mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
2637 lines
94 KiB
Plaintext
2637 lines
94 KiB
Plaintext
|
|
ap_ppm_encoder.elf: file format elf32-avr
|
|
|
|
Sections:
|
|
Idx Name Size VMA LMA File off Algn
|
|
0 .data 00000014 00800100 00000c1e 00000cd2 2**0
|
|
CONTENTS, ALLOC, LOAD, DATA
|
|
1 .text 00000c1e 00000000 00000000 000000b4 2**1
|
|
CONTENTS, ALLOC, LOAD, READONLY, CODE
|
|
2 .bss 0000001c 00800114 00800114 00000ce6 2**0
|
|
ALLOC
|
|
3 .eeprom 00000035 00810000 00810000 00000ce6 2**0
|
|
CONTENTS, ALLOC, LOAD, DATA
|
|
4 .debug_aranges 00000020 00000000 00000000 00000d1b 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
5 .debug_pubnames 0000022c 00000000 00000000 00000d3b 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
6 .debug_info 00000914 00000000 00000000 00000f67 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
7 .debug_abbrev 00000262 00000000 00000000 0000187b 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
8 .debug_line 00000c94 00000000 00000000 00001add 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
9 .debug_frame 00000100 00000000 00000000 00002774 2**2
|
|
CONTENTS, READONLY, DEBUGGING
|
|
10 .debug_str 0000043c 00000000 00000000 00002874 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
11 .debug_loc 000003b4 00000000 00000000 00002cb0 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
12 .debug_ranges 00000018 00000000 00000000 00003064 2**0
|
|
CONTENTS, READONLY, DEBUGGING
|
|
|
|
Disassembly of section .text:
|
|
|
|
00000000 <__vectors>:
|
|
0: 0c 94 34 00 jmp 0x68 ; 0x68 <__ctors_end>
|
|
4: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
8: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
10: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
14: 0c 94 3f 02 jmp 0x47e ; 0x47e <__vector_5>
|
|
18: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
1c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
20: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
24: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
28: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
2c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
30: 0c 94 14 02 jmp 0x428 ; 0x428 <__vector_12>
|
|
34: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
38: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
3c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
40: 0c 94 03 02 jmp 0x406 ; 0x406 <__vector_16>
|
|
44: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
48: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
4c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
50: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
54: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
58: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
5c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
60: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
64: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
|
|
|
|
00000068 <__ctors_end>:
|
|
68: 11 24 eor r1, r1
|
|
6a: 1f be out 0x3f, r1 ; 63
|
|
6c: cf ef ldi r28, 0xFF ; 255
|
|
6e: d8 e0 ldi r29, 0x08 ; 8
|
|
70: de bf out 0x3e, r29 ; 62
|
|
72: cd bf out 0x3d, r28 ; 61
|
|
|
|
00000074 <__do_copy_data>:
|
|
74: 11 e0 ldi r17, 0x01 ; 1
|
|
76: a0 e0 ldi r26, 0x00 ; 0
|
|
78: b1 e0 ldi r27, 0x01 ; 1
|
|
7a: ee e1 ldi r30, 0x1E ; 30
|
|
7c: fc e0 ldi r31, 0x0C ; 12
|
|
7e: 02 c0 rjmp .+4 ; 0x84 <.do_copy_data_start>
|
|
|
|
00000080 <.do_copy_data_loop>:
|
|
80: 05 90 lpm r0, Z+
|
|
82: 0d 92 st X+, r0
|
|
|
|
00000084 <.do_copy_data_start>:
|
|
84: a4 31 cpi r26, 0x14 ; 20
|
|
86: b1 07 cpc r27, r17
|
|
88: d9 f7 brne .-10 ; 0x80 <.do_copy_data_loop>
|
|
|
|
0000008a <__do_clear_bss>:
|
|
8a: 11 e0 ldi r17, 0x01 ; 1
|
|
8c: a4 e1 ldi r26, 0x14 ; 20
|
|
8e: b1 e0 ldi r27, 0x01 ; 1
|
|
90: 01 c0 rjmp .+2 ; 0x94 <.do_clear_bss_start>
|
|
|
|
00000092 <.do_clear_bss_loop>:
|
|
92: 1d 92 st X+, r1
|
|
|
|
00000094 <.do_clear_bss_start>:
|
|
94: a0 33 cpi r26, 0x30 ; 48
|
|
96: b1 07 cpc r27, r17
|
|
98: e1 f7 brne .-8 ; 0x92 <.do_clear_bss_loop>
|
|
9a: 0e 94 57 04 call 0x8ae ; 0x8ae <main>
|
|
9e: 0c 94 0d 06 jmp 0xc1a ; 0xc1a <_exit>
|
|
|
|
000000a2 <__bad_interrupt>:
|
|
a2: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>
|
|
|
|
000000a6 <eeprom_read_byte>:
|
|
|
|
/** \ingroup avr_eeprom
|
|
Read one byte from EEPROM address \a __p.
