cpython/Objects/mimalloc/options.c

572 lines
21 KiB
C
Raw Permalink Normal View History

/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h" // mi_prim_out_stderr
#include <stdio.h> // FILE
#include <stdlib.h> // abort
#include <stdarg.h>
static long mi_max_error_count = 16; // stop outputting errors after this (use < 0 for no limit)
static long mi_max_warning_count = 16; // stop outputting warnings after this (use < 0 for no limit)
static void mi_add_stderr_output(void);
int mi_version(void) mi_attr_noexcept {
return MI_MALLOC_VERSION;
}
// --------------------------------------------------------
// Options
// These can be accessed by multiple threads and may be
// concurrently initialized, but an initializing data race
// is ok since they resolve to the same value.
// --------------------------------------------------------
typedef enum mi_init_e {
UNINIT, // not yet initialized
DEFAULTED, // not found in the environment, use default value
INITIALIZED // found in environment or set explicitly
} mi_init_t;
typedef struct mi_option_desc_s {
long value; // the value
mi_init_t init; // is it initialized yet? (from the environment)
mi_option_t option; // for debugging: the option index should match the option
const char* name; // option name without `mimalloc_` prefix
const char* legacy_name; // potential legacy option name
} mi_option_desc_t;
#define MI_OPTION(opt) mi_option_##opt, #opt, NULL
#define MI_OPTION_LEGACY(opt,legacy) mi_option_##opt, #opt, #legacy
static mi_option_desc_t options[_mi_option_last] =
{
// stable options
#if MI_DEBUG || defined(MI_SHOW_ERRORS)
{ 1, UNINIT, MI_OPTION(show_errors) },
#else
{ 0, UNINIT, MI_OPTION(show_errors) },
#endif
{ 0, UNINIT, MI_OPTION(show_stats) },
{ 0, UNINIT, MI_OPTION(verbose) },
// the following options are experimental and not all combinations make sense.
{ 1, UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`)
{ 2, UNINIT, MI_OPTION_LEGACY(arena_eager_commit,eager_region_commit) }, // eager commit arena's? 2 is used to enable this only on an OS that has overcommit (i.e. linux)
{ 1, UNINIT, MI_OPTION_LEGACY(purge_decommits,reset_decommits) }, // purge decommits memory (instead of reset) (note: on linux this uses MADV_DONTNEED for decommit)
{ 0, UNINIT, MI_OPTION_LEGACY(allow_large_os_pages,large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's
{ 0, UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages
{-1, UNINIT, MI_OPTION(reserve_huge_os_pages_at) }, // reserve huge pages at node N
{ 0, UNINIT, MI_OPTION(reserve_os_memory) },
{ 0, UNINIT, MI_OPTION(deprecated_segment_cache) }, // cache N segments per thread
{ 0, UNINIT, MI_OPTION(deprecated_page_reset) }, // reset page memory on free
{ 0, UNINIT, MI_OPTION_LEGACY(abandoned_page_purge,abandoned_page_reset) }, // reset free page memory when a thread terminates
{ 0, UNINIT, MI_OPTION(deprecated_segment_reset) }, // reset segment memory on free (needs eager commit)
#if defined(__NetBSD__)
{ 0, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed
#else
{ 1, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed (but per page in the segment on demand)
#endif
{ 10, UNINIT, MI_OPTION_LEGACY(purge_delay,reset_delay) }, // purge delay in milli-seconds
{ 0, UNINIT, MI_OPTION(use_numa_nodes) }, // 0 = use available numa nodes, otherwise use at most N nodes.
{ 0, UNINIT, MI_OPTION(limit_os_alloc) }, // 1 = do not use OS memory for allocation (but only reserved arenas)
{ 100, UNINIT, MI_OPTION(os_tag) }, // only apple specific for now but might serve more or less related purpose
{ 16, UNINIT, MI_OPTION(max_errors) }, // maximum errors that are output
{ 16, UNINIT, MI_OPTION(max_warnings) }, // maximum warnings that are output
{ 8, UNINIT, MI_OPTION(max_segment_reclaim)}, // max. number of segment reclaims from the abandoned segments per try.
{ 0, UNINIT, MI_OPTION(destroy_on_exit)}, // release all OS memory on process exit; careful with dangling pointer or after-exit frees!
