int n, n1, n4, n100, n400, leapyear, preceding;
/* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
* leap years repeats exactly every 400 years. The basic strategy is
* to find the closest 400-year boundary at or before ordinal, then
* work with the offset from that boundary to ordinal. Life is much
* clearer if we subtract 1 from ordinal first -- then the values
* of ordinal at 400-year boundaries are exactly those divisible
* by DI400Y:
*
* D M Y n n-1
* -- --- ---- ---------- ----------------
* 31 Dec -400 -DI400Y -DI400Y -1
* 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
* ...
* 30 Dec 000 -1 -2
* 31 Dec 000 0 -1
* 1 Jan 001 1 0 400-year boundary
* 2 Jan 001 2 1
* 3 Jan 001 3 2
* ...
* 31 Dec 400 DI400Y DI400Y -1
* 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
*/
assert(ordinal >= 1);
--ordinal;
n400 = ordinal / DI400Y;
n = ordinal % DI400Y;
*year = n400 * 400 + 1;
/* Now n is the (non-negative) offset, in days, from January 1 of
* year, to the desired date. Now compute how many 100-year cycles
* precede n.
* Note that it's possible for n100 to equal 4! In that case 4 full
* 100-year cycles precede the desired day, which implies the
* desired day is December 31 at the end of a 400-year cycle.
*/
n100 = n / DI100Y;
n = n % DI100Y;
/* Now compute how many 4-year cycles precede it. */
n4 = n / DI4Y;
n = n % DI4Y;
/* And now how many single years. Again n1 can be 4, and again
* meaning that the desired day is December 31 at the end of the
* 4-year cycle.
*/
n1 = n / 365;
n = n % 365;
*year += n100 * 100 + n4 * 4 + n1;
if (n1 == 4 || n100 == 4) {
assert(n == 0);
*year -= 1;
*month = 12;
*day = 31;
return;
}
/* Now the year is correct, and n is the offset from January 1. We
* find the month via an estimate that's either exact or one too
* large.
*/
leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
assert(leapyear == is_leap(*year));
*month = (n + 50) >> 5;
preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
if (preceding > n) {
/* estimate is too large */
*month -= 1;
preceding -= days_in_month(*year, *month);
}
n -= preceding;
assert(0 <= n);
assert(n < days_in_month(*year, *month));
*day = n + 1;
}
/* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
static int
ymd_to_ord(int year, int month, int day)
{
return days_before_year(year) + days_before_month(year, month) + day;
}
/* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
static int
weekday(int year, int month, int day)
{
return (ymd_to_ord(year, month, day) + 6) % 7;
}
/* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
* first calendar week containing a Thursday.
*/
static int
iso_week1_monday(int year)
{
int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
/* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
int first_weekday = (first_day + 6) % 7;
/* ordinal of closest Monday at or before 1/1 */
int week1_monday = first_day - first_weekday;
if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
week1_monday += 7;
return week1_monday;
}
/* ---------------------------------------------------------------------------
* Range checkers.
*/
/* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
* If not, raise OverflowError and return -1.
*/
static int
check_delta_day_range(int days)
{
if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
return 0;
PyErr_Format(PyExc_OverflowError,
"days=%d; must have magnitude <= %d",
days, MAX_DELTA_DAYS);
return -1;
}
/* Check that date arguments are in range. Return 0 if they are. If they
* aren't, raise ValueError and return -1.
*/
static int
check_date_args(int year, int month, int day)
{
if (year < MINYEAR || year > MAXYEAR) {
PyErr_SetString(PyExc_ValueError,
"year is out of range");
return -1;
}
if (month < 1 || month > 12) {
PyErr_SetString(PyExc_ValueError,
"month must be in 1..12");
return -1;
}
if (day < 1 || day > days_in_month(year, month)) {
PyErr_SetString(PyExc_ValueError,
"day is out of range for month");
return -1;
}
return 0;
}
/* Check that time arguments are in range. Return 0 if they are. If they
* aren't, raise ValueError and return -1.
*/
static int
check_time_args(int h, int m, int s, int us)
{
if (h < 0 || h > 23) {
PyErr_SetString(PyExc_ValueError,
"hour must be in 0..23");
return -1;
}
if (m < 0 || m > 59) {
PyErr_SetString(PyExc_ValueError,
"minute must be in 0..59");
return -1;
}
if (s < 0 || s > 59) {
PyErr_SetString(PyExc_ValueError,
"second must be in 0..59");
return -1;
}
if (us < 0 || us > 999999) {
PyErr_SetString(PyExc_ValueError,
"microsecond must be in 0..999999");
return -1;
}
return 0;
}
/* ---------------------------------------------------------------------------
* Normalization utilities.
*/
/* One step of a mixed-radix conversion. A "hi" unit is equivalent to
* factor "lo" units. factor must be > 0. If *lo is less than 0, or
* at least factor, enough of *lo is converted into "hi" units so that
* 0 <= *lo < factor. The input values must be such that int overflow
* is impossible.
*/
static void
normalize_pair(int *hi, int *lo, int factor)
{
assert(factor > 0);
assert(lo != hi);
if (*lo < 0 || *lo >= factor) {
const int num_hi = divmod(*lo, factor, lo);
const int new_hi = *hi + num_hi;
assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
*hi = new_hi;
}
assert(0 <= *lo && *lo < factor);
}
/* Fiddle days (d), seconds (s), and microseconds (us) so that
* 0 <= *s < 24*3600
* 0 <= *us < 1000000
* The input values must be such that the internals don't overflow.
* The way this routine is used, we don't get close.
*/
static void
normalize_d_s_us(int *d, int *s, int *us)
{
if (*us < 0 || *us >= 1000000) {
normalize_pair(s, us, 1000000);
/* |s| can't be bigger than about
* |original s| + |original us|/1000000 now.
*/
}
if (*s < 0 || *s >= 24*3600) {
normalize_pair(d, s, 24*3600);
/* |d| can't be bigger than about
* |original d| +
* (|original s| + |original us|/1000000) / (24*3600) now.
*/
}
assert(0 <= *s && *s < 24*3600);
assert(0 <= *us && *us < 1000000);
}
/* Fiddle years (y), months (m), and days (d) so that
* 1 <= *m <= 12
* 1 <= *d <= days_in_month(*y, *m)
* The input values must be such that the internals don't overflow.
* The way this routine is used, we don't get close.
*/
static void
normalize_y_m_d(int *y, int *m, int *d)
{
int dim; /* # of days in month */
/* This gets muddy: the proper range for day can't be determined
* without knowing the correct month and year, but if day is, e.g.,
* plus or minus a million, the current month and year values make
* no sense (and may also be out of bounds themselves).
* Saying 12 months == 1 year should be non-controversial.
*/
if (*m < 1 || *m > 12) {
--*m;
normalize_pair(y, m, 12);
++*m;
/* |y| can't be bigger than about
* |original y| + |original m|/12 now.
*/
}
assert(1 <= *m && *m <= 12);
/* Now only day can be out of bounds (year may also be out of bounds
* for a datetime object, but we don't care about that here).
* If day is out of bounds, what to do is arguable, but at least the
* method here is principled and explainable.
*/
dim = days_in_month(*y, *m);
if (*d < 1 || *d > dim) {
/* Move day-1 days from the first of the month. First try to
* get off cheap if we're only one day out of range
* (adjustments for timezone alone can't be worse than that).
*/
if (*d == 0) {
--*m;
if (*m > 0)
*d = days_in_month(*y, *m);
else {
--*y;
*m = 12;
*d = 31;
}
}
else if (*d == dim + 1) {
/* move forward a day */
++*m;
*d = 1;
if (*m > 12) {
*m = 1;
++*y;
}
}
else {
int ordinal = ymd_to_ord(*y, *m, 1) +
*d - 1;
ord_to_ymd(ordinal, y, m, d);
}
}
assert(*m > 0);
assert(*d > 0);
}
/* Fiddle out-of-bounds months and days so that the result makes some kind
* of sense. The parameters are both inputs and outputs. Returns < 0 on
* failure, where failure means the adjusted year is out of bounds.
*/
static int
normalize_date(int *year, int *month, int *day)
{
int result;
normalize_y_m_d(year, month, day);
if (MINYEAR <= *year && *year <= MAXYEAR)
result = 0;
else {
PyErr_SetString(PyExc_OverflowError,
"date value out of range");
result = -1;
}
return result;
}
/* Force all the datetime fields into range. The parameters are both
* inputs and outputs. Returns < 0 on error.
*/
static int
normalize_datetime(int *year, int *month, int *day,
int *hour, int *minute, int *second,
int *microsecond)
{
normalize_pair(second, microsecond, 1000000);
normalize_pair(minute, second, 60);
normalize_pair(hour, minute, 60);
normalize_pair(day, hour, 24);
return normalize_date(year, month, day);
}
/* ---------------------------------------------------------------------------
* tzinfo helpers.
*/
/* If self has a tzinfo member, return a BORROWED reference to it. Else
* return NULL, which is NOT AN ERROR. There are no error returns here,
* and the caller must not decref the result.
*/
static PyObject *
get_tzinfo_member(PyObject *self)
{
PyObject *tzinfo = NULL;
if (PyDateTimeTZ_Check(self))
tzinfo = ((PyDateTime_DateTimeTZ *)self)->tzinfo;
else if (PyTimeTZ_Check(self))
tzinfo = ((PyDateTime_TimeTZ *)self)->tzinfo;
return tzinfo;
}
/* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
* raise TypeError and return -1.
*/
static int
check_tzinfo_subclass(PyObject *p)
{
if (p == Py_None || PyTZInfo_Check(p))
return 0;
PyErr_Format(PyExc_TypeError,
"tzinfo argument must be None or of a tzinfo subclass, "
"not type '%s'",
p->ob_type->tp_name);
return -1;
}
/* Internal helper.
* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
* result. tzinfo must be an instance of the tzinfo class. If the method
* returns None, this returns 0 and sets *none to 1. If the method doesn't
* return a Python int or long, TypeError is raised and this returns -1.
* If it does return an int or long, but is outside the valid range for
* a UTC minute offset, ValueError is raised and this returns -1.
* Else *none is set to 0 and the integer method result is returned.
*/
static int
call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
int *none)
{
PyObject *u;
long result = -1; /* Py{Int,Long}_AsLong return long */
assert(tzinfo != NULL);
assert(PyTZInfo_Check(tzinfo));
assert(tzinfoarg != NULL);
*none = 0;
u = PyObject_CallMethod(tzinfo, name, "O", tzinfoarg);
if (u == NULL)
return -1;
if (u == Py_None) {
result = 0;
*none = 1;
goto Done;
}
if (PyInt_Check(u))
result = PyInt_AS_LONG(u);
else if (PyLong_Check(u))
result = PyLong_AsLong(u);
else {
PyErr_Format(PyExc_TypeError,
"tzinfo.%s() must return None or int or long",
name);
goto Done;
}
Done:
Py_DECREF(u);
if (result < -1439 || result > 1439) {
PyErr_Format(PyExc_ValueError,
"tzinfo.%s() returned %ld; must be in "
"-1439 .. 1439",
name, result);
result = -1;
}
return (int)result;
}
/* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
* result. tzinfo must be an instance of the tzinfo class. If utcoffset()
* returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
& doesn't return a Python int or long, TypeError is raised and this
* returns -1. If utcoffset() returns an int outside the legitimate range
* for a UTC offset, ValueError is raised and this returns -1. Else
* *none is set to 0 and the offset is returned.
*/
static int
call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
{
return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
}
/* Call tzinfo.dst(tzinfoarg), and extract an integer from the
* result. tzinfo must be an instance of the tzinfo class. If dst()
* returns None, call_dst returns 0 and sets *none to 1. If dst()
& doesn't return a Python int or long, TypeError is raised and this
* returns -1. If dst() returns an int outside the legitimate range
* for a UTC offset, ValueError is raised and this returns -1. Else
* *none is set to 0 and the offset is returned.
*/
static int
call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
{
return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
}
/* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
* an instance of the tzinfo class. If tzname() doesn't return None or
* a string, TypeError is raised and this returns NULL.
*/
static PyObject *
call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
{
PyObject *result;
assert(tzinfo != NULL);
assert(PyTZInfo_Check(tzinfo));
assert(tzinfoarg != NULL);
result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
if (result != NULL && result != Py_None && !PyString_Check(result)) {
PyErr_Format(PyExc_TypeError, ".tzinfo.tzname() must "
"return None or a string, not '%s'",
result->ob_type->tp_name);
Py_DECREF(result);
result = NULL;
}
return result;
}
typedef enum {
/* an exception has been set; the caller should pass it on */
OFFSET_ERROR,
/* type isn't date, datetime, datetimetz subclass, time, or
* timetz subclass
*/
OFFSET_UNKNOWN,
/* date,
* datetime,
* datetimetz with None tzinfo,
* datetimetz where utcoffset() return None
* time,
* timetz with None tzinfo,
* timetz where utcoffset() returns None
*/
OFFSET_NAIVE,
/* timetz where utcoffset() doesn't return None,
* datetimetz where utcoffset() doesn't return None
*/
OFFSET_AWARE,
} naivety;
/* Classify a datetime object as to whether it's naive or offset-aware. See
* the "naivety" typedef for details. If the type is aware, *offset is set
* to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
* If the type is offset-naive, *offset is set to 0.
*/
static naivety
classify_object(PyObject *op, int *offset)
{
int none;
PyObject *tzinfo;
*offset = 0;
if (PyDateTime_CheckExact(op) ||
PyTime_CheckExact(op) ||
PyDate_CheckExact(op))
return OFFSET_NAIVE;
tzinfo = get_tzinfo_member(op); /* NULL means none, not error */
if (tzinfo == Py_None)
return OFFSET_NAIVE;
if (tzinfo == NULL)
return OFFSET_UNKNOWN;
*offset = call_utcoffset(tzinfo, op, &none);
if (*offset == -1 && PyErr_Occurred())
return OFFSET_ERROR;
return none ? OFFSET_NAIVE : OFFSET_AWARE;
}
/* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
* stuff
* ", tzinfo=" + repr(tzinfo)
* before the closing ")".
*/
static PyObject *
append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
{
PyObject *temp;
assert(PyString_Check(repr));
assert(tzinfo);
if (tzinfo == Py_None)
return repr;
/* Get rid of the trailing ')'. */
assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')');
temp = PyString_FromStringAndSize(PyString_AsString(repr),
PyString_Size(repr) - 1);
Py_DECREF(repr);
if (temp == NULL)
return NULL;
repr = temp;
/* Append ", tzinfo=". */
PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo="));
/* Append repr(tzinfo). */
PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo));
/* Add a closing paren. */
PyString_ConcatAndDel(&repr, PyString_FromString(")"));
return repr;
}
/* ---------------------------------------------------------------------------
* String format helpers.
*/
static PyObject *
format_ctime(PyDateTime_Date *date,
int hours, int minutes, int seconds)
{
static char *DayNames[] = {
"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
};
static char *MonthNames[] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
char buffer[128];
int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d",
DayNames[wday], MonthNames[GET_MONTH(date) - 1],
GET_DAY(date), hours, minutes, seconds,
GET_YEAR(date));
return PyString_FromString(buffer);
}
/* Add an hours & minutes UTC offset string to buf. buf has no more than
* buflen bytes remaining. The UTC offset is gotten by calling
* tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
* *buf, and that's all. Else the returned value is checked for sanity (an
* integer in range), and if that's OK it's converted to an hours & minutes
* string of the form
* sign HH sep MM
* Returns 0 if everything is OK. If the return value from utcoffset() is
* bogus, an appropriate exception is set and -1 is returned.