|
|
*/
|
|
__ATTR_PURE__ static __inline__ uint8_t eeprom_read_byte (const uint8_t *__p)
|
|
{
|
|
a6: 9c 01 movw r18, r24
|
|
do {} while (!eeprom_is_ready ());
|
|
a8: f9 99 sbic 0x1f, 1 ; 31
|
|
aa: fe cf rjmp .-4 ; 0xa8 <eeprom_read_byte+0x2>
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
ac: 32 bd out 0x22, r19 ; 34
|
|
ae: 21 bd out 0x21, r18 ; 33
|
|
/* Use inline assembly below as some AVRs have problems with accessing
|
|
EECR with STS instructions. For example, see errata for ATmega64.
|
|
The code below also assumes that EECR and EEDR are in the I/O space.
|
|
*/
|
|
uint8_t __result;
|
|
__asm__ __volatile__
|
|
b0: f8 9a sbi 0x1f, 0 ; 31
|
|
b2: 80 b5 in r24, 0x20 ; 32
|
|
: "i" (_SFR_IO_ADDR(EECR)),
|
|
"i" (EERE),
|
|
"i" (_SFR_IO_ADDR(EEDR))
|
|
);
|
|
return __result;
|
|
}
|
|
b4: 08 95 ret
|
|
|
|
000000b6 <eeprom_write_byte>:
|
|
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
b6: 9c 01 movw r18, r24
|
|
do {} while (!eeprom_is_ready ());
|
|
b8: f9 99 sbic 0x1f, 1 ; 31
|
|
ba: fe cf rjmp .-4 ; 0xb8 <eeprom_write_byte+0x2>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
bc: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
be: 32 bd out 0x22, r19 ; 34
|
|
c0: 21 bd out 0x21, r18 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
c2: 60 bd out 0x20, r22 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
c4: 0f b6 in r0, 0x3f ; 63
|
|
c6: f8 94 cli
|
|
c8: fa 9a sbi 0x1f, 2 ; 31
|
|
ca: f9 9a sbi 0x1f, 1 ; 31
|
|
cc: 0f be out 0x3f, r0 ; 63
|
|
[__sreg] "i" (_SFR_IO_ADDR(SREG)),
|
|
[__eemwe] "i" (EEMWE),
|
|
[__eewe] "i" (EEWE)
|
|
: "r0"
|
|
);
|
|
}
|
|
ce: 08 95 ret
|
|
|
|
000000d0 <initialize_mcu>:
|
|
void initialize_mcu(void)
|
|
{
|
|
unsigned char x = 0;
|
|
unsigned int eep_address = 0;
|
|
|
|
asm("cli");
|
|
d0: f8 94 cli
|
|
|
|
STOP_TIMER0();
|
|
d2: 15 bc out 0x25, r1 ; 37
|
|
RESET_TIMER0();
|
|
d4: a8 9a sbi 0x15, 0 ; 21
|
|
d6: 16 bc out 0x26, r1 ; 38
|
|
d8: 10 92 1d 01 sts 0x011D, r1
|
|
|
|
/* Enable pwm mode 15 (fast pwm with top=OCR1A) and stop the timer. */
|
|
/* The timer compare module must be configured before the DDR register. */
|
|
// THE PPM GENERATOR IS CONFIGURED HERE !