#if (MI_INTPTR_SIZE>4)
{ 1024L * 1024L, UNINIT, MI_OPTION(arena_reserve) }, // reserve memory N KiB at a time
#else
{ 128L * 1024L, UNINIT, MI_OPTION(arena_reserve) },
#endif
{ 10, UNINIT, MI_OPTION(arena_purge_mult) }, // purge delay multiplier for arena's
{ 1, UNINIT, MI_OPTION_LEGACY(purge_extend_delay, decommit_extend_delay) },
};
static void mi_option_init(mi_option_desc_t* desc);
void _mi_options_init(void) {
// called on process load; should not be called before the CRT is initialized!
// (e.g. do not call this from process_init as that may run before CRT initialization)
mi_add_stderr_output(); // now it safe to use stderr for output
for(int i = 0; i < _mi_option_last; i++ ) {
mi_option_t option = (mi_option_t)i;
long l = mi_option_get(option); MI_UNUSED(l); // initialize
// if (option != mi_option_verbose)
{
mi_option_desc_t* desc = &options[option];
_mi_verbose_message("option '%s': %ld\n", desc->name, desc->value);
}
}
mi_max_error_count = mi_option_get(mi_option_max_errors);
mi_max_warning_count = mi_option_get(mi_option_max_warnings);
}
mi_decl_nodiscard long mi_option_get(mi_option_t option) {
mi_assert(option >= 0 && option < _mi_option_last);
if (option < 0 || option >= _mi_option_last) return 0;
mi_option_desc_t* desc = &options[option];
mi_assert(desc->option == option); // index should match the option
if mi_unlikely(desc->init == UNINIT) {
mi_option_init(desc);
}
return desc->value;
}
mi_decl_nodiscard long mi_option_get_clamp(mi_option_t option, long min, long max) {
long x = mi_option_get(option);
return (x < min ? min : (x > max ? max : x));
}
mi_decl_nodiscard size_t mi_option_get_size(mi_option_t option) {
mi_assert_internal(option == mi_option_reserve_os_memory || option == mi_option_arena_reserve);
long x = mi_option_get(option);
return (x < 0 ? 0 : (size_t)x * MI_KiB);
}
void mi_option_set(mi_option_t option, long value) {
mi_assert(option >= 0 && option < _mi_option_last);
if (option < 0 || option >= _mi_option_last) return;
mi_option_desc_t* desc = &options[option];
mi_assert(desc->option == option); // index should match the option
desc->value = value;
desc->init = INITIALIZED;
}
void mi_option_set_default(mi_option_t option, long value) {
mi_assert(option >= 0 && option < _mi_option_last);
if (option < 0 || option >= _mi_option_last) return;
mi_option_desc_t* desc = &options[option];
if (desc->init != INITIALIZED) {
desc->value = value;
}
}
mi_decl_nodiscard bool mi_option_is_enabled(mi_option_t option) {
return (mi_option_get(option) != 0);
}
void mi_option_set_enabled(mi_option_t option, bool enable) {
mi_option_set(option, (enable ? 1 : 0));
}
void mi_option_set_enabled_default(mi_option_t option, bool enable) {
mi_option_set_default(option, (enable ? 1 : 0));
}
void mi_option_enable(mi_option_t option) {
mi_option_set_enabled(option,true);
}
void mi_option_disable(mi_option_t option) {
mi_option_set_enabled(option,false);
}
static void mi_cdecl mi_out_stderr(const char* msg, void* arg) {
MI_UNUSED(arg);
if (msg != NULL && msg[0] != 0) {
_mi_prim_out_stderr(msg);
}
}
// Since an output function can be registered earliest in the `main`
// function we also buffer output that happens earlier. When
// an output function is registered it is called immediately with
// the output up to that point.