*/
static int
format_utcoffset(char *buf, size_t buflen, const char *sep,
PyObject *tzinfo, PyObject *tzinfoarg)
{
int offset;
int hours;
int minutes;
char sign;
int none;
offset = call_utcoffset(tzinfo, tzinfoarg, &none);
if (offset == -1 && PyErr_Occurred())
return -1;
if (none) {
*buf = '\0';
return 0;
}
sign = '+';
if (offset < 0) {
sign = '-';
offset = - offset;
}
hours = divmod(offset, 60, &minutes);
PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
return 0;
}
/* I sure don't want to reproduce the strftime code from the time module,
* so this imports the module and calls it. All the hair is due to
* giving special meanings to the %z and %Z format codes via a preprocessing
* step on the format string.
*/
static PyObject *
wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple)
{
PyObject *result = NULL; /* guilty until proved innocent */
PyObject *zreplacement = NULL; /* py string, replacement for %z */
PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
char *pin; /* pointer to next char in input format */
char ch; /* next char in input format */
PyObject *newfmt = NULL; /* py string, the output format */
char *pnew; /* pointer to available byte in output format */
char totalnew; /* number bytes total in output format buffer,
exclusive of trailing \0 */
char usednew; /* number bytes used so far in output format buffer */
char *ptoappend; /* pointer to string to append to output buffer */
int ntoappend; /* # of bytes to append to output buffer */
assert(object && format && timetuple);
assert(PyString_Check(format));
/* Scan the input format, looking for %z and %Z escapes, building
* a new format. Since computing the replacements for those codes
* is expensive, don't unless they're actually used.
*/
totalnew = PyString_Size(format); /* realistic if no %z/%Z */
newfmt = PyString_FromStringAndSize(NULL, totalnew);
if (newfmt == NULL) goto Done;
pnew = PyString_AsString(newfmt);
usednew = 0;
pin = PyString_AsString(format);
while ((ch = *pin++) != '\0') {
if (ch != '%') {
ptoappend = pin - 1;
ntoappend = 1;
}
else if ((ch = *pin++) == '\0') {
/* There's a lone trailing %; doesn't make sense. */
PyErr_SetString(PyExc_ValueError, "strftime format "
"ends with raw %");
goto Done;
}
/* A % has been seen and ch is the character after it. */
else if (ch == 'z') {
if (zreplacement == NULL) {
/* format utcoffset */
char buf[100];
PyObject *tzinfo = get_tzinfo_member(object);
zreplacement = PyString_FromString("");
if (zreplacement == NULL) goto Done;
if (tzinfo != Py_None && tzinfo != NULL) {
if (format_utcoffset(buf,
sizeof(buf),
"",
tzinfo,
object) < 0)
goto Done;
Py_DECREF(zreplacement);
zreplacement = PyString_FromString(buf);
if (zreplacement == NULL) goto Done;
}
}
assert(zreplacement != NULL);
ptoappend = PyString_AsString(zreplacement);
ntoappend = PyString_Size(zreplacement);
}
else if (ch == 'Z') {
/* format tzname */
if (Zreplacement == NULL) {
PyObject *tzinfo = get_tzinfo_member(object);
Zreplacement = PyString_FromString("");
if (Zreplacement == NULL) goto Done;
if (tzinfo != Py_None && tzinfo != NULL) {
PyObject *temp = call_tzname(tzinfo,
object);
if (temp == NULL) goto Done;
if (temp != Py_None) {
assert(PyString_Check(temp));
/* Since the tzname is getting
* stuffed into the format, we
* have to double any % signs
* so that strftime doesn't
* treat them as format codes.
*/
Py_DECREF(Zreplacement);
Zreplacement = PyObject_CallMethod(
temp, "replace",
"ss", "%", "%%");
Py_DECREF(temp);
if (Zreplacement == NULL)
goto Done;
}
else
Py_DECREF(temp);
}
}
assert(Zreplacement != NULL);
ptoappend = PyString_AsString(Zreplacement);
ntoappend = PyString_Size(Zreplacement);
}
else {
/* percent followed by neither z nor Z */
ptoappend = pin - 2;
ntoappend = 2;
}
/* Append the ntoappend chars starting at ptoappend to
* the new format.
*/
assert(ntoappend >= 0);
if (ntoappend == 0)
continue;
while (usednew + ntoappend > totalnew) {
int bigger = totalnew << 1;
if ((bigger >> 1) != totalnew) { /* overflow */
PyErr_NoMemory();
goto Done;
}
if (_PyString_Resize(&newfmt, bigger) < 0)
goto Done;
totalnew = bigger;
pnew = PyString_AsString(newfmt) + usednew;
}
memcpy(pnew, ptoappend, ntoappend);
pnew += ntoappend;
usednew += ntoappend;
assert(usednew <= totalnew);
} /* end while() */
if (_PyString_Resize(&newfmt, usednew) < 0)
goto Done;
{
PyObject *time = PyImport_ImportModule("time");
if (time == NULL)
goto Done;
result = PyObject_CallMethod(time, "strftime", "OO",
newfmt, timetuple);
Py_DECREF(time);
}
Done:
Py_XDECREF(zreplacement);
Py_XDECREF(Zreplacement);
Py_XDECREF(newfmt);
return result;
}
static char *
isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen)
{
int x;
x = PyOS_snprintf(buffer, bufflen,
"%04d-%02d-%02d",
GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt));
return buffer + x;
}
static void
isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen)
{
int us = DATE_GET_MICROSECOND(dt);
PyOS_snprintf(buffer, bufflen,
"%02d:%02d:%02d", /* 8 characters */
DATE_GET_HOUR(dt),
DATE_GET_MINUTE(dt),
DATE_GET_SECOND(dt));
if (us)
PyOS_snprintf(buffer + 8, bufflen - 8, ".%06d", us);
}
/* ---------------------------------------------------------------------------
* Wrap functions from the time module. These aren't directly available
* from C. Perhaps they should be.
*/
/* Call time.time() and return its result (a Python float). */
static PyObject *
time_time(void)
{
PyObject *result = NULL;
PyObject *time = PyImport_ImportModule("time");
if (time != NULL) {
result = PyObject_CallMethod(time, "time", "()");
Py_DECREF(time);
}
return result;
}
/* Build a time.struct_time. The weekday and day number are automatically
* computed from the y,m,d args.
*/
static PyObject *
build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
{
PyObject *time;
PyObject *result = NULL;
time = PyImport_ImportModule("time");
if (time != NULL) {
result = PyObject_CallMethod(time, "struct_time",
"((iiiiiiiii))",
y, m, d,
hh, mm, ss,
weekday(y, m, d),
days_before_month(y, m) + d,
dstflag);
Py_DECREF(time);
}
return result;
}
/* ---------------------------------------------------------------------------
* Miscellaneous helpers.
*/
/* For obscure reasons, we need to use tp_richcompare instead of tp_compare.
* The comparisons here all most naturally compute a cmp()-like result.
* This little helper turns that into a bool result for rich comparisons.
*/
static PyObject *
diff_to_bool(int diff, int op)
{
PyObject *result;
int istrue;
switch (op) {
case Py_EQ: istrue = diff == 0; break;
case Py_NE: istrue = diff != 0; break;
case Py_LE: istrue = diff <= 0; break;
case Py_GE: istrue = diff >= 0; break;
case Py_LT: istrue = diff < 0; break;
case Py_GT: istrue = diff > 0; break;
default:
assert(! "op unknown");
istrue = 0; /* To shut up compiler */
}
result = istrue ? Py_True : Py_False;
Py_INCREF(result);
return result;
}
/* ---------------------------------------------------------------------------
* Helpers for setting object fields. These work on pointers to the
* appropriate base class.
*/
/* For date, datetime and datetimetz. */
static void
set_date_fields(PyDateTime_Date *self, int y, int m, int d)
{
self->hashcode = -1;
SET_YEAR(self, y);
SET_MONTH(self, m);
SET_DAY(self, d);
}
/* For datetime and datetimetz. */
static void
set_datetime_time_fields(PyDateTime_Date *self, int h, int m, int s, int us)
{
DATE_SET_HOUR(self, h);
DATE_SET_MINUTE(self, m);
DATE_SET_SECOND(self, s);
DATE_SET_MICROSECOND(self, us);
}
/* For time and timetz. */
static void
set_time_fields(PyDateTime_Time *self, int h, int m, int s, int us)
{
self->hashcode = -1;
TIME_SET_HOUR(self, h);
TIME_SET_MINUTE(self, m);
TIME_SET_SECOND(self, s);
TIME_SET_MICROSECOND(self, us);
}
/* ---------------------------------------------------------------------------
* Create various objects, mostly without range checking.
*/
/* Create a date instance with no range checking. */
static PyObject *
new_date(int year, int month, int day)
{
PyDateTime_Date *self;
self = PyObject_New(PyDateTime_Date, &PyDateTime_DateType);
if (self != NULL)
set_date_fields(self, year, month, day);
return (PyObject *) self;
}
/* Create a datetime instance with no range checking. */
static PyObject *
new_datetime(int year, int month, int day, int hour, int minute,
int second, int usecond)
{
PyDateTime_DateTime *self;
self = PyObject_New(PyDateTime_DateTime, &PyDateTime_DateTimeType);
if (self != NULL) {
set_date_fields((PyDateTime_Date *)self, year, month, day);
set_datetime_time_fields((PyDateTime_Date *)self,
hour, minute, second, usecond);
}
return (PyObject *) self;
}
/* Create a datetimetz instance with no range checking. */
static PyObject *
new_datetimetz(int year, int month, int day, int hour, int minute,
int second, int usecond, PyObject *tzinfo)
{
PyDateTime_DateTimeTZ *self;
self = PyObject_New(PyDateTime_DateTimeTZ, &PyDateTime_DateTimeTZType);
if (self != NULL) {
set_date_fields((PyDateTime_Date *)self, year, month, day);
set_datetime_time_fields((PyDateTime_Date *)self,
hour, minute, second, usecond);
Py_INCREF(tzinfo);
self->tzinfo = tzinfo;
}
return (PyObject *) self;
}
/* Create a time instance with no range checking. */
static PyObject *
new_time(int hour, int minute, int second, int usecond)
{
PyDateTime_Time *self;
self = PyObject_New(PyDateTime_Time, &PyDateTime_TimeType);
if (self != NULL)
set_time_fields(self, hour, minute, second, usecond);
return (PyObject *) self;
}
/* Create a timetz instance with no range checking. */
static PyObject *
new_timetz(int hour, int minute, int second, int usecond, PyObject *tzinfo)
{
PyDateTime_TimeTZ *self;
self = PyObject_New(PyDateTime_TimeTZ, &PyDateTime_TimeTZType);
if (self != NULL) {
set_time_fields((PyDateTime_Time *)self,
hour, minute, second, usecond);
Py_INCREF(tzinfo);
self->tzinfo = tzinfo;
}
return (PyObject *) self;
}
/* Create a timedelta instance. Normalize the members iff normalize is
* true. Passing false is a speed optimization, if you know for sure
* that seconds and microseconds are already in their proper ranges. In any
* case, raises OverflowError and returns NULL if the normalized days is out
* of range).
*/
static PyObject *
new_delta(int days, int seconds, int microseconds, int normalize)
{
PyDateTime_Delta *self;
if (normalize)
normalize_d_s_us(&days, &seconds, &microseconds);
assert(0 <= seconds && seconds < 24*3600);
assert(0 <= microseconds && microseconds < 1000000);
if (check_delta_day_range(days) < 0)
return NULL;
self = PyObject_New(PyDateTime_Delta, &PyDateTime_DeltaType);
if (self != NULL) {
self->hashcode = -1;
SET_TD_DAYS(self, days);
SET_TD_SECONDS(self, seconds);
SET_TD_MICROSECONDS(self, microseconds);
}
return (PyObject *) self;
}
/* ---------------------------------------------------------------------------
* Cached Python objects; these are set by the module init function.
*/
/* Conversion factors. */
static PyObject *us_per_us = NULL; /* 1 */
static PyObject *us_per_ms = NULL; /* 1000 */
static PyObject *us_per_second = NULL; /* 1000000 */
static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */
static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */
static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */
static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
/* Callables to support unpickling. */
static PyObject *date_unpickler_object = NULL;
static PyObject *datetime_unpickler_object = NULL;
static PyObject *datetimetz_unpickler_object = NULL;
static PyObject *tzinfo_unpickler_object = NULL;
static PyObject *time_unpickler_object = NULL;
static PyObject *timetz_unpickler_object = NULL;
/* ---------------------------------------------------------------------------
* Class implementations.
*/
/*
* PyDateTime_Delta implementation.
*/
/* Convert a timedelta to a number of us,
* (24*3600*self.days + self.seconds)*1000000 + self.microseconds
* as a Python int or long.
* Doing mixed-radix arithmetic by hand instead is excruciating in C,
* due to ubiquitous overflow possibilities.
*/
static PyObject *
delta_to_microseconds(PyDateTime_Delta *self)
{
PyObject *x1 = NULL;
PyObject *x2 = NULL;
PyObject *x3 = NULL;
PyObject *result = NULL;
x1 = PyInt_FromLong(GET_TD_DAYS(self));
if (x1 == NULL)
goto Done;
x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */
if (x2 == NULL)
goto Done;
Py_DECREF(x1);
x1 = NULL;
/* x2 has days in seconds */
x1 = PyInt_FromLong(GET_TD_SECONDS(self)); /* seconds */
if (x1 == NULL)
goto Done;
x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
if (x3 == NULL)
goto Done;
Py_DECREF(x1);
Py_DECREF(x2);
x1 = x2 = NULL;
/* x3 has days+seconds in seconds */
x1 = PyNumber_Multiply(x3, us_per_second); /* us */
if (x1 == NULL)
goto Done;
Py_DECREF(x3);
x3 = NULL;
/* x1 has days+seconds in us */
x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self));
if (x2 == NULL)
goto Done;
result = PyNumber_Add(x1, x2);
Done:
Py_XDECREF(x1);
Py_XDECREF(x2);
Py_XDECREF(x3);
return result;
}
/* Convert a number of us (as a Python int or long) to a timedelta.