|
|
#if RC_PPM_OUTPUT_TYPE == 0 // NEGATIVE PULSES
|
|
RC_TIMER1_MODE_REG = (1<<COM1B1) | (1<<COM1B0) | (1<<WGM11) | (1<<WGM10);
|
|
dc: 83 e3 ldi r24, 0x33 ; 51
|
|
de: 80 93 80 00 sts 0x0080, r24
|
|
#endif
|
|
#if RC_PPM_OUTPUT_TYPE == 1 // POSITIVE PULSES
|
|
RC_TIMER1_MODE_REG = (1<<COM1B1) | (0<<COM1B0) | (1<<WGM11) | (1<<WGM10);
|
|
#warning PPM output type set to POSITIVE PULSE
|
|
#endif
|
|
RC_TIMER1_PRESCALER_REG = (1<<WGM13)|(1<<WGM12);
|
|
e2: 88 e1 ldi r24, 0x18 ; 24
|
|
e4: 80 93 81 00 sts 0x0081, r24
|
|
RC_TIMER1_COMP1_REG = RC_RESET_PW_TIMER_VAL;
|
|
e8: 8c ee ldi r24, 0xEC ; 236
|
|
ea: 9c e2 ldi r25, 0x2C ; 44
|
|
ec: 90 93 89 00 sts 0x0089, r25
|
|
f0: 80 93 88 00 sts 0x0088, r24
|
|
RC_TIMER1_COMP2_REG = RC_PPM_SYNC_PW_VAL;
|
|
f4: 8c e2 ldi r24, 0x2C ; 44
|
|
f6: 91 e0 ldi r25, 0x01 ; 1
|
|
f8: 90 93 8b 00 sts 0x008B, r25
|
|
fc: 80 93 8a 00 sts 0x008A, r24
|
|
RC_TIMER1_TIMSK |= (1<<OCIE1B);
|
|
100: 80 91 6f 00 lds r24, 0x006F
|
|
104: 84 60 ori r24, 0x04 ; 4
|
|
106: 80 93 6f 00 sts 0x006F, r24
|
|
RC_TIMER1_TIFR |= ( (1<<OCIE1B)|(1<<TOIE1) );
|
|
10a: 86 b3 in r24, 0x16 ; 22
|
|
10c: 85 60 ori r24, 0x05 ; 5
|
|
10e: 86 bb out 0x16, r24 ; 22
|
|
|
|
/*Enable timer0 overflow interupt and timer1 compare B interrupt */
|
|
RC_TIMER0_TIMSK |= (1<<TOIE0);
|
|
110: 80 91 6e 00 lds r24, 0x006E
|
|
114: 81 60 ori r24, 0x01 ; 1
|
|
116: 80 93 6e 00 sts 0x006E, r24
|
|
RC_TIMER0_TIFR |= (1<<TOIE0);
|
|
11a: a8 9a sbi 0x15, 0 ; 21
|
|
|
|
RC_LED_PORT_OUT_REG &= (~(1<<RC_LED_PIN));
|
|
11c: 28 98 cbi 0x05, 0 ; 5
|
|
RC_LED_PORT_DDR_REG |= (1<<RC_LED_PIN);
|
|
11e: 20 9a sbi 0x04, 0 ; 4
|
|
LED_ON();
|
|
120: 28 9a sbi 0x05, 0 ; 5
|
|
|
|
RC_MUX_PORT_OUT_REG &= (~(1<<RC_MUX_PIN));
|
|
122: 29 98 cbi 0x05, 1 ; 5
|
|
RC_MUX_PORT_DDR_REG |= (1<<RC_MUX_PIN);
|
|
124: 21 9a sbi 0x04, 1 ; 4
|
|
MUX_ON();
|
|
126: 29 9a sbi 0x05, 1 ; 5
|
|
|
|
// make the setup pin an input and activate the pull up resistor on the setup pin.