#ifndef MI_MAX_DELAY_OUTPUT
#define MI_MAX_DELAY_OUTPUT ((size_t)(32*1024))
#endif
static char out_buf[MI_MAX_DELAY_OUTPUT+1];
static _Atomic(size_t) out_len;
static void mi_cdecl mi_out_buf(const char* msg, void* arg) {
MI_UNUSED(arg);
if (msg==NULL) return;
if (mi_atomic_load_relaxed(&out_len)>=MI_MAX_DELAY_OUTPUT) return;
size_t n = _mi_strlen(msg);
if (n==0) return;
// claim space
size_t start = mi_atomic_add_acq_rel(&out_len, n);
if (start >= MI_MAX_DELAY_OUTPUT) return;
// check bound
if (start+n >= MI_MAX_DELAY_OUTPUT) {
n = MI_MAX_DELAY_OUTPUT-start-1;
}
_mi_memcpy(&out_buf[start], msg, n);
}
static void mi_out_buf_flush(mi_output_fun* out, bool no_more_buf, void* arg) {
if (out==NULL) return;
// claim (if `no_more_buf == true`, no more output will be added after this point)
size_t count = mi_atomic_add_acq_rel(&out_len, (no_more_buf ? MI_MAX_DELAY_OUTPUT : 1));
// and output the current contents
if (count>MI_MAX_DELAY_OUTPUT) count = MI_MAX_DELAY_OUTPUT;
out_buf[count] = 0;
out(out_buf,arg);
if (!no_more_buf) {
out_buf[count] = '\n'; // if continue with the buffer, insert a newline
}
}
// Once this module is loaded, switch to this routine
// which outputs to stderr and the delayed output buffer.
static void mi_cdecl mi_out_buf_stderr(const char* msg, void* arg) {
mi_out_stderr(msg,arg);
mi_out_buf(msg,arg);
}
// --------------------------------------------------------
// Default output handler
// --------------------------------------------------------
// Should be atomic but gives errors on many platforms as generally we cannot cast a function pointer to a uintptr_t.
// For now, don't register output from multiple threads.
static mi_output_fun* volatile mi_out_default; // = NULL
static _Atomic(void*) mi_out_arg; // = NULL
static mi_output_fun* mi_out_get_default(void** parg) {
if (parg != NULL) { *parg = mi_atomic_load_ptr_acquire(void,&mi_out_arg); }
mi_output_fun* out = mi_out_default;
return (out == NULL ? &mi_out_buf : out);
}
void mi_register_output(mi_output_fun* out, void* arg) mi_attr_noexcept {
mi_out_default = (out == NULL ? &mi_out_stderr : out); // stop using the delayed output buffer
mi_atomic_store_ptr_release(void,&mi_out_arg, arg);
if (out!=NULL) mi_out_buf_flush(out,true,arg); // output all the delayed output now
}
// add stderr to the delayed output after the module is loaded
static void mi_add_stderr_output(void) {
mi_assert_internal(mi_out_default == NULL);
mi_out_buf_flush(&mi_out_stderr, false, NULL); // flush current contents to stderr
mi_out_default = &mi_out_buf_stderr; // and add stderr to the delayed output
}
// --------------------------------------------------------
// Messages, all end up calling `_mi_fputs`.
// --------------------------------------------------------
static _Atomic(size_t) error_count; // = 0; // when >= max_error_count stop emitting errors
static _Atomic(size_t) warning_count; // = 0; // when >= max_warning_count stop emitting warnings
// When overriding malloc, we may recurse into mi_vfprintf if an allocation
// inside the C runtime causes another message.
// In some cases (like on macOS) the loader already allocates which
// calls into mimalloc; if we then access thread locals (like `recurse`)
// this may crash as the access may call _tlv_bootstrap that tries to
// (recursively) invoke malloc again to allocate space for the thread local
// variables on demand. This is why we use a _mi_preloading test on such
// platforms. However, C code generator may move the initial thread local address
// load before the `if` and we therefore split it out in a separate function.
static mi_decl_thread bool recurse = false;
static mi_decl_noinline bool mi_recurse_enter_prim(void) {
if (recurse) return false;
recurse = true;
return true;
}
static mi_decl_noinline void mi_recurse_exit_prim(void) {
recurse = false;
}
static bool mi_recurse_enter(void) {
#if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
if (_mi_preloading()) return false;
#endif
return mi_recurse_enter_prim();
}
static void mi_recurse_exit(void) {
#if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
if (_mi_preloading()) return;
#endif
mi_recurse_exit_prim();
}
void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message) {
if (out==NULL || (void*)out==(void*)stdout || (void*)out==(void*)stderr) { // TODO: use mi_out_stderr for stderr?
if (!mi_recurse_enter()) return;
out = mi_out_get_default(&arg);
if (prefix != NULL) out(prefix, arg);
out(message, arg);
mi_recurse_exit();
}
else {
if (prefix != NULL) out(prefix, arg);
out(message, arg);
}
}
// Define our own limited `fprintf` that avoids memory allocation.