*/
static PyObject *
microseconds_to_delta(PyObject *pyus)
{
int us;
int s;
int d;
2002-12-18 21:44:38 -04:00
long temp;
PyObject *tuple = NULL;
PyObject *num = NULL;
PyObject *result = NULL;
tuple = PyNumber_Divmod(pyus, us_per_second);
if (tuple == NULL)
goto Done;
num = PyTuple_GetItem(tuple, 1); /* us */
if (num == NULL)
goto Done;
2002-12-18 21:44:38 -04:00
temp = PyLong_AsLong(num);
num = NULL;
2002-12-18 21:44:38 -04:00
if (temp == -1 && PyErr_Occurred())
goto Done;
assert(0 <= temp && temp < 1000000);
us = (int)temp;
if (us < 0) {
/* The divisor was positive, so this must be an error. */
assert(PyErr_Occurred());
goto Done;
}
num = PyTuple_GetItem(tuple, 0); /* leftover seconds */
if (num == NULL)
goto Done;
Py_INCREF(num);
Py_DECREF(tuple);
tuple = PyNumber_Divmod(num, seconds_per_day);
if (tuple == NULL)
goto Done;
Py_DECREF(num);
num = PyTuple_GetItem(tuple, 1); /* seconds */
if (num == NULL)
goto Done;
2002-12-18 21:44:38 -04:00
temp = PyLong_AsLong(num);
num = NULL;
2002-12-18 21:44:38 -04:00
if (temp == -1 && PyErr_Occurred())
goto Done;
assert(0 <= temp && temp < 24*3600);
s = (int)temp;
if (s < 0) {
/* The divisor was positive, so this must be an error. */
assert(PyErr_Occurred());
goto Done;
}
num = PyTuple_GetItem(tuple, 0); /* leftover days */
if (num == NULL)
goto Done;
Py_INCREF(num);
2002-12-18 21:44:38 -04:00
temp = PyLong_AsLong(num);
if (temp == -1 && PyErr_Occurred())
goto Done;
d = (int)temp;
if ((long)d != temp) {
PyErr_SetString(PyExc_OverflowError, "normalized days too "
"large to fit in a C int");
goto Done;
2002-12-18 21:44:38 -04:00
}
result = new_delta(d, s, us, 0);
Done:
Py_XDECREF(tuple);
Py_XDECREF(num);
return result;
}
static PyObject *
multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
{
PyObject *pyus_in;
PyObject *pyus_out;
PyObject *result;
pyus_in = delta_to_microseconds(delta);
if (pyus_in == NULL)
return NULL;
pyus_out = PyNumber_Multiply(pyus_in, intobj);
Py_DECREF(pyus_in);
if (pyus_out == NULL)
return NULL;
result = microseconds_to_delta(pyus_out);
Py_DECREF(pyus_out);
return result;
}
static PyObject *
divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
{
PyObject *pyus_in;
PyObject *pyus_out;
PyObject *result;
pyus_in = delta_to_microseconds(delta);
if (pyus_in == NULL)
return NULL;
pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
Py_DECREF(pyus_in);
if (pyus_out == NULL)
return NULL;
result = microseconds_to_delta(pyus_out);
Py_DECREF(pyus_out);
return result;
}
static PyObject *
delta_add(PyObject *left, PyObject *right)
{
PyObject *result = Py_NotImplemented;
if (PyDelta_Check(left) && PyDelta_Check(right)) {
/* delta + delta */
/* The C-level additions can't overflow because of the
* invariant bounds.
*/
int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
int microseconds = GET_TD_MICROSECONDS(left) +
GET_TD_MICROSECONDS(right);
result = new_delta(days, seconds, microseconds, 1);
}
if (result == Py_NotImplemented)
Py_INCREF(result);
return result;
}
static PyObject *
delta_negative(PyDateTime_Delta *self)
{
return new_delta(-GET_TD_DAYS(self),
-GET_TD_SECONDS(self),
-GET_TD_MICROSECONDS(self),
1);
}
static PyObject *
delta_positive(PyDateTime_Delta *self)
{
/* Could optimize this (by returning self) if this isn't a
* subclass -- but who uses unary + ? Approximately nobody.
*/
return new_delta(GET_TD_DAYS(self),
GET_TD_SECONDS(self),
GET_TD_MICROSECONDS(self),
0);
}
static PyObject *
delta_abs(PyDateTime_Delta *self)
{
PyObject *result;
assert(GET_TD_MICROSECONDS(self) >= 0);
assert(GET_TD_SECONDS(self) >= 0);
if (GET_TD_DAYS(self) < 0)
result = delta_negative(self);
else
result = delta_positive(self);
return result;
}
static PyObject *
delta_subtract(PyObject *left, PyObject *right)
{
PyObject *result = Py_NotImplemented;
if (PyDelta_Check(left) && PyDelta_Check(right)) {
/* delta - delta */
PyObject *minus_right = PyNumber_Negative(right);
if (minus_right) {
result = delta_add(left, minus_right);
Py_DECREF(minus_right);
}
else
result = NULL;
}
if (result == Py_NotImplemented)
Py_INCREF(result);
return result;
}
/* This is more natural as a tp_compare, but doesn't work then: for whatever
* reason, Python's try_3way_compare ignores tp_compare unless
* PyInstance_Check returns true, but these aren't old-style classes.
*/
static PyObject *
delta_richcompare(PyDateTime_Delta *self, PyObject *other, int op)
{
int diff;
if (! PyDelta_CheckExact(other)) {
PyErr_Format(PyExc_TypeError,
"can't compare %s to %s instance",
self->ob_type->tp_name, other->ob_type->tp_name);
return NULL;
}
diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
if (diff == 0) {
diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
if (diff == 0)
diff = GET_TD_MICROSECONDS(self) -
GET_TD_MICROSECONDS(other);
}
return diff_to_bool(diff, op);
}
static PyObject *delta_getstate(PyDateTime_Delta *self);
static long
delta_hash(PyDateTime_Delta *self)
{
if (self->hashcode == -1) {
PyObject *temp = delta_getstate(self);
if (temp != NULL) {
self->hashcode = PyObject_Hash(temp);
Py_DECREF(temp);
}
}
return self->hashcode;
}
static PyObject *
delta_multiply(PyObject *left, PyObject *right)
{
PyObject *result = Py_NotImplemented;
if (PyDelta_Check(left)) {
/* delta * ??? */
if (PyInt_Check(right) || PyLong_Check(right))
result = multiply_int_timedelta(right,
(PyDateTime_Delta *) left);
}
else if (PyInt_Check(left) || PyLong_Check(left))
result = multiply_int_timedelta(left,
(PyDateTime_Delta *) right);
if (result == Py_NotImplemented)
Py_INCREF(result);
return result;
}
static PyObject *
delta_divide(PyObject *left, PyObject *right)
{
PyObject *result = Py_NotImplemented;
if (PyDelta_Check(left)) {
/* delta * ??? */
if (PyInt_Check(right) || PyLong_Check(right))
result = divide_timedelta_int(
(PyDateTime_Delta *)left,
right);
}
if (result == Py_NotImplemented)
Py_INCREF(result);
return result;
}
/* Fold in the value of the tag ("seconds", "weeks", etc) component of a
* timedelta constructor. sofar is the # of microseconds accounted for
* so far, and there are factor microseconds per current unit, the number
* of which is given by num. num * factor is added to sofar in a
* numerically careful way, and that's the result. Any fractional
* microseconds left over (this can happen if num is a float type) are
* added into *leftover.
* Note that there are many ways this can give an error (NULL) return.
*/
static PyObject *
accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
double *leftover)
{
PyObject *prod;
PyObject *sum;
assert(num != NULL);
if (PyInt_Check(num) || PyLong_Check(num)) {
prod = PyNumber_Multiply(num, factor);
if (prod == NULL)
return NULL;
sum = PyNumber_Add(sofar, prod);
Py_DECREF(prod);
return sum;
}
if (PyFloat_Check(num)) {
double dnum;
double fracpart;
double intpart;
PyObject *x;
PyObject *y;
/* The Plan: decompose num into an integer part and a
* fractional part, num = intpart + fracpart.
* Then num * factor ==
* intpart * factor + fracpart * factor
* and the LHS can be computed exactly in long arithmetic.
* The RHS is again broken into an int part and frac part.
* and the frac part is added into *leftover.
*/
dnum = PyFloat_AsDouble(num);
if (dnum == -1.0 && PyErr_Occurred())
return NULL;
fracpart = modf(dnum, &intpart);
x = PyLong_FromDouble(intpart);
if (x == NULL)
return NULL;
prod = PyNumber_Multiply(x, factor);
Py_DECREF(x);
if (prod == NULL)
return NULL;
sum = PyNumber_Add(sofar, prod);
Py_DECREF(prod);
if (sum == NULL)
return NULL;
if (fracpart == 0.0)
return sum;
/* So far we've lost no information. Dealing with the
* fractional part requires float arithmetic, and may
* lose a little info.
*/
assert(PyInt_Check(factor) || PyLong_Check(factor));
if (PyInt_Check(factor))
dnum = (double)PyInt_AsLong(factor);
else
dnum = PyLong_AsDouble(factor);
dnum *= fracpart;
fracpart = modf(dnum, &intpart);
x = PyLong_FromDouble(intpart);
if (x == NULL) {
Py_DECREF(sum);
return NULL;
}
y = PyNumber_Add(sum, x);
Py_DECREF(sum);
Py_DECREF(x);
*leftover += fracpart;
return y;
}
PyErr_Format(PyExc_TypeError,
"unsupported type for timedelta %s component: %s",
tag, num->ob_type->tp_name);
return NULL;
}
static PyObject *
delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
/* Argument objects. */
PyObject *day = NULL;
PyObject *second = NULL;
PyObject *us = NULL;
PyObject *ms = NULL;
PyObject *minute = NULL;
PyObject *hour = NULL;
PyObject *week = NULL;
PyObject *x = NULL; /* running sum of microseconds */
PyObject *y = NULL; /* temp sum of microseconds */
double leftover_us = 0.0;
static char *keywords[] = {
"days", "seconds", "microseconds", "milliseconds",
"minutes", "hours", "weeks", NULL
};
if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
keywords,
&day, &second, &us,
&ms, &minute, &hour, &week) == 0)
goto Done;
x = PyInt_FromLong(0);
if (x == NULL)
goto Done;
#define CLEANUP \
Py_DECREF(x); \
x = y; \
if (x == NULL) \
goto Done
if (us) {
y = accum("microseconds", x, us, us_per_us, &leftover_us);
CLEANUP;
}
if (ms) {
y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
CLEANUP;
}
if (second) {
y = accum("seconds", x, second, us_per_second, &leftover_us);
CLEANUP;
}
if (minute) {
y = accum("minutes", x, minute, us_per_minute, &leftover_us);
CLEANUP;
}
if (hour) {
y = accum("hours", x, hour, us_per_hour, &leftover_us);
CLEANUP;
}
if (day) {
y = accum("days", x, day, us_per_day, &leftover_us);
CLEANUP;
}
if (week) {
y = accum("weeks", x, week, us_per_week, &leftover_us);
CLEANUP;
}
if (leftover_us) {
/* Round to nearest whole # of us, and add into x. */
PyObject *temp;
if (leftover_us >= 0.0)
leftover_us = floor(leftover_us + 0.5);
else
leftover_us = ceil(leftover_us - 0.5);
temp = PyLong_FromDouble(leftover_us);
if (temp == NULL) {
Py_DECREF(x);
goto Done;
}
y = PyNumber_Add(x, temp);
Py_DECREF(temp);
CLEANUP;
}
self = microseconds_to_delta(x);
Py_DECREF(x);
Done:
return self;
#undef CLEANUP
}
static int
delta_nonzero(PyDateTime_Delta *self)
{
return (GET_TD_DAYS(self) != 0
|| GET_TD_SECONDS(self) != 0
|| GET_TD_MICROSECONDS(self) != 0);
}
static PyObject *
delta_repr(PyDateTime_Delta *self)
{
if (GET_TD_MICROSECONDS(self) != 0)
return PyString_FromFormat("%s(%d, %d, %d)",
self->ob_type->tp_name,
GET_TD_DAYS(self),
GET_TD_SECONDS(self),
GET_TD_MICROSECONDS(self));
if (GET_TD_SECONDS(self) != 0)
return PyString_FromFormat("%s(%d, %d)",
self->ob_type->tp_name,
GET_TD_DAYS(self),
GET_TD_SECONDS(self));
return PyString_FromFormat("%s(%d)",
self->ob_type->tp_name,
GET_TD_DAYS(self));
}
static PyObject *
delta_str(PyDateTime_Delta *self)
{
int days = GET_TD_DAYS(self);
int seconds = GET_TD_SECONDS(self);
int us = GET_TD_MICROSECONDS(self);
int hours;
int minutes;
char buf[100];
char *pbuf = buf;
size_t buflen = sizeof(buf);
int n;
minutes = divmod(seconds, 60, &seconds);
hours = divmod(minutes, 60, &minutes);
if (days) {
n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days,
(days == 1 || days == -1) ? "" : "s");
if (n < 0 || (size_t)n >= buflen)
goto Fail;
pbuf += n;
buflen -= (size_t)n;
}
n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d",
hours, minutes, seconds);
if (n < 0 || (size_t)n >= buflen)
goto Fail;
pbuf += n;
buflen -= (size_t)n;
if (us) {
n = PyOS_snprintf(pbuf, buflen, ".%06d", us);
if (n < 0 || (size_t)n >= buflen)
goto Fail;
pbuf += n;
}
return PyString_FromStringAndSize(buf, pbuf - buf);
Fail:
PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf");
return NULL;
}
/* Pickle support. Quite a maze! While __getstate__/__setstate__ sufficed
* in the Python implementation, the C implementation also requires
* __reduce__, and a __safe_for_unpickling__ attr in the type object.
*/
static PyObject *
delta_getstate(PyDateTime_Delta *self)
{
return Py_BuildValue("iii", GET_TD_DAYS(self),
GET_TD_SECONDS(self),
GET_TD_MICROSECONDS(self));
}
static PyObject *
delta_setstate(PyDateTime_Delta *self, PyObject *state)
{
int day;
int second;
int us;
if (!PyArg_ParseTuple(state, "iii:__setstate__", &day, &second, &us))
return NULL;
self->hashcode = -1;
SET_TD_DAYS(self, day);
SET_TD_SECONDS(self, second);
SET_TD_MICROSECONDS(self, us);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
delta_reduce(PyDateTime_Delta* self)
{
PyObject* result = NULL;
PyObject* state = delta_getstate(self);
if (state != NULL) {
/* The funky "()" in the format string creates an empty
* tuple as the 2nd component of the result 3-tuple.
*/
result = Py_BuildValue("O()O", self->ob_type, state);
Py_DECREF(state);
}
return result;
}
#define OFFSET(field) offsetof(PyDateTime_Delta, field)
static PyMemberDef delta_members[] = {
{"days", T_INT, OFFSET(days), READONLY,
PyDoc_STR("Number of days.")},
{"seconds", T_INT, OFFSET(seconds), READONLY,
PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
{"microseconds", T_INT, OFFSET(microseconds), READONLY,
PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
{NULL}
};
static PyMethodDef delta_methods[] = {
{"__setstate__", (PyCFunction)delta_setstate, METH_O,
PyDoc_STR("__setstate__(state)")},
{"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
PyDoc_STR("__setstate__(state)")},
{"__getstate__", (PyCFunction)delta_getstate, METH_NOARGS,
PyDoc_STR("__getstate__() -> state")},
{NULL, NULL},
};
static char delta_doc[] =
PyDoc_STR("Difference between two datetime values.");
static PyNumberMethods delta_as_number = {
delta_add, /* nb_add */
delta_subtract, /* nb_subtract */
delta_multiply, /* nb_multiply */
delta_divide, /* nb_divide */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
(unaryfunc)delta_negative, /* nb_negative */
(unaryfunc)delta_positive, /* nb_positive */
(unaryfunc)delta_abs, /* nb_absolute */
(inquiry)delta_nonzero, /* nb_nonzero */
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
0, /*nb_coerce*/
0, /*nb_int*/
0, /*nb_long*/
0, /*nb_float*/
0, /*nb_oct*/
0, /*nb_hex*/
0, /*nb_inplace_add*/
0, /*nb_inplace_subtract*/
0, /*nb_inplace_multiply*/
0, /*nb_inplace_divide*/
0, /*nb_inplace_remainder*/
0, /*nb_inplace_power*/
0, /*nb_inplace_lshift*/
0, /*nb_inplace_rshift*/
0, /*nb_inplace_and*/
0, /*nb_inplace_xor*/
0, /*nb_inplace_or*/
delta_divide, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
};
static PyTypeObject PyDateTime_DeltaType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.timedelta", /* tp_name */
sizeof(PyDateTime_Delta), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)delta_repr, /* tp_repr */
&delta_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)delta_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)delta_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES, /* tp_flags */
delta_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)delta_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
delta_methods, /* tp_methods */
delta_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
delta_new, /* tp_new */
_PyObject_Del, /* tp_free */
};
/*
* PyDateTime_Date implementation.
*/
/* Accessor properties. */
static PyObject *
date_year(PyDateTime_Date *self, void *unused)
{
return PyInt_FromLong(GET_YEAR(self));
}
static PyObject *
date_month(PyDateTime_Date *self, void *unused)
{
return PyInt_FromLong(GET_MONTH(self));
}
static PyObject *
date_day(PyDateTime_Date *self, void *unused)
{
return PyInt_FromLong(GET_DAY(self));
}
static PyGetSetDef date_getset[] = {
{"year", (getter)date_year},
{"month", (getter)date_month},
{"day", (getter)date_day},
{NULL}
};
/* Constructors. */
static PyObject *
date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
int year;
int month;
int day;
static char *keywords[] = {
"year", "month", "day", NULL
};
if (PyArg_ParseTupleAndKeywords(args, kw, "iii", keywords,
&year, &month, &day)) {
if (check_date_args(year, month, day) < 0)
return NULL;
self = new_date(year, month, day);
}
return self;
}
/* Return new date from localtime(t). */
static PyObject *
date_local_from_time_t(PyObject *cls, time_t t)
{
struct tm *tm;
PyObject *result = NULL;
tm = localtime(&t);
if (tm)
result = PyObject_CallFunction(cls, "iii",
tm->tm_year + 1900,
tm->tm_mon + 1,
tm->tm_mday);
else
PyErr_SetString(PyExc_ValueError,
"timestamp out of range for "
"platform localtime() function");
return result;
}
/* Return new date from current time.
* We say this is equivalent to fromtimestamp(time.time()), and the
* only way to be sure of that is to *call* time.time(). That's not
* generally the same as calling C's time.
*/
static PyObject *
date_today(PyObject *cls, PyObject *dummy)
{
PyObject *time;
PyObject *result;
time = time_time();
if (time == NULL)
return NULL;
/* Note well: today() is a class method, so this may not call
* date.fromtimestamp. For example, it may call
* datetime.fromtimestamp. That's why we need all the accuracy
* time.time() delivers; if someone were gonzo about optimization,
* date.today() could get away with plain C time().
*/
result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
Py_DECREF(time);
return result;
}
/* Return new date from given timestamp (Python timestamp -- a double). */
static PyObject *
date_fromtimestamp(PyObject *cls, PyObject *args)
{
double timestamp;
PyObject *result = NULL;
if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
result = date_local_from_time_t(cls, (time_t)timestamp);
return result;
}
/* Return new date from proleptic Gregorian ordinal. Raises ValueError if
* the ordinal is out of range.
*/
static PyObject *
date_fromordinal(PyObject *cls, PyObject *args)
{
PyObject *result = NULL;
int ordinal;
if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
int year;
int month;
int day;
if (ordinal < 1)
PyErr_SetString(PyExc_ValueError, "ordinal must be "
">= 1");
else {
ord_to_ymd(ordinal, &year, &month, &day);
result = PyObject_CallFunction(cls, "iii",
year, month, day);
}
}
return result;
}
/*
* Date arithmetic.
*/
/* date + timedelta -> date. If arg negate is true, subtract the timedelta
* instead.
*/
static PyObject *
add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
{
PyObject *result = NULL;
int year = GET_YEAR(date);
int month = GET_MONTH(date);
int deltadays = GET_TD_DAYS(delta);
/* C-level overflow is impossible because |deltadays| < 1e9. */
int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
if (normalize_date(&year, &month, &day) >= 0)
result = new_date(year, month, day);
return result;
}
static PyObject *
date_add(PyObject *left, PyObject *right)
{
if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
if (PyDate_CheckExact(left)) {
/* date + ??? */
if (PyDelta_Check(right))
/* date + delta */
return add_date_timedelta((PyDateTime_Date *) left,
(PyDateTime_Delta *) right,
0);
}
else {
/* ??? + date
* 'right' must be one of us, or we wouldn't have been called
*/
if (PyDelta_Check(left))
/* delta + date */
return add_date_timedelta((PyDateTime_Date *) right,
(PyDateTime_Delta *) left,
0);
}
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
static PyObject *
date_subtract(PyObject *left, PyObject *right)
{
if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
if (PyDate_CheckExact(left)) {
if (PyDate_CheckExact(right)) {
/* date - date */
int left_ord = ymd_to_ord(GET_YEAR(left),
GET_MONTH(left),
GET_DAY(left));
int right_ord = ymd_to_ord(GET_YEAR(right),
GET_MONTH(right),
GET_DAY(right));
return new_delta(left_ord - right_ord, 0, 0, 0);
}
if (PyDelta_Check(right)) {
/* date - delta */
return add_date_timedelta((PyDateTime_Date *) left,
(PyDateTime_Delta *) right,
1);
}
}
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
/* Various ways to turn a date into a string. */
static PyObject *
date_repr(PyDateTime_Date *self)
{
char buffer[1028];
char *typename;
typename = self->ob_type->tp_name;
PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)",
typename,
GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
return PyString_FromString(buffer);
}
static PyObject *
date_isoformat(PyDateTime_Date *self)
{
char buffer[128];
isoformat_date(self, buffer, sizeof(buffer));
return PyString_FromString(buffer);
}
/* str() calls the appropriate isofomat() method. */
static PyObject *
date_str(PyDateTime_Date *self)
{
return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
}
static PyObject *
date_ctime(PyDateTime_Date *self)
{
return format_ctime(self, 0, 0, 0);
}
static PyObject *
date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
{
/* This method can be inherited, and needs to call the
* timetuple() method appropriate to self's class.
*/
PyObject *result;
PyObject *format;
PyObject *tuple;
static char *keywords[] = {"format", NULL};
if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords,
&PyString_Type, &format))
return NULL;
tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
if (tuple == NULL)
return NULL;
result = wrap_strftime((PyObject *)self, format, tuple);
Py_DECREF(tuple);
return result;
}
/* ISO methods. */
static PyObject *
date_isoweekday(PyDateTime_Date *self)
{
int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
return PyInt_FromLong(dow + 1);
}
static PyObject *
date_isocalendar(PyDateTime_Date *self)
{
int year = GET_YEAR(self);
int week1_monday = iso_week1_monday(year);
int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
int week;
int day;
week = divmod(today - week1_monday, 7, &day);
if (week < 0) {
--year;
week1_monday = iso_week1_monday(year);
week = divmod(today - week1_monday, 7, &day);
}
else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
++year;
week = 0;
}
return Py_BuildValue("iii", year, week + 1, day + 1);
}
/* Miscellaneous methods. */
/* This is more natural as a tp_compare, but doesn't work then: for whatever
* reason, Python's try_3way_compare ignores tp_compare unless
* PyInstance_Check returns true, but these aren't old-style classes.
*/
static PyObject *
date_richcompare(PyDateTime_Date *self, PyObject *other, int op)
{
int diff;
if (! PyDate_Check(other)) {
PyErr_Format(PyExc_TypeError,
"can't compare date to %s instance",
other->ob_type->tp_name);
return NULL;
}
diff = memcmp(self->data, ((PyDateTime_Date *)other)->data,
_PyDateTime_DATE_DATASIZE);
return diff_to_bool(diff, op);
}
static PyObject *
date_timetuple(PyDateTime_Date *self)
{
return build_struct_time(GET_YEAR(self),
GET_MONTH(self),
GET_DAY(self),
0, 0, 0, -1);
}
static PyObject *date_getstate(PyDateTime_Date *self);
static long
date_hash(PyDateTime_Date *self)
{
if (self->hashcode == -1) {
PyObject *temp = date_getstate(self);
if (temp != NULL) {
self->hashcode = PyObject_Hash(temp);
Py_DECREF(temp);
}
}
return self->hashcode;
}
static PyObject *
date_toordinal(PyDateTime_Date *self)
{
return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
GET_DAY(self)));
}
static PyObject *
date_weekday(PyDateTime_Date *self)
{
int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
return PyInt_FromLong(dow);
}
/* Pickle support. Quite a maze! */
static PyObject *
date_getstate(PyDateTime_Date *self)
{
return PyString_FromStringAndSize(self->data,
_PyDateTime_DATE_DATASIZE);
}
static PyObject *
date_setstate(PyDateTime_Date *self, PyObject *state)
{
const int len = PyString_Size(state);
unsigned char *pdata = (unsigned char*)PyString_AsString(state);
if (! PyString_Check(state) ||
len != _PyDateTime_DATE_DATASIZE) {
PyErr_SetString(PyExc_TypeError,
"bad argument to date.__setstate__");
return NULL;
}
memcpy(self->data, pdata, _PyDateTime_DATE_DATASIZE);
self->hashcode = -1;
Py_INCREF(Py_None);
return Py_None;
}
/* XXX This seems a ridiculously inefficient way to pickle a short string. */
static PyObject *
date_pickler(PyObject *module, PyDateTime_Date *date)
{
PyObject *state;
PyObject *result = NULL;
if (! PyDate_CheckExact(date)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to date pickler: %s",
date->ob_type->tp_name);
return NULL;
}
state = date_getstate(date);
if (state) {
result = Py_BuildValue("O(O)", date_unpickler_object, state);
Py_DECREF(state);
}
return result;
}
static PyObject *
date_unpickler(PyObject *module, PyObject *arg)
{
PyDateTime_Date *self;
if (! PyString_CheckExact(arg)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to date unpickler: %s",
arg->ob_type->tp_name);
return NULL;
}
self = PyObject_New(PyDateTime_Date, &PyDateTime_DateType);
if (self != NULL) {
PyObject *res = date_setstate(self, arg);
if (res == NULL) {
Py_DECREF(self);
return NULL;
}
Py_DECREF(res);
}
return (PyObject *)self;
}
static PyMethodDef date_methods[] = {
/* Class methods: */
{"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
METH_CLASS,
PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
"time.time()).")},
{"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
METH_CLASS,
PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
"ordinal.")},
{"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
PyDoc_STR("Current date or datetime: same as "
"self.__class__.fromtimestamp(time.time()).")},
/* Instance methods: */
{"ctime", (PyCFunction)date_ctime, METH_NOARGS,
PyDoc_STR("Return ctime() style string.")},
{"strftime", (PyCFunction)date_strftime, METH_KEYWORDS,
PyDoc_STR("format -> strftime() style string.")},
{"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
{"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
"weekday.")},
{"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
{"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
PyDoc_STR("Return the day of the week represented by the date.\n"
"Monday == 1 ... Sunday == 7")},
{"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
"1 is day 1.")},
{"weekday", (PyCFunction)date_weekday, METH_NOARGS,
PyDoc_STR("Return the day of the week represented by the date.\n"
"Monday == 0 ... Sunday == 6")},
{"__setstate__", (PyCFunction)date_setstate, METH_O,
PyDoc_STR("__setstate__(state)")},
{"__getstate__", (PyCFunction)date_getstate, METH_NOARGS,
PyDoc_STR("__getstate__() -> state")},
{NULL, NULL}
};
static char date_doc[] =
PyDoc_STR("Basic date type.");
static PyNumberMethods date_as_number = {
date_add, /* nb_add */
date_subtract, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_divide */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
0, /* nb_nonzero */
};
static PyTypeObject PyDateTime_DateType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.date", /* tp_name */
sizeof(PyDateTime_Date), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)PyObject_Del, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)date_repr, /* tp_repr */
&date_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)date_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)date_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
date_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)date_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
date_methods, /* tp_methods */
0, /* tp_members */
date_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
date_new, /* tp_new */
_PyObject_Del, /* tp_free */
};
/*
* PyDateTime_DateTime implementation.
*/
/* Accessor properties. */
static PyObject *
datetime_hour(PyDateTime_DateTime *self, void *unused)
{
return PyInt_FromLong(DATE_GET_HOUR(self));
}
static PyObject *
datetime_minute(PyDateTime_DateTime *self, void *unused)
{
return PyInt_FromLong(DATE_GET_MINUTE(self));
}
static PyObject *
datetime_second(PyDateTime_DateTime *self, void *unused)
{
return PyInt_FromLong(DATE_GET_SECOND(self));
}
static PyObject *
datetime_microsecond(PyDateTime_DateTime *self, void *unused)
{
return PyInt_FromLong(DATE_GET_MICROSECOND(self));
}
static PyGetSetDef datetime_getset[] = {
{"hour", (getter)datetime_hour},
{"minute", (getter)datetime_minute},
{"second", (getter)datetime_second},
{"microsecond", (getter)datetime_microsecond},
{NULL}
};
/* Constructors. */
static PyObject *
datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
int year;
int month;
int day;
int hour = 0;
int minute = 0;
int second = 0;
int usecond = 0;
static char *keywords[] = {
"year", "month", "day", "hour", "minute", "second",
"microsecond", NULL
};
if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiii", keywords,
&year, &month, &day, &hour, &minute,
&second, &usecond)) {
if (check_date_args(year, month, day) < 0)
return NULL;
if (check_time_args(hour, minute, second, usecond) < 0)
return NULL;
self = new_datetime(year, month, day,
hour, minute, second, usecond);
}
return self;
}
/* TM_FUNC is the shared type of localtime() and gmtime(). */
typedef struct tm *(*TM_FUNC)(const time_t *timer);
/* Internal helper.
* Build datetime from a time_t and a distinct count of microseconds.
* Pass localtime or gmtime for f, to control the interpretation of timet.
*/
static PyObject *
datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us)
{
struct tm *tm;
PyObject *result = NULL;
tm = f(&timet);
if (tm)
result = PyObject_CallFunction(cls, "iiiiiii",
tm->tm_year + 1900,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec,
us);
else
PyErr_SetString(PyExc_ValueError,
"timestamp out of range for "
"platform localtime()/gmtime() function");
return result;
}
/* Internal helper.
* Build datetime from a Python timestamp. Pass localtime or gmtime for f,
* to control the interpretation of the timestamp. Since a double doesn't
* have enough bits to cover a datetime's full range of precision, it's
* better to call datetime_from_timet_and_us provided you have a way
* to get that much precision (e.g., C time() isn't good enough).
*/
static PyObject *
datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp)
{
time_t timet = (time_t)timestamp;
int us = (int)((timestamp - (double)timet) * 1e6);
return datetime_from_timet_and_us(cls, f, timet, us);
}
/* Internal helper.
* Build most accurate possible datetime for current time. Pass localtime or
* gmtime for f as appropriate.