// We do this using `snprintf` with a limited buffer.
static void mi_vfprintf( mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args ) {
char buf[512];
if (fmt==NULL) return;
if (!mi_recurse_enter()) return;
vsnprintf(buf,sizeof(buf)-1,fmt,args);
mi_recurse_exit();
_mi_fputs(out,arg,prefix,buf);
}
void _mi_fprintf( mi_output_fun* out, void* arg, const char* fmt, ... ) {
va_list args;
va_start(args,fmt);
mi_vfprintf(out,arg,NULL,fmt,args);
va_end(args);
}
static void mi_vfprintf_thread(mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args) {
if (prefix != NULL && _mi_strnlen(prefix,33) <= 32 && !_mi_is_main_thread()) {
char tprefix[64];
snprintf(tprefix, sizeof(tprefix), "%sthread 0x%llx: ", prefix, (unsigned long long)_mi_thread_id());
mi_vfprintf(out, arg, tprefix, fmt, args);
}
else {
mi_vfprintf(out, arg, prefix, fmt, args);
}
}
void _mi_trace_message(const char* fmt, ...) {
if (mi_option_get(mi_option_verbose) <= 1) return; // only with verbose level 2 or higher
va_list args;
va_start(args, fmt);
mi_vfprintf_thread(NULL, NULL, "mimalloc: ", fmt, args);
va_end(args);
}
void _mi_verbose_message(const char* fmt, ...) {
if (!mi_option_is_enabled(mi_option_verbose)) return;
va_list args;
va_start(args,fmt);
mi_vfprintf(NULL, NULL, "mimalloc: ", fmt, args);
va_end(args);
}
static void mi_show_error_message(const char* fmt, va_list args) {
if (!mi_option_is_enabled(mi_option_verbose)) {
if (!mi_option_is_enabled(mi_option_show_errors)) return;
if (mi_max_error_count >= 0 && (long)mi_atomic_increment_acq_rel(&error_count) > mi_max_error_count) return;
}
mi_vfprintf_thread(NULL, NULL, "mimalloc: error: ", fmt, args);
}
void _mi_warning_message(const char* fmt, ...) {
if (!mi_option_is_enabled(mi_option_verbose)) {
if (!mi_option_is_enabled(mi_option_show_errors)) return;
if (mi_max_warning_count >= 0 && (long)mi_atomic_increment_acq_rel(&warning_count) > mi_max_warning_count) return;
}
va_list args;
va_start(args,fmt);
mi_vfprintf_thread(NULL, NULL, "mimalloc: warning: ", fmt, args);
va_end(args);
}
#if MI_DEBUG
void _mi_assert_fail(const char* assertion, const char* fname, unsigned line, const char* func ) {
_mi_fprintf(NULL, NULL, "mimalloc: assertion failed: at \"%s\":%u, %s\n assertion: \"%s\"\n", fname, line, (func==NULL?"":func), assertion);
abort();
}
#endif
// --------------------------------------------------------
// Errors
// --------------------------------------------------------
static mi_error_fun* volatile mi_error_handler; // = NULL
static _Atomic(void*) mi_error_arg; // = NULL
static void mi_error_default(int err) {
MI_UNUSED(err);
#if (MI_DEBUG>0)
if (err==EFAULT) {
#ifdef _MSC_VER
__debugbreak();
#endif
abort();
}
#endif
#if (MI_SECURE>0)
if (err==EFAULT) { // abort on serious errors in secure mode (corrupted meta-data)
abort();
}
#endif
#if defined(MI_XMALLOC)
if (err==ENOMEM || err==EOVERFLOW) { // abort on memory allocation fails in xmalloc mode
abort();
}
#endif
}
void mi_register_error(mi_error_fun* fun, void* arg) {
mi_error_handler = fun; // can be NULL
mi_atomic_store_ptr_release(void,&mi_error_arg, arg);
}
void _mi_error_message(int err, const char* fmt, ...) {
// show detailed error message
va_list args;
va_start(args, fmt);
mi_show_error_message(fmt, args);
va_end(args);
// and call the error handler which may abort (or return normally)
if (mi_error_handler != NULL) {
mi_error_handler(err, mi_atomic_load_ptr_acquire(void,&mi_error_arg));
}
else {
mi_error_default(err);
}
}
// --------------------------------------------------------
// Initialize options by checking the environment
// --------------------------------------------------------
char _mi_toupper(char c) {