*/
static PyObject *
datetime_best_possible(PyObject *cls, TM_FUNC f)
{
#ifdef HAVE_GETTIMEOFDAY
struct timeval t;
#ifdef GETTIMEOFDAY_NO_TZ
gettimeofday(&t);
#else
gettimeofday(&t, (struct timezone *)NULL);
#endif
return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec);
#else /* ! HAVE_GETTIMEOFDAY */
/* No flavor of gettimeofday exists on this platform. Python's
* time.time() does a lot of other platform tricks to get the
* best time it can on the platform, and we're not going to do
* better than that (if we could, the better code would belong
* in time.time()!) We're limited by the precision of a double,
* though.
*/
PyObject *time;
double dtime;
time = time_time();
if (time == NULL)
return NULL;
dtime = PyFloat_AsDouble(time);
Py_DECREF(time);
if (dtime == -1.0 && PyErr_Occurred())
return NULL;
return datetime_from_timestamp(cls, f, dtime);
#endif /* ! HAVE_GETTIMEOFDAY */
}
/* Return new local datetime from timestamp (Python timestamp -- a double). */
static PyObject *
datetime_fromtimestamp(PyObject *cls, PyObject *args)
{
double timestamp;
PyObject *result = NULL;
if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
result = datetime_from_timestamp(cls, localtime, timestamp);
return result;
}
/* Return new UTC datetime from timestamp (Python timestamp -- a double). */
static PyObject *
datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
{
double timestamp;
PyObject *result = NULL;
if (PyArg_ParseTuple(args, "d:utcfromtimestamp", &timestamp))
result = datetime_from_timestamp(cls, gmtime, timestamp);
return result;
}
/* Return best possible local time -- this isn't constrained by the
* precision of a timestamp.
*/
static PyObject *
datetime_now(PyObject *cls, PyObject *dummy)
{
return datetime_best_possible(cls, localtime);
}
/* Return best possible UTC time -- this isn't constrained by the
* precision of a timestamp.
*/
static PyObject *
datetime_utcnow(PyObject *cls, PyObject *dummy)
{
return datetime_best_possible(cls, gmtime);
}
/* Return new datetime or datetimetz from date/datetime/datetimetz and
* time/timetz arguments.
*/
static PyObject *
datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
{
static char *keywords[] = {"date", "time", NULL};
PyObject *date;
PyObject *time;
PyObject *result = NULL;
if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
&PyDateTime_DateType, &date,
&PyDateTime_TimeType, &time))
result = PyObject_CallFunction(cls, "iiiiiii",
GET_YEAR(date),
GET_MONTH(date),
GET_DAY(date),
TIME_GET_HOUR(time),
TIME_GET_MINUTE(time),
TIME_GET_SECOND(time),
TIME_GET_MICROSECOND(time));
if (result && PyTimeTZ_Check(time) && PyDateTimeTZ_Check(result)) {
/* Copy the tzinfo field. */
PyObject *tzinfo = ((PyDateTime_TimeTZ *)time)->tzinfo;
Py_INCREF(tzinfo);
Py_DECREF(((PyDateTime_DateTimeTZ *)result)->tzinfo);
((PyDateTime_DateTimeTZ *)result)->tzinfo = tzinfo;
}
return result;
}
/* datetime arithmetic. */
static PyObject *
add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta)
{
/* Note that the C-level additions can't overflow, because of
* invariant bounds on the member values.
*/
int year = GET_YEAR(date);
int month = GET_MONTH(date);
int day = GET_DAY(date) + GET_TD_DAYS(delta);
int hour = DATE_GET_HOUR(date);
int minute = DATE_GET_MINUTE(date);
int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta);
int microsecond = DATE_GET_MICROSECOND(date) +
GET_TD_MICROSECONDS(delta);
if (normalize_datetime(&year, &month, &day,
&hour, &minute, &second, &microsecond) < 0)
return NULL;
else
return new_datetime(year, month, day,
hour, minute, second, microsecond);
}
static PyObject *
sub_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta)
{
/* Note that the C-level subtractions can't overflow, because of
* invariant bounds on the member values.
*/
int year = GET_YEAR(date);
int month = GET_MONTH(date);
int day = GET_DAY(date) - GET_TD_DAYS(delta);
int hour = DATE_GET_HOUR(date);
int minute = DATE_GET_MINUTE(date);
int second = DATE_GET_SECOND(date) - GET_TD_SECONDS(delta);
int microsecond = DATE_GET_MICROSECOND(date) -
GET_TD_MICROSECONDS(delta);
if (normalize_datetime(&year, &month, &day,
&hour, &minute, &second, &microsecond) < 0)
return NULL;
else
return new_datetime(year, month, day,
hour, minute, second, microsecond);
}
static PyObject *
sub_datetime_datetime(PyDateTime_DateTime *left, PyDateTime_DateTime *right)
{
int days1 = ymd_to_ord(GET_YEAR(left), GET_MONTH(left), GET_DAY(left));
int days2 = ymd_to_ord(GET_YEAR(right),
GET_MONTH(right),
GET_DAY(right));
/* These can't overflow, since the values are normalized. At most
* this gives the number of seconds in one day.
*/
int delta_s = (DATE_GET_HOUR(left) - DATE_GET_HOUR(right)) * 3600 +
(DATE_GET_MINUTE(left) - DATE_GET_MINUTE(right)) * 60 +
DATE_GET_SECOND(left) - DATE_GET_SECOND(right);
int delta_us = DATE_GET_MICROSECOND(left) -
DATE_GET_MICROSECOND(right);
return new_delta(days1 - days2, delta_s, delta_us, 1);
}
static PyObject *
datetime_add(PyObject *left, PyObject *right)
{
if (PyDateTime_Check(left)) {
/* datetime + ??? */
if (PyDelta_Check(right))
/* datetime + delta */
return add_datetime_timedelta(
(PyDateTime_DateTime *)left,
(PyDateTime_Delta *)right);
}
else if (PyDelta_Check(left)) {
/* delta + datetime */
return add_datetime_timedelta((PyDateTime_DateTime *) right,
(PyDateTime_Delta *) left);
}
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
static PyObject *
datetime_subtract(PyObject *left, PyObject *right)
{
PyObject *result = Py_NotImplemented;
if (PyDateTime_Check(left)) {
/* datetime - ??? */
if (PyDateTime_Check(right)) {
/* datetime - datetime */
result = sub_datetime_datetime(
(PyDateTime_DateTime *)left,
(PyDateTime_DateTime *)right);
}
else if (PyDelta_Check(right)) {
/* datetime - delta */
result = sub_datetime_timedelta(
(PyDateTime_DateTime *)left,
(PyDateTime_Delta *)right);
}
}
if (result == Py_NotImplemented)
Py_INCREF(result);
return result;
}
/* Various ways to turn a datetime into a string. */
static PyObject *
datetime_repr(PyDateTime_DateTime *self)
{
char buffer[1000];
char *typename = self->ob_type->tp_name;
if (DATE_GET_MICROSECOND(self)) {
PyOS_snprintf(buffer, sizeof(buffer),
"%s(%d, %d, %d, %d, %d, %d, %d)",
typename,
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
DATE_GET_SECOND(self),
DATE_GET_MICROSECOND(self));
}
else if (DATE_GET_SECOND(self)) {
PyOS_snprintf(buffer, sizeof(buffer),
"%s(%d, %d, %d, %d, %d, %d)",
typename,
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
DATE_GET_SECOND(self));
}
else {
PyOS_snprintf(buffer, sizeof(buffer),
"%s(%d, %d, %d, %d, %d)",
typename,
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
}
return PyString_FromString(buffer);
}
static PyObject *
datetime_str(PyDateTime_DateTime *self)
{
return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
}
static PyObject *
datetime_isoformat(PyDateTime_DateTime *self,
PyObject *args, PyObject *kw)
{
char sep = 'T';
static char *keywords[] = {"sep", NULL};
char buffer[100];
char *cp;
if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords,
&sep))
return NULL;
cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer));
assert(cp != NULL);
*cp++ = sep;
isoformat_time(self, cp, sizeof(buffer) - (cp - buffer));
return PyString_FromString(buffer);
}
static PyObject *
datetime_ctime(PyDateTime_DateTime *self)
{
return format_ctime((PyDateTime_Date *)self,
DATE_GET_HOUR(self),
DATE_GET_MINUTE(self),
DATE_GET_SECOND(self));
}
/* Miscellaneous methods. */
/* This is more natural as a tp_compare, but doesn't work then: for whatever
* reason, Python's try_3way_compare ignores tp_compare unless
* PyInstance_Check returns true, but these aren't old-style classes.
* Note that this routine handles all comparisons for datetime and datetimetz.
*/
static PyObject *
datetime_richcompare(PyDateTime_DateTime *self, PyObject *other, int op)
{
int diff;
naivety n1, n2;
int offset1, offset2;
if (! PyDateTime_Check(other)) {
/* Stop this from falling back to address comparison. */
PyErr_Format(PyExc_TypeError,
"can't compare '%s' to '%s'",
self->ob_type->tp_name,
other->ob_type->tp_name);
return NULL;
}
n1 = classify_object((PyObject *)self, &offset1);
assert(n1 != OFFSET_UNKNOWN);
if (n1 == OFFSET_ERROR)
return NULL;
n2 = classify_object(other, &offset2);
assert(n2 != OFFSET_UNKNOWN);
if (n2 == OFFSET_ERROR)
return NULL;
/* If they're both naive, or both aware and have the same offsets,
* we get off cheap. Note that if they're both naive, offset1 ==
* offset2 == 0 at this point.
*/
if (n1 == n2 && offset1 == offset2) {
diff = memcmp(self->data, ((PyDateTime_DateTime *)other)->data,
_PyDateTime_DATETIME_DATASIZE);
return diff_to_bool(diff, op);
}
if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
/* We want the sign of
* (self - offset1 minutes) - (other - offset2 minutes) =
* (self - other) + (offset2 - offset1) minutes.
*/
PyDateTime_Delta *delta;
int days, seconds, us;
assert(offset1 != offset2); /* else last "if" handled it */
delta = (PyDateTime_Delta *)sub_datetime_datetime(self,
(PyDateTime_DateTime *)other);
if (delta == NULL)
return NULL;
days = delta->days;
seconds = delta->seconds + (offset2 - offset1) * 60;
us = delta->microseconds;
Py_DECREF(delta);
normalize_d_s_us(&days, &seconds, &us);
diff = days;
if (diff == 0)
diff = seconds | us;
return diff_to_bool(diff, op);
}
assert(n1 != n2);
PyErr_SetString(PyExc_TypeError,
"can't compare offset-naive and "
"offset-aware datetimes");
return NULL;
}
static PyObject *datetime_getstate(PyDateTime_DateTime *self);
static long
datetime_hash(PyDateTime_DateTime *self)
{
if (self->hashcode == -1) {
naivety n;
int offset;
PyObject *temp;
n = classify_object((PyObject *)self, &offset);
assert(n != OFFSET_UNKNOWN);
if (n == OFFSET_ERROR)
return -1;
/* Reduce this to a hash of another object. */
if (n == OFFSET_NAIVE)
temp = datetime_getstate(self);
else {
int days;
int seconds;
assert(n == OFFSET_AWARE);
assert(PyDateTimeTZ_Check(self));
days = ymd_to_ord(GET_YEAR(self),
GET_MONTH(self),
GET_DAY(self));
seconds = DATE_GET_HOUR(self) * 3600 +
(DATE_GET_MINUTE(self) - offset) * 60 +
DATE_GET_SECOND(self);
temp = new_delta(days,
seconds,
DATE_GET_MICROSECOND(self),
1);
}
if (temp != NULL) {
self->hashcode = PyObject_Hash(temp);
Py_DECREF(temp);
}
}
return self->hashcode;
}
static PyObject *
datetime_timetuple(PyDateTime_DateTime *self)
{
return build_struct_time(GET_YEAR(self),
GET_MONTH(self),
GET_DAY(self),
DATE_GET_HOUR(self),
DATE_GET_MINUTE(self),
DATE_GET_SECOND(self),
-1);
}
static PyObject *
datetime_getdate(PyDateTime_DateTime *self)
{
return new_date(GET_YEAR(self),
GET_MONTH(self),
GET_DAY(self));
}
static PyObject *
datetime_gettime(PyDateTime_DateTime *self)
{
return new_time(DATE_GET_HOUR(self),
DATE_GET_MINUTE(self),
DATE_GET_SECOND(self),
DATE_GET_MICROSECOND(self));
}
/* Pickle support. Quite a maze! */
static PyObject *
datetime_getstate(PyDateTime_DateTime *self)
{
return PyString_FromStringAndSize(self->data,
_PyDateTime_DATETIME_DATASIZE);
}
static PyObject *
datetime_setstate(PyDateTime_DateTime *self, PyObject *state)
{
const int len = PyString_Size(state);
unsigned char *pdata = (unsigned char*)PyString_AsString(state);
if (! PyString_Check(state) ||
len != _PyDateTime_DATETIME_DATASIZE) {
PyErr_SetString(PyExc_TypeError,
"bad argument to datetime.__setstate__");
return NULL;
}
memcpy(self->data, pdata, _PyDateTime_DATETIME_DATASIZE);
self->hashcode = -1;
Py_INCREF(Py_None);
return Py_None;
}
/* XXX This seems a ridiculously inefficient way to pickle a short string. */
static PyObject *
datetime_pickler(PyObject *module, PyDateTime_DateTime *datetime)
{
PyObject *state;
PyObject *result = NULL;
if (! PyDateTime_CheckExact(datetime)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to datetime pickler: %s",
datetime->ob_type->tp_name);
return NULL;
}
state = datetime_getstate(datetime);
if (state) {
result = Py_BuildValue("O(O)",
datetime_unpickler_object,
state);
Py_DECREF(state);
}
return result;
}
static PyObject *
datetime_unpickler(PyObject *module, PyObject *arg)
{
PyDateTime_DateTime *self;
if (! PyString_CheckExact(arg)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to datetime unpickler: %s",
arg->ob_type->tp_name);
return NULL;
}
self = PyObject_New(PyDateTime_DateTime, &PyDateTime_DateTimeType);
if (self != NULL) {
PyObject *res = datetime_setstate(self, arg);
if (res == NULL) {
Py_DECREF(self);
return NULL;
}
Py_DECREF(res);
}
return (PyObject *)self;
}
static PyMethodDef datetime_methods[] = {
/* Class methods: */
{"now", (PyCFunction)datetime_now,
METH_NOARGS | METH_CLASS,
PyDoc_STR("Return a new datetime representing local day and time.")},
{"utcnow", (PyCFunction)datetime_utcnow,
METH_NOARGS | METH_CLASS,
PyDoc_STR("Return a new datetime representing UTC day and time.")},
{"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
METH_VARARGS | METH_CLASS,
PyDoc_STR("timestamp -> local datetime from a POSIX timestamp "
"(like time.time()).")},
{"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
METH_VARARGS | METH_CLASS,
PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
"(like time.time()).")},
{"combine", (PyCFunction)datetime_combine,
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
PyDoc_STR("date, time -> datetime with same date and time fields")},
/* Instance methods: */
{"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
{"date", (PyCFunction)datetime_getdate, METH_NOARGS,
PyDoc_STR("Return date object with same year, month and day.")},
{"time", (PyCFunction)datetime_gettime, METH_NOARGS,
PyDoc_STR("Return time object with same hour, minute, second and "
"microsecond.")},
{"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
PyDoc_STR("Return ctime() style string.")},
{"isoformat", (PyCFunction)datetime_isoformat, METH_KEYWORDS,
PyDoc_STR("[sep] -> string in ISO 8601 format, "
"YYYY-MM-DDTHH:MM:SS[.mmmmmm].\n\n"
"sep is used to separate the year from the time, and "
"defaults\n"
"to 'T'.")},
{"__setstate__", (PyCFunction)datetime_setstate, METH_O,
PyDoc_STR("__setstate__(state)")},
{"__getstate__", (PyCFunction)datetime_getstate, METH_NOARGS,
PyDoc_STR("__getstate__() -> state")},
{NULL, NULL}
};
static char datetime_doc[] =
PyDoc_STR("Basic date/time type.");
static PyNumberMethods datetime_as_number = {
datetime_add, /* nb_add */
datetime_subtract, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_divide */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
0, /* nb_nonzero */
};
statichere PyTypeObject PyDateTime_DateTimeType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.datetime", /* tp_name */
sizeof(PyDateTime_DateTime), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)PyObject_Del, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)datetime_repr, /* tp_repr */
&datetime_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)datetime_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)datetime_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
datetime_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)datetime_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
datetime_methods, /* tp_methods */
0, /* tp_members */
datetime_getset, /* tp_getset */
&PyDateTime_DateType, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
datetime_new, /* tp_new */
_PyObject_Del, /* tp_free */
};
/*
* PyDateTime_Time implementation.
*/
/* Accessor properties. */
static PyObject *
time_hour(PyDateTime_Time *self, void *unused)
{
return PyInt_FromLong(TIME_GET_HOUR(self));
}
static PyObject *
time_minute(PyDateTime_Time *self, void *unused)
{
return PyInt_FromLong(TIME_GET_MINUTE(self));
}
static PyObject *
py_time_second(PyDateTime_Time *self, void *unused)
{
return PyInt_FromLong(TIME_GET_SECOND(self));
}
static PyObject *
time_microsecond(PyDateTime_Time *self, void *unused)
{
return PyInt_FromLong(TIME_GET_MICROSECOND(self));
}
static PyGetSetDef time_getset[] = {
{"hour", (getter)time_hour},
{"minute", (getter)time_minute},
{"second", (getter)py_time_second},
{"microsecond", (getter)time_microsecond},
{NULL}
};
/* Constructors. */
static PyObject *
time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
int hour = 0;
int minute = 0;
int second = 0;
int usecond = 0;
static char *keywords[] = {
"hour", "minute", "second", "microsecond", NULL
};
if (PyArg_ParseTupleAndKeywords(args, kw, "|iiii", keywords,
&hour, &minute, &second, &usecond)) {
if (check_time_args(hour, minute, second, usecond) < 0)
return NULL;
self = new_time(hour, minute, second, usecond);
}
return self;
}
/* Various ways to turn a time into a string. */
static PyObject *
time_repr(PyDateTime_Time *self)
{
char buffer[100];
char *typename = self->ob_type->tp_name;
int h = TIME_GET_HOUR(self);
int m = TIME_GET_MINUTE(self);
int s = TIME_GET_SECOND(self);
int us = TIME_GET_MICROSECOND(self);
if (us)
PyOS_snprintf(buffer, sizeof(buffer),
"%s(%d, %d, %d, %d)", typename, h, m, s, us);
else if (s)
PyOS_snprintf(buffer, sizeof(buffer),
"%s(%d, %d, %d)", typename, h, m, s);
else
PyOS_snprintf(buffer, sizeof(buffer),
"%s(%d, %d)", typename, h, m);
return PyString_FromString(buffer);
}
static PyObject *
time_str(PyDateTime_Time *self)
{
return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
}
static PyObject *
time_isoformat(PyDateTime_Time *self)
{
char buffer[100];
/* Reuse the time format code from the datetime type. */
PyDateTime_DateTime datetime;
PyDateTime_DateTime *pdatetime = &datetime;
/* Copy over just the time bytes. */
memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE,
self->data,
_PyDateTime_TIME_DATASIZE);
isoformat_time(pdatetime, buffer, sizeof(buffer));
return PyString_FromString(buffer);
}
static PyObject *
time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
{
PyObject *result;
PyObject *format;
PyObject *tuple;
static char *keywords[] = {"format", NULL};
if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords,
&PyString_Type, &format))
return NULL;
tuple = Py_BuildValue("iiiiiiiii",
0, 0, 0, /* year, month, day */
TIME_GET_HOUR(self),
TIME_GET_MINUTE(self),
TIME_GET_SECOND(self),
0, 0, -1); /* weekday, daynum, dst */
if (tuple == NULL)
return NULL;
assert(PyTuple_Size(tuple) == 9);
result = wrap_strftime((PyObject *)self, format, tuple);
Py_DECREF(tuple);
return result;
}
/* Miscellaneous methods. */
/* This is more natural as a tp_compare, but doesn't work then: for whatever
* reason, Python's try_3way_compare ignores tp_compare unless
* PyInstance_Check returns true, but these aren't old-style classes.
* Note that this routine handles all comparisons for time and timetz.
*/
static PyObject *
time_richcompare(PyDateTime_Time *self, PyObject *other, int op)
{
int diff;
naivety n1, n2;
int offset1, offset2;
if (! PyTime_Check(other)) {
/* Stop this from falling back to address comparison. */
PyErr_Format(PyExc_TypeError,
"can't compare '%s' to '%s'",
self->ob_type->tp_name,
other->ob_type->tp_name);
return NULL;
}
n1 = classify_object((PyObject *)self, &offset1);
assert(n1 != OFFSET_UNKNOWN);
if (n1 == OFFSET_ERROR)
return NULL;
n2 = classify_object(other, &offset2);
assert(n2 != OFFSET_UNKNOWN);
if (n2 == OFFSET_ERROR)
return NULL;
/* If they're both naive, or both aware and have the same offsets,
* we get off cheap. Note that if they're both naive, offset1 ==
* offset2 == 0 at this point.
*/
if (n1 == n2 && offset1 == offset2) {
diff = memcmp(self->data, ((PyDateTime_Time *)other)->data,
_PyDateTime_TIME_DATASIZE);
return diff_to_bool(diff, op);
}
if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
assert(offset1 != offset2); /* else last "if" handled it */
/* Convert everything except microseconds to seconds. These
* can't overflow (no more than the # of seconds in 2 days).
*/
offset1 = TIME_GET_HOUR(self) * 3600 +
(TIME_GET_MINUTE(self) - offset1) * 60 +
TIME_GET_SECOND(self);
offset2 = TIME_GET_HOUR(other) * 3600 +
(TIME_GET_MINUTE(other) - offset2) * 60 +
TIME_GET_SECOND(other);
diff = offset1 - offset2;
if (diff == 0)
diff = TIME_GET_MICROSECOND(self) -
TIME_GET_MICROSECOND(other);
return diff_to_bool(diff, op);
}
assert(n1 != n2);
PyErr_SetString(PyExc_TypeError,
"can't compare offset-naive and "
"offset-aware times");
return NULL;
}
static PyObject *time_getstate(PyDateTime_Time *self);
static long
time_hash(PyDateTime_Time *self)
{
if (self->hashcode == -1) {
naivety n;
int offset;
PyObject *temp;
n = classify_object((PyObject *)self, &offset);
assert(n != OFFSET_UNKNOWN);
if (n == OFFSET_ERROR)
return -1;
/* Reduce this to a hash of another object. */
if (offset == 0)
temp = time_getstate(self);
else {
int hour;
int minute;
assert(n == OFFSET_AWARE);
assert(PyTimeTZ_Check(self));
hour = divmod(TIME_GET_HOUR(self) * 60 +
TIME_GET_MINUTE(self) - offset,
60,
&minute);
if (0 <= hour && hour < 24)
temp = new_time(hour, minute,
TIME_GET_SECOND(self),
TIME_GET_MICROSECOND(self));
else
temp = Py_BuildValue("iiii",
hour, minute,
TIME_GET_SECOND(self),
TIME_GET_MICROSECOND(self));
}
if (temp != NULL) {
self->hashcode = PyObject_Hash(temp);
Py_DECREF(temp);
}
}
return self->hashcode;
}
static int
time_nonzero(PyDateTime_Time *self)
{
return TIME_GET_HOUR(self) ||
TIME_GET_MINUTE(self) ||
TIME_GET_SECOND(self) ||
TIME_GET_MICROSECOND(self);
}
/* Pickle support. Quite a maze! */
static PyObject *
time_getstate(PyDateTime_Time *self)
{
return PyString_FromStringAndSize(self->data,
_PyDateTime_TIME_DATASIZE);
}
static PyObject *
time_setstate(PyDateTime_Time *self, PyObject *state)
{
const int len = PyString_Size(state);
unsigned char *pdata = (unsigned char*)PyString_AsString(state);
if (! PyString_Check(state) ||
len != _PyDateTime_TIME_DATASIZE) {
PyErr_SetString(PyExc_TypeError,
"bad argument to time.__setstate__");
return NULL;
}
memcpy(self->data, pdata, _PyDateTime_TIME_DATASIZE);
self->hashcode = -1;
Py_INCREF(Py_None);
return Py_None;
}
/* XXX This seems a ridiculously inefficient way to pickle a short string. */
static PyObject *
time_pickler(PyObject *module, PyDateTime_Time *time)
{
PyObject *state;
PyObject *result = NULL;
if (! PyTime_CheckExact(time)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to time pickler: %s",
time->ob_type->tp_name);
return NULL;
}
state = time_getstate(time);
if (state) {
result = Py_BuildValue("O(O)",
time_unpickler_object,
state);
Py_DECREF(state);
}
return result;
}
static PyObject *
time_unpickler(PyObject *module, PyObject *arg)
{
PyDateTime_Time *self;
if (! PyString_CheckExact(arg)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to time unpickler: %s",
arg->ob_type->tp_name);
return NULL;
}
self = PyObject_New(PyDateTime_Time, &PyDateTime_TimeType);
if (self != NULL) {
PyObject *res = time_setstate(self, arg);
if (res == NULL) {
Py_DECREF(self);
return NULL;
}
Py_DECREF(res);
}
return (PyObject *)self;
}
static PyMethodDef time_methods[] = {
{"isoformat", (PyCFunction)time_isoformat, METH_KEYWORDS,
PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm].")},
{"strftime", (PyCFunction)time_strftime, METH_KEYWORDS,
PyDoc_STR("format -> strftime() style string.")},
{"__setstate__", (PyCFunction)time_setstate, METH_O,
PyDoc_STR("__setstate__(state)")},
{"__getstate__", (PyCFunction)time_getstate, METH_NOARGS,
PyDoc_STR("__getstate__() -> state")},
{NULL, NULL}
};
static char time_doc[] =
PyDoc_STR("Basic time type.");
static PyNumberMethods time_as_number = {
0, /* nb_add */
0, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_divide */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
(inquiry)time_nonzero, /* nb_nonzero */
};
statichere PyTypeObject PyDateTime_TimeType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.time", /* tp_name */
sizeof(PyDateTime_Time), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)PyObject_Del, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)time_repr, /* tp_repr */
&time_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)time_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)time_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
time_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)time_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
time_methods, /* tp_methods */
0, /* tp_members */
time_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
time_new, /* tp_new */
_PyObject_Del, /* tp_free */
};
/*
* PyDateTime_TZInfo implementation.
*/
/* This is a pure abstract base class, so doesn't do anything beyond
* raising NotImplemented exceptions. Real tzinfo classes need
* to derive from this. This is mostly for clarity, and for efficiency in
* datetimetz and timetz constructors (their tzinfo arguments need to
* be subclasses of this tzinfo class, which is easy and quick to check).
*
* Note: For reasons having to do with pickling of subclasses, we have
* to allow tzinfo objects to be instantiated. This wasn't an issue
* in the Python implementation (__init__() could raise NotImplementedError
* there without ill effect), but doing so in the C implementation hit a
* brick wall.
*/
static PyObject *
tzinfo_nogo(const char* methodname)
{
PyErr_Format(PyExc_NotImplementedError,
"a tzinfo subclass must implement %s()",
methodname);
return NULL;
}
/* Methods. A subclass must implement these. */
static PyObject*
tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
{
return tzinfo_nogo("tzname");
}
static PyObject*
tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
{
return tzinfo_nogo("utcoffset");
}
static PyObject*
tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
{
return tzinfo_nogo("dst");
}
/*
* Pickle support. This is solely so that tzinfo subclasses can use
* pickling -- tzinfo itself is supposed to be uninstantiable. The
* pickler and unpickler functions are given module-level private
* names, and registered with copy_reg, by the module init function.
*/
static PyObject*
tzinfo_pickler(PyDateTime_TZInfo *self) {
return Py_BuildValue("O()", tzinfo_unpickler_object);
}
static PyObject*
tzinfo_unpickler(PyObject * unused) {
return PyType_GenericNew(&PyDateTime_TZInfoType, NULL, NULL);
}
static PyMethodDef tzinfo_methods[] = {
{"tzname", (PyCFunction)tzinfo_tzname, METH_O,
PyDoc_STR("datetime -> string name of time zone.")},
{"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
PyDoc_STR("datetime -> minutes east of UTC (negative for "
"west of UTC).")},
{"dst", (PyCFunction)tzinfo_dst, METH_O,
PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
{NULL, NULL}
};
static char tzinfo_doc[] =
PyDoc_STR("Abstract base class for time zone info objects.");
statichere PyTypeObject PyDateTime_TZInfoType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.tzinfo", /* tp_name */
sizeof(PyDateTime_TZInfo), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
tzinfo_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
tzinfo_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
PyType_GenericNew, /* tp_new */
0, /* tp_free */
};
/*
* PyDateTime_TimeTZ implementation.
*/
/* Accessor properties. Properties for hour, minute, second and microsecond
* are inherited from time.
*/
static PyObject *
timetz_tzinfo(PyDateTime_TimeTZ *self, void *unused)
{
Py_INCREF(self->tzinfo);
return self->tzinfo;
}
static PyGetSetDef timetz_getset[] = {
{"tzinfo", (getter)timetz_tzinfo},
{NULL}
};
/*
* Constructors.
*/
static PyObject *
timetz_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
int hour = 0;
int minute = 0;
int second = 0;
int usecond = 0;
PyObject *tzinfo = Py_None;
static char *keywords[] = {
"hour", "minute", "second", "microsecond", "tzinfo", NULL
};
if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", keywords,
&hour, &minute, &second, &usecond,
&tzinfo)) {
if (check_time_args(hour, minute, second, usecond) < 0)
return NULL;
if (check_tzinfo_subclass(tzinfo) < 0)
return NULL;
self = new_timetz(hour, minute, second, usecond, tzinfo);
}
return self;
}
/*
* Destructor.
*/
static void
timetz_dealloc(PyDateTime_TimeTZ *self)
{
Py_XDECREF(self->tzinfo);
self->ob_type->tp_free((PyObject *)self);
}
/*
* Indirect access to tzinfo methods. One more "convenience function" and
* it won't be possible to find the useful methods anymore <0.5 wink>.