if (c >= 'a' && c <= 'z') return (c - 'a' + 'A');
else return c;
}
int _mi_strnicmp(const char* s, const char* t, size_t n) {
if (n == 0) return 0;
for (; *s != 0 && *t != 0 && n > 0; s++, t++, n--) {
if (_mi_toupper(*s) != _mi_toupper(*t)) break;
}
return (n == 0 ? 0 : *s - *t);
}
void _mi_strlcpy(char* dest, const char* src, size_t dest_size) {
if (dest==NULL || src==NULL || dest_size == 0) return;
// copy until end of src, or when dest is (almost) full
while (*src != 0 && dest_size > 1) {
*dest++ = *src++;
dest_size--;
}
// always zero terminate
*dest = 0;
}
void _mi_strlcat(char* dest, const char* src, size_t dest_size) {
if (dest==NULL || src==NULL || dest_size == 0) return;
// find end of string in the dest buffer
while (*dest != 0 && dest_size > 1) {
dest++;
dest_size--;
}
// and catenate
_mi_strlcpy(dest, src, dest_size);
}
size_t _mi_strlen(const char* s) {
if (s==NULL) return 0;
size_t len = 0;
while(s[len] != 0) { len++; }
return len;
}
size_t _mi_strnlen(const char* s, size_t max_len) {
if (s==NULL) return 0;
size_t len = 0;
while(s[len] != 0 && len < max_len) { len++; }
return len;
}
#ifdef MI_NO_GETENV
static bool mi_getenv(const char* name, char* result, size_t result_size) {
MI_UNUSED(name);
MI_UNUSED(result);
MI_UNUSED(result_size);
return false;
}
#else
static bool mi_getenv(const char* name, char* result, size_t result_size) {
if (name==NULL || result == NULL || result_size < 64) return false;
return _mi_prim_getenv(name,result,result_size);
}
#endif
// TODO: implement ourselves to reduce dependencies on the C runtime
#include <stdlib.h> // strtol
#include <string.h> // strstr
static void mi_option_init(mi_option_desc_t* desc) {
// Read option value from the environment
char s[64 + 1];
char buf[64+1];
_mi_strlcpy(buf, "mimalloc_", sizeof(buf));
_mi_strlcat(buf, desc->name, sizeof(buf));
bool found = mi_getenv(buf, s, sizeof(s));
if (!found && desc->legacy_name != NULL) {
_mi_strlcpy(buf, "mimalloc_", sizeof(buf));
_mi_strlcat(buf, desc->legacy_name, sizeof(buf));
found = mi_getenv(buf, s, sizeof(s));
if (found) {
_mi_warning_message("environment option \"mimalloc_%s\" is deprecated -- use \"mimalloc_%s\" instead.\n", desc->legacy_name, desc->name);
}
}
if (found) {
size_t len = _mi_strnlen(s, sizeof(buf) - 1);
for (size_t i = 0; i < len; i++) {
buf[i] = _mi_toupper(s[i]);
}
buf[len] = 0;
if (buf[0] == 0 || strstr("1;TRUE;YES;ON", buf) != NULL) {
desc->value = 1;
desc->init = INITIALIZED;
}
else if (strstr("0;FALSE;NO;OFF", buf) != NULL) {
desc->value = 0;
desc->init = INITIALIZED;
}
else {
char* end = buf;
long value = strtol(buf, &end, 10);
if (desc->option == mi_option_reserve_os_memory || desc->option == mi_option_arena_reserve) {
// this option is interpreted in KiB to prevent overflow of `long`
if (*end == 'K') { end++; }
else if (*end == 'M') { value *= MI_KiB; end++; }
else if (*end == 'G') { value *= MI_MiB; end++; }
else { value = (value + MI_KiB - 1) / MI_KiB; }
if (end[0] == 'I' && end[1] == 'B') { end += 2; }
else if (*end == 'B') { end++; }
}
if (*end == 0) {
desc->value = value;
desc->init = INITIALIZED;
}
else {
// set `init` first to avoid recursion through _mi_warning_message on mimalloc_verbose.
desc->init = DEFAULTED;
if (desc->option == mi_option_verbose && desc->value == 0) {
// if the 'mimalloc_verbose' env var has a bogus value we'd never know
// (since the value defaults to 'off') so in that case briefly enable verbose
desc->value = 1;
_mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name);
desc->value = 0;
}
else {
_mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name);
}
}
}
mi_assert_internal(desc->init != UNINIT);
}
else if (!_mi_preloading()) {
desc->init = DEFAULTED;
}
}