*/
static PyObject *
timetz_convienience(PyDateTime_TimeTZ *self, char *name)
{
PyObject *result;
if (self->tzinfo == Py_None) {
result = Py_None;
Py_INCREF(result);
}
else
result = PyObject_CallMethod(self->tzinfo, name, "O", self);
return result;
}
/* These are all METH_NOARGS, so don't need to check the arglist. */
static PyObject *
timetz_utcoffset(PyDateTime_TimeTZ *self, PyObject *unused) {
return timetz_convienience(self, "utcoffset");
}
static PyObject *
timetz_tzname(PyDateTime_TimeTZ *self, PyObject *unused) {
return timetz_convienience(self, "tzname");
}
static PyObject *
timetz_dst(PyDateTime_TimeTZ *self, PyObject *unused) {
return timetz_convienience(self, "dst");
}
/*
* Various ways to turn a timetz into a string.
*/
static PyObject *
timetz_repr(PyDateTime_TimeTZ *self)
{
PyObject *baserepr = time_repr((PyDateTime_Time *)self);
if (baserepr == NULL)
return NULL;
return append_keyword_tzinfo(baserepr, self->tzinfo);
}
/* Note: tp_str is inherited from time. */
static PyObject *
timetz_isoformat(PyDateTime_TimeTZ *self)
{
char buf[100];
PyObject *result = time_isoformat((PyDateTime_Time *)self);
if (result == NULL || self->tzinfo == Py_None)
return result;
/* We need to append the UTC offset. */
if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
(PyObject *)self) < 0) {
Py_DECREF(result);
return NULL;
}
PyString_ConcatAndDel(&result, PyString_FromString(buf));
return result;
}
/* Note: strftime() is inherited from time. */
/*
* Miscellaneous methods.
*/
/* Note: tp_richcompare and tp_hash are inherited from time. */
static int
timetz_nonzero(PyDateTime_TimeTZ *self)
{
int offset;
int none;
if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
/* Since utcoffset is in whole minutes, nothing can
* alter the conclusion that this is nonzero.
*/
return 1;
}
offset = 0;
if (self->tzinfo != Py_None) {
offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
if (offset == -1 && PyErr_Occurred())
return -1;
}
return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
}
/*
* Pickle support. Quite a maze!
*/
/* Let basestate be the state string returned by time_getstate.
* If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
* So it's a tuple in any (non-error) case.
*/
static PyObject *
timetz_getstate(PyDateTime_TimeTZ *self)
{
PyObject *basestate;
PyObject *result = NULL;
basestate = time_getstate((PyDateTime_Time *)self);
if (basestate != NULL) {
if (self->tzinfo == Py_None)
result = Py_BuildValue("(O)", basestate);
else
result = Py_BuildValue("OO", basestate, self->tzinfo);
Py_DECREF(basestate);
}
return result;
}
static PyObject *
timetz_setstate(PyDateTime_TimeTZ *self, PyObject *state)
{
PyObject *temp;
PyObject *basestate;
PyObject *tzinfo = Py_None;
if (! PyArg_ParseTuple(state, "O!|O:__setstate__",
&PyString_Type, &basestate,
&tzinfo))
return NULL;
temp = time_setstate((PyDateTime_Time *)self, basestate);
if (temp == NULL)
return NULL;
Py_DECREF(temp);
Py_INCREF(tzinfo);
Py_XDECREF(self->tzinfo);
self->tzinfo = tzinfo;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
timetz_pickler(PyObject *module, PyDateTime_TimeTZ *timetz)
{
PyObject *state;
PyObject *result = NULL;
if (! PyTimeTZ_CheckExact(timetz)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to timetz pickler: %s",
timetz->ob_type->tp_name);
return NULL;
}
state = timetz_getstate(timetz);
if (state) {
result = Py_BuildValue("O(O)",
timetz_unpickler_object,
state);
Py_DECREF(state);
}
return result;
}
static PyObject *
timetz_unpickler(PyObject *module, PyObject *arg)
{
PyDateTime_TimeTZ *self;
self = PyObject_New(PyDateTime_TimeTZ, &PyDateTime_TimeTZType);
if (self != NULL) {
PyObject *res;
self->tzinfo = NULL;
res = timetz_setstate(self, arg);
if (res == NULL) {
Py_DECREF(self);
return NULL;
}
Py_DECREF(res);
}
return (PyObject *)self;
}
static PyMethodDef timetz_methods[] = {
{"isoformat", (PyCFunction)timetz_isoformat, METH_KEYWORDS,
PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
"[+HH:MM].")},
{"utcoffset", (PyCFunction)timetz_utcoffset, METH_NOARGS,
PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
{"tzname", (PyCFunction)timetz_tzname, METH_NOARGS,
PyDoc_STR("Return self.tzinfo.tzname(self).")},
{"dst", (PyCFunction)timetz_dst, METH_NOARGS,
PyDoc_STR("Return self.tzinfo.dst(self).")},
{"__setstate__", (PyCFunction)timetz_setstate, METH_O,
PyDoc_STR("__setstate__(state)")},
{"__getstate__", (PyCFunction)timetz_getstate, METH_NOARGS,
PyDoc_STR("__getstate__() -> state")},
{NULL, NULL}
};
static char timetz_doc[] =
PyDoc_STR("Time type.");
static PyNumberMethods timetz_as_number = {
0, /* nb_add */
0, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_divide */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
(inquiry)timetz_nonzero, /* nb_nonzero */
};
statichere PyTypeObject PyDateTime_TimeTZType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.timetz", /* tp_name */
sizeof(PyDateTime_TimeTZ), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)timetz_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)timetz_repr, /* tp_repr */
&timetz_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
timetz_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
timetz_methods, /* tp_methods */
0, /* tp_members */
timetz_getset, /* tp_getset */
&PyDateTime_TimeType, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
timetz_new, /* tp_new */
_PyObject_Del, /* tp_free */
};
/*
* PyDateTime_DateTimeTZ implementation.
*/
/* Accessor properties. Properties for day, month, year, hour, minute,
* second and microsecond are inherited from datetime.
*/
static PyObject *
datetimetz_tzinfo(PyDateTime_DateTimeTZ *self, void *unused)
{
Py_INCREF(self->tzinfo);
return self->tzinfo;
}
static PyGetSetDef datetimetz_getset[] = {
{"tzinfo", (getter)datetimetz_tzinfo},
{NULL}
};
/*
* Constructors.
* These are like the datetime methods of the same names, but allow an
* optional tzinfo argument.
*/
/* Internal helper.
* self is a datetimetz. Replace its tzinfo member.
*/
void
replace_tzinfo(PyObject *self, PyObject *newtzinfo)
{
assert(self != NULL);
assert(newtzinfo != NULL);
assert(PyDateTimeTZ_Check(self));
Py_INCREF(newtzinfo);
Py_DECREF(((PyDateTime_DateTimeTZ *)self)->tzinfo);
((PyDateTime_DateTimeTZ *)self)->tzinfo = newtzinfo;
}
static PyObject *
datetimetz_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
int year;
int month;
int day;
int hour = 0;
int minute = 0;
int second = 0;
int usecond = 0;
PyObject *tzinfo = Py_None;
static char *keywords[] = {
"year", "month", "day", "hour", "minute", "second",
"microsecond", "tzinfo", NULL
};
if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", keywords,
&year, &month, &day, &hour, &minute,
&second, &usecond, &tzinfo)) {
if (check_date_args(year, month, day) < 0)
return NULL;
if (check_time_args(hour, minute, second, usecond) < 0)
return NULL;
if (check_tzinfo_subclass(tzinfo) < 0)
return NULL;
self = new_datetimetz(year, month, day,
hour, minute, second, usecond,
tzinfo);
}
return self;
}
/* Return best possible local time -- this isn't constrained by the
* precision of a timestamp.
*/
static PyObject *
datetimetz_now(PyObject *cls, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
PyObject *tzinfo = Py_None;
static char *keywords[] = {"tzinfo", NULL};
if (PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
&tzinfo)) {
if (check_tzinfo_subclass(tzinfo) < 0)
return NULL;
self = datetime_best_possible(cls, localtime);
if (self != NULL)
replace_tzinfo(self, tzinfo);
}
return self;
}
/* Return new local datetime from timestamp (Python timestamp -- a double). */
static PyObject *
datetimetz_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
{
PyObject *self = NULL;
double timestamp;
PyObject *tzinfo = Py_None;
static char *keywords[] = {"timestamp", "tzinfo", NULL};
if (PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
keywords, &timestamp, &tzinfo)) {
if (check_tzinfo_subclass(tzinfo) < 0)
return NULL;
self = datetime_from_timestamp(cls, localtime, timestamp);
if (self != NULL)
replace_tzinfo(self, tzinfo);
}
return self;
}
/* Note: utcnow() is inherited, and doesn't accept tzinfo.
* Ditto utcfromtimestamp(). Ditto combine().
*/
/*
* Destructor.
*/
static void
datetimetz_dealloc(PyDateTime_DateTimeTZ *self)
{
Py_XDECREF(self->tzinfo);
self->ob_type->tp_free((PyObject *)self);
}
/*
* Indirect access to tzinfo methods.
*/
/* Internal helper.
* Call a tzinfo object's method, or return None if tzinfo is None.
*/
static PyObject *
datetimetz_convienience(PyDateTime_DateTimeTZ *self, char *name)
{
PyObject *result;
if (self->tzinfo == Py_None) {
result = Py_None;
Py_INCREF(result);
}
else
result = PyObject_CallMethod(self->tzinfo, name, "O", self);
return result;
}
/* These are all METH_NOARGS, so don't need to check the arglist. */
static PyObject *
datetimetz_utcoffset(PyDateTime_DateTimeTZ *self, PyObject *unused) {
return datetimetz_convienience(self, "utcoffset");
}
static PyObject *
datetimetz_tzname(PyDateTime_DateTimeTZ *self, PyObject *unused) {
return datetimetz_convienience(self, "tzname");
}
static PyObject *
datetimetz_dst(PyDateTime_DateTimeTZ *self, PyObject *unused) {
return datetimetz_convienience(self, "dst");
}
/*
* datetimetz arithmetic.
*/
/* If base is Py_NotImplemented or NULL, just return it.
* Else base is a datetime, exactly one of {left, right} is a datetimetz,
* and we want to create a datetimetz with the same date and time fields
* as base, and with the tzinfo field from left or right. Do that,
* return it, and decref base. This is used to transform the result of
* a binary datetime operation (base) into a datetimetz result.
*/
static PyObject *
attach_tzinfo(PyObject *base, PyObject *left, PyObject *right)
{
PyDateTime_DateTimeTZ *self;
PyDateTime_DateTimeTZ *result;
if (base == NULL || base == Py_NotImplemented)
return base;
assert(PyDateTime_CheckExact(base));
if (PyDateTimeTZ_Check(left)) {
assert(! PyDateTimeTZ_Check(right));
self = (PyDateTime_DateTimeTZ *)left;
}
else {
assert(PyDateTimeTZ_Check(right));
self = (PyDateTime_DateTimeTZ *)right;
}
result = PyObject_New(PyDateTime_DateTimeTZ,
&PyDateTime_DateTimeTZType);
if (result != NULL) {
memcpy(result->data, ((PyDateTime_DateTime *)base)->data,
_PyDateTime_DATETIME_DATASIZE);
Py_INCREF(self->tzinfo);
result->tzinfo = self->tzinfo;
}
Py_DECREF(base);
return (PyObject *)result;
}
static PyObject *
datetimetz_add(PyObject *left, PyObject *right)
{
return attach_tzinfo(datetime_add(left, right), left, right);
}
static PyObject *
datetimetz_subtract(PyObject *left, PyObject *right)
{
PyObject *result = Py_NotImplemented;
if (PyDateTime_Check(left)) {
/* datetime - ??? */
if (PyDateTime_Check(right)) {
/* datetime - datetime */
naivety n1, n2;
int offset1, offset2;
PyDateTime_Delta *delta;
n1 = classify_object(left, &offset1);
assert(n1 != OFFSET_UNKNOWN);
if (n1 == OFFSET_ERROR)
return NULL;
n2 = classify_object(right, &offset2);
assert(n2 != OFFSET_UNKNOWN);
if (n2 == OFFSET_ERROR)
return NULL;
if (n1 != n2) {
PyErr_SetString(PyExc_TypeError,
"can't subtract offset-naive and "
"offset-aware datetimes");
return NULL;
}
delta = (PyDateTime_Delta *)sub_datetime_datetime(
(PyDateTime_DateTime *)left,
(PyDateTime_DateTime *)right);
if (delta == NULL || offset1 == offset2)
return (PyObject *)delta;
/* (left - offset1) - (right - offset2) =
* (left - right) + (offset2 - offset1)
*/
result = new_delta(delta->days,
delta->seconds +
(offset2 - offset1) * 60,
delta->microseconds,
1);
Py_DECREF(delta);
}
else if (PyDelta_Check(right)) {
/* datetimetz - delta */
result = sub_datetime_timedelta(
(PyDateTime_DateTime *)left,
(PyDateTime_Delta *)right);
result = attach_tzinfo(result, left, right);
}
}
if (result == Py_NotImplemented)
Py_INCREF(result);
return result;
}
/* Various ways to turn a datetime into a string. */
static PyObject *
datetimetz_repr(PyDateTime_DateTimeTZ *self)
{
PyObject *baserepr = datetime_repr((PyDateTime_DateTime *)self);
if (baserepr == NULL)
return NULL;
return append_keyword_tzinfo(baserepr, self->tzinfo);
}
/* Note: tp_str is inherited from datetime. */
static PyObject *
datetimetz_isoformat(PyDateTime_DateTimeTZ *self,
PyObject *args, PyObject *kw)
{
char buf[100];
PyObject *result = datetime_isoformat((PyDateTime_DateTime *)self,
args, kw);
if (result == NULL || self->tzinfo == Py_None)
return result;
/* We need to append the UTC offset. */
if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
(PyObject *)self) < 0) {
Py_DECREF(result);
return NULL;
}
PyString_ConcatAndDel(&result, PyString_FromString(buf));
return result;
}
/* Miscellaneous methods. */
/* Note: tp_richcompare and tp_hash are inherited from datetime. */
static PyObject *
datetimetz_timetuple(PyDateTime_DateTimeTZ *self)
{
int dstflag = -1;
if (self->tzinfo != Py_None) {
int none;
dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
if (dstflag == -1 && PyErr_Occurred())
return NULL;
if (none)
dstflag = -1;
else if (dstflag != 0)
dstflag = 1;
}
return build_struct_time(GET_YEAR(self),
GET_MONTH(self),
GET_DAY(self),
DATE_GET_HOUR(self),
DATE_GET_MINUTE(self),
DATE_GET_SECOND(self),
dstflag);
}
static PyObject *
datetimetz_utctimetuple(PyDateTime_DateTimeTZ *self)
{
int y = GET_YEAR(self);
int m = GET_MONTH(self);
int d = GET_DAY(self);
int hh = DATE_GET_HOUR(self);
int mm = DATE_GET_MINUTE(self);
int ss = DATE_GET_SECOND(self);
int us = 0; /* microseconds are ignored in a timetuple */
int offset = 0;
if (self->tzinfo != Py_None) {
int none;
offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
if (offset == -1 && PyErr_Occurred())
return NULL;
}
/* Even if offset is 0, don't call timetuple() -- tm_isdst should be
* 0 in a UTC timetuple regardless of what dst() says.
*/
if (offset) {
/* Subtract offset minutes & normalize. */
int stat;
mm -= offset;
stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
if (stat < 0) {
/* At the edges, it's possible we overflowed
* beyond MINYEAR or MAXYEAR.
*/
if (PyErr_ExceptionMatches(PyExc_OverflowError))
PyErr_Clear();
else
return NULL;
}
}
return build_struct_time(y, m, d, hh, mm, ss, 0);
}
static PyObject *
datetimetz_gettimetz(PyDateTime_DateTimeTZ *self)
{
return new_timetz(DATE_GET_HOUR(self),
DATE_GET_MINUTE(self),
DATE_GET_SECOND(self),
DATE_GET_MICROSECOND(self),
self->tzinfo);
}
/*
* Pickle support. Quite a maze!
*/
/* Let basestate be the state string returned by datetime_getstate.
* If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
* So it's a tuple in any (non-error) case.
*/
static PyObject *
datetimetz_getstate(PyDateTime_DateTimeTZ *self)
{
PyObject *basestate;
PyObject *result = NULL;
basestate = datetime_getstate((PyDateTime_DateTime *)self);
if (basestate != NULL) {
if (self->tzinfo == Py_None)
result = Py_BuildValue("(O)", basestate);
else
result = Py_BuildValue("OO", basestate, self->tzinfo);
Py_DECREF(basestate);
}
return result;
}
static PyObject *
datetimetz_setstate(PyDateTime_DateTimeTZ *self, PyObject *state)
{
PyObject *temp;
PyObject *basestate;
PyObject *tzinfo = Py_None;
if (! PyArg_ParseTuple(state, "O!|O:__setstate__",
&PyString_Type, &basestate,
&tzinfo))
return NULL;
temp = datetime_setstate((PyDateTime_DateTime *)self, basestate);
if (temp == NULL)
return NULL;
Py_DECREF(temp);
Py_INCREF(tzinfo);
Py_XDECREF(self->tzinfo);
self->tzinfo = tzinfo;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
datetimetz_pickler(PyObject *module, PyDateTime_DateTimeTZ *datetimetz)
{
PyObject *state;
PyObject *result = NULL;
if (! PyDateTimeTZ_CheckExact(datetimetz)) {
PyErr_Format(PyExc_TypeError,
"bad type passed to datetimetz pickler: %s",
datetimetz->ob_type->tp_name);
return NULL;
}
state = datetimetz_getstate(datetimetz);
if (state) {
result = Py_BuildValue("O(O)",
datetimetz_unpickler_object,
state);
Py_DECREF(state);
}
return result;
}
static PyObject *
datetimetz_unpickler(PyObject *module, PyObject *arg)
{
PyDateTime_DateTimeTZ *self;
self = PyObject_New(PyDateTime_DateTimeTZ, &PyDateTime_DateTimeTZType);
if (self != NULL) {
PyObject *res;
self->tzinfo = NULL;
res = datetimetz_setstate(self, arg);
if (res == NULL) {
Py_DECREF(self);
return NULL;
}
Py_DECREF(res);
}
return (PyObject *)self;
}
static PyMethodDef datetimetz_methods[] = {
/* Class methods: */
/* Inherited: combine(), utcnow(), utcfromtimestamp() */
{"now", (PyCFunction)datetimetz_now,
METH_KEYWORDS | METH_CLASS,
PyDoc_STR("[tzinfo] -> new datetimetz with local day and time.")},
{"fromtimestamp", (PyCFunction)datetimetz_fromtimestamp,
METH_KEYWORDS | METH_CLASS,
PyDoc_STR("timestamp[, tzinfo] -> local time from POSIX timestamp.")},
/* Instance methods: */
/* Inherited: date(), time(), ctime(). */
{"timetuple", (PyCFunction)datetimetz_timetuple, METH_NOARGS,
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
{"utctimetuple", (PyCFunction)datetimetz_utctimetuple, METH_NOARGS,
PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
{"timetz", (PyCFunction)datetimetz_gettimetz, METH_NOARGS,
PyDoc_STR("Return timetz object with same hour, minute, second, "
"microsecond, and tzinfo.")},
{"isoformat", (PyCFunction)datetimetz_isoformat, METH_KEYWORDS,
PyDoc_STR("[sep] -> string in ISO 8601 format, "
"YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
"sep is used to separate the year from the time, and "
"defaults to 'T'.")},
{"utcoffset", (PyCFunction)datetimetz_utcoffset, METH_NOARGS,
PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
{"tzname", (PyCFunction)datetimetz_tzname, METH_NOARGS,
PyDoc_STR("Return self.tzinfo.tzname(self).")},
{"dst", (PyCFunction)datetimetz_dst, METH_NOARGS,
PyDoc_STR("Return self.tzinfo.dst(self).")},
{"__setstate__", (PyCFunction)datetimetz_setstate, METH_O,
PyDoc_STR("__setstate__(state)")},
{"__getstate__", (PyCFunction)datetimetz_getstate, METH_NOARGS,
PyDoc_STR("__getstate__() -> state")},
{NULL, NULL}
};
static char datetimetz_doc[] =
PyDoc_STR("date/time type.");
static PyNumberMethods datetimetz_as_number = {
datetimetz_add, /* nb_add */
datetimetz_subtract, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_divide */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
0, /* nb_nonzero */
};
statichere PyTypeObject PyDateTime_DateTimeTZType = {
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"datetime.datetimetz", /* tp_name */
sizeof(PyDateTime_DateTimeTZ), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)datetimetz_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)datetimetz_repr, /* tp_repr */
&datetimetz_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
datetimetz_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
datetimetz_methods, /* tp_methods */
0, /* tp_members */
datetimetz_getset, /* tp_getset */
&PyDateTime_DateTimeType, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
datetimetz_new, /* tp_new */
_PyObject_Del, /* tp_free */
};
/* ---------------------------------------------------------------------------
* Module methods and initialization.
*/
static PyMethodDef module_methods[] = {
/* Private functions for pickling support, registered with the
* copy_reg module by the module init function.
*/
{"_date_pickler", (PyCFunction)date_pickler, METH_O, NULL},
{"_date_unpickler", (PyCFunction)date_unpickler, METH_O, NULL},
{"_datetime_pickler", (PyCFunction)datetime_pickler, METH_O, NULL},
{"_datetime_unpickler", (PyCFunction)datetime_unpickler,METH_O, NULL},
{"_datetimetz_pickler", (PyCFunction)datetimetz_pickler,METH_O, NULL},
{"_datetimetz_unpickler",(PyCFunction)datetimetz_unpickler,METH_O, NULL},
{"_time_pickler", (PyCFunction)time_pickler, METH_O, NULL},
{"_time_unpickler", (PyCFunction)time_unpickler, METH_O, NULL},
{"_timetz_pickler", (PyCFunction)timetz_pickler, METH_O, NULL},
{"_timetz_unpickler", (PyCFunction)timetz_unpickler, METH_O, NULL},
{"_tzinfo_pickler", (PyCFunction)tzinfo_pickler, METH_O, NULL},
{"_tzinfo_unpickler", (PyCFunction)tzinfo_unpickler, METH_NOARGS,
NULL},
{NULL, NULL}
};
PyMODINIT_FUNC
initdatetime(void)
{
PyObject *m; /* a module object */
PyObject *d; /* its dict */
PyObject *x;
/* Types that use __reduce__ for pickling need to set the following
* magical attr in the type dict, with a true value.
*/
PyObject *safepickle = PyString_FromString("__safe_for_unpickling__");
if (safepickle == NULL)
return;
m = Py_InitModule3("datetime", module_methods,
"Fast implementation of the datetime type.");
if (PyType_Ready(&PyDateTime_DateType) < 0)
return;
if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
return;
if (PyType_Ready(&PyDateTime_DeltaType) < 0)
return;
if (PyType_Ready(&PyDateTime_TimeType) < 0)
return;
if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
return;
if (PyType_Ready(&PyDateTime_TimeTZType) < 0)
return;
if (PyType_Ready(&PyDateTime_DateTimeTZType) < 0)
return;
/* Pickling support, via registering functions with copy_reg. */
{
PyObject *pickler;
PyObject *copyreg = PyImport_ImportModule("copy_reg");
if (copyreg == NULL) return;
pickler = PyObject_GetAttrString(m, "_date_pickler");
if (pickler == NULL) return;
date_unpickler_object = PyObject_GetAttrString(m,
"_date_unpickler");
if (date_unpickler_object == NULL) return;
x = PyObject_CallMethod(copyreg, "pickle", "OOO",
&PyDateTime_DateType,
pickler,
date_unpickler_object);
if (x == NULL) return;
Py_DECREF(x);
Py_DECREF(pickler);
pickler = PyObject_GetAttrString(m, "_datetime_pickler");
if (pickler == NULL) return;
datetime_unpickler_object = PyObject_GetAttrString(m,
"_datetime_unpickler");
if (datetime_unpickler_object == NULL) return;
x = PyObject_CallMethod(copyreg, "pickle", "OOO",
&PyDateTime_DateTimeType,
pickler,
datetime_unpickler_object);
if (x == NULL) return;
Py_DECREF(x);
Py_DECREF(pickler);
pickler = PyObject_GetAttrString(m, "_time_pickler");
if (pickler == NULL) return;
time_unpickler_object = PyObject_GetAttrString(m,
"_time_unpickler");
if (time_unpickler_object == NULL) return;
x = PyObject_CallMethod(copyreg, "pickle", "OOO",
&PyDateTime_TimeType,
pickler,
time_unpickler_object);
if (x == NULL) return;
Py_DECREF(x);
Py_DECREF(pickler);
pickler = PyObject_GetAttrString(m, "_timetz_pickler");
if (pickler == NULL) return;
timetz_unpickler_object = PyObject_GetAttrString(m,
"_timetz_unpickler");
if (timetz_unpickler_object == NULL) return;
x = PyObject_CallMethod(copyreg, "pickle", "OOO",
&PyDateTime_TimeTZType,
pickler,
timetz_unpickler_object);
if (x == NULL) return;
Py_DECREF(x);
Py_DECREF(pickler);
pickler = PyObject_GetAttrString(m, "_tzinfo_pickler");
if (pickler == NULL) return;
tzinfo_unpickler_object = PyObject_GetAttrString(m,
"_tzinfo_unpickler");
if (tzinfo_unpickler_object == NULL) return;
x = PyObject_CallMethod(copyreg, "pickle", "OOO",
&PyDateTime_TZInfoType,
pickler,
tzinfo_unpickler_object);
if (x== NULL) return;
Py_DECREF(x);
Py_DECREF(pickler);
pickler = PyObject_GetAttrString(m, "_datetimetz_pickler");
if (pickler == NULL) return;
datetimetz_unpickler_object = PyObject_GetAttrString(m,
"_datetimetz_unpickler");
if (datetimetz_unpickler_object == NULL) return;
x = PyObject_CallMethod(copyreg, "pickle", "OOO",
&PyDateTime_DateTimeTZType,
pickler,
datetimetz_unpickler_object);
if (x== NULL) return;
Py_DECREF(x);
Py_DECREF(pickler);
Py_DECREF(copyreg);
}
/* timedelta values */
d = PyDateTime_DeltaType.tp_dict;
if (PyDict_SetItem(d, safepickle, Py_True) < 0)
return;
x = new_delta(0, 0, 1, 0);
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
return;
Py_DECREF(x);
x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
return;
Py_DECREF(x);
x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
return;
Py_DECREF(x);
/* date values */
d = PyDateTime_DateType.tp_dict;
x = new_date(1, 1, 1);
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
return;
Py_DECREF(x);
x = new_date(MAXYEAR, 12, 31);
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
return;
Py_DECREF(x);
x = new_delta(1, 0, 0, 0);
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
return;
Py_DECREF(x);
/* datetime values */
d = PyDateTime_DateTimeType.tp_dict;
x = new_datetime(1, 1, 1, 0, 0, 0, 0);
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
return;
Py_DECREF(x);
x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999);
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
return;
Py_DECREF(x);
x = new_delta(0, 0, 1, 0);
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
return;
Py_DECREF(x);
/* time values */
d = PyDateTime_TimeType.tp_dict;
x = new_time(0, 0, 0, 0);
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
return;
Py_DECREF(x);
x = new_time(23, 59, 59, 999999);
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
return;
Py_DECREF(x);
x = new_delta(0, 0, 1, 0);
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
return;
Py_DECREF(x);
/* timetz values */
d = PyDateTime_TimeTZType.tp_dict;
x = new_timetz(0, 0, 0, 0, Py_None);
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
return;
Py_DECREF(x);
x = new_timetz(23, 59, 59, 999999, Py_None);
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
return;
Py_DECREF(x);
x = new_delta(0, 0, 1, 0);
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
return;
Py_DECREF(x);
/* datetimetz values */
d = PyDateTime_DateTimeTZType.tp_dict;
x = new_datetimetz(1, 1, 1, 0, 0, 0, 0, Py_None);
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
return;
Py_DECREF(x);
x = new_datetimetz(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
return;
Py_DECREF(x);
x = new_delta(0, 0, 1, 0);
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
return;
Py_DECREF(x);
Py_DECREF(safepickle);
/* module initialization */
PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
Py_INCREF(&PyDateTime_DateType);
PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
Py_INCREF(&PyDateTime_DateTimeType);
PyModule_AddObject(m, "datetime",
(PyObject *) &PyDateTime_DateTimeType);
Py_INCREF(&PyDateTime_DeltaType);
PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
Py_INCREF(&PyDateTime_TimeType);
PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
Py_INCREF(&PyDateTime_TZInfoType);
PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
Py_INCREF(&PyDateTime_TimeTZType);
PyModule_AddObject(m, "timetz", (PyObject *) &PyDateTime_TimeTZType);
Py_INCREF(&PyDateTime_DateTimeTZType);
PyModule_AddObject(m, "datetimetz",
(PyObject *)&PyDateTime_DateTimeTZType);
/* A 4-year cycle has an extra leap day over what we'd get from
* pasting together 4 single years.
*/
assert(DI4Y == 4 * 365 + 1);
assert(DI4Y == days_before_year(4+1));
/* Similarly, a 400-year cycle has an extra leap day over what we'd
* get from pasting together 4 100-year cycles.
*/
assert(DI400Y == 4 * DI100Y + 1);
assert(DI400Y == days_before_year(400+1));
/* OTOH, a 100-year cycle has one fewer leap day than we'd get from
* pasting together 25 4-year cycles.
*/
assert(DI100Y == 25 * DI4Y - 1);
assert(DI100Y == days_before_year(100+1));
us_per_us = PyInt_FromLong(1);
us_per_ms = PyInt_FromLong(1000);
us_per_second = PyInt_FromLong(1000000);
us_per_minute = PyInt_FromLong(60000000);
seconds_per_day = PyInt_FromLong(24 * 3600);
if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
us_per_minute == NULL || seconds_per_day == NULL)
return;
/* The rest are too big for 32-bit ints, but even
* us_per_week fits in 40 bits, so doubles should be exact.
*/
us_per_hour = PyLong_FromDouble(3600000000.0);
us_per_day = PyLong_FromDouble(86400000000.0);
us_per_week = PyLong_FromDouble(604800000000.0);
if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
return;
}