|
|
RC_SETUP_DDR_REG &= (~(1<<RC_SETUP_PIN));
|
|
128: 24 98 cbi 0x04, 4 ; 4
|
|
RC_SETUP_PORT_OUT_REG |= (1<<RC_SETUP_PIN);
|
|
12a: 2c 9a sbi 0x05, 4 ; 5
|
|
|
|
/* configure the servo pins as inputs and activate their pull up resistors for noise reduction. */
|
|
RC_SERVO_PORT_DDR_REG = 0;
|
|
12c: 1a b8 out 0x0a, r1 ; 10
|
|
RC_SERVO_PORT_OUT_REG = 0xFF;
|
|
12e: 8f ef ldi r24, 0xFF ; 255
|
|
130: 8b b9 out 0x0b, r24 ; 11
|
|
|
|
isr_channel_number = RC_PPM_GEN_CHANNELS;
|
|
132: 88 e0 ldi r24, 0x08 ; 8
|
|
134: 80 93 15 01 sts 0x0115, r24
|
|
rc_lost_channel = (RC_LOST_CHANNEL-1);
|
|
138: 82 e0 ldi r24, 0x02 ; 2
|
|
13a: 80 93 12 01 sts 0x0112, r24
|
|
ppm_off_threshold = RC_PPM_OFF_THRESHOLD_VAL;
|
|
13e: 89 ee ldi r24, 0xE9 ; 233
|
|
140: 97 e0 ldi r25, 0x07 ; 7
|
|
142: 90 93 11 01 sts 0x0111, r25
|
|
146: 80 93 10 01 sts 0x0110, r24
|
|
14a: 80 ef ldi r24, 0xF0 ; 240
|
|
14c: 93 e0 ldi r25, 0x03 ; 3
|
|
14e: 10 c0 rjmp .+32 ; 0x170 <initialize_mcu+0xa0>
|
|
// VERSION CONTROL
|
|
x=0;
|
|
eep_address = (E2END - (sizeof(version_info)-1));
|
|
while(version_info[x])
|
|
{
|
|
if( (eep_address) < E2END)
|
|
150: 23 e0 ldi r18, 0x03 ; 3
|
|
152: 8f 3f cpi r24, 0xFF ; 255
|
|
154: 92 07 cpc r25, r18
|
|
156: 58 f4 brcc .+22 ; 0x16e <initialize_mcu+0x9e>
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
158: f9 99 sbic 0x1f, 1 ; 31
|
|
15a: fe cf rjmp .-4 ; 0x158 <initialize_mcu+0x88>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
15c: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
15e: 92 bd out 0x22, r25 ; 34
|
|
160: 81 bd out 0x21, r24 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
162: e0 bd out 0x20, r30 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
164: 0f b6 in r0, 0x3f ; 63
|
|
166: f8 94 cli
|
|
168: fa 9a sbi 0x1f, 2 ; 31
|
|
16a: f9 9a sbi 0x1f, 1 ; 31
|
|
16c: 0f be out 0x3f, r0 ; 63
|
|
{
|
|
eeprom_write_byte( (unsigned char*)eep_address, version_info[x]);
|
|
}
|
|
eep_address++;
|
|
16e: 01 96 adiw r24, 0x01 ; 1
|
|
rc_lost_channel = (RC_LOST_CHANNEL-1);
|
|
ppm_off_threshold = RC_PPM_OFF_THRESHOLD_VAL;
|
|
// VERSION CONTROL
|
|
x=0;
|
|
eep_address = (E2END - (sizeof(version_info)-1));
|
|
while(version_info[x])
|
|
170: e8 2f mov r30, r24
|
|
172: e0 5f subi r30, 0xF0 ; 240
|
|
174: f0 e0 ldi r31, 0x00 ; 0
|
|
176: e0 50 subi r30, 0x00 ; 0
|
|
178: ff 4f sbci r31, 0xFF ; 255
|
|
17a: e0 81 ld r30, Z
|
|
17c: ee 23 and r30, r30
|
|
17e: 41 f7 brne .-48 ; 0x150 <initialize_mcu+0x80>
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
180: f9 99 sbic 0x1f, 1 ; 31
|
|
182: fe cf rjmp .-4 ; 0x180 <initialize_mcu+0xb0>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
184: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
186: 8f ef ldi r24, 0xFF ; 255
|
|
188: 93 e0 ldi r25, 0x03 ; 3
|
|
18a: 92 bd out 0x22, r25 ; 34
|
|
18c: 81 bd out 0x21, r24 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
18e: 10 bc out 0x20, r1 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
190: 0f b6 in r0, 0x3f ; 63
|
|
192: f8 94 cli
|
|
194: fa 9a sbi 0x1f, 2 ; 31
|
|
196: f9 9a sbi 0x1f, 1 ; 31
|
|
198: 0f be out 0x3f, r0 ; 63
|
|
eep_address++;
|
|
x++;
|
|
}
|
|
eeprom_write_byte((unsigned char*)E2END, '\0'); //Terminate the version control string.
|
|
|
|
asm("sei");
|
|
19a: 78 94 sei
|
|
|
|
/* give some time for the pull up resistors to work. ~30 ms * 3 = 90 ms */
|
|
LED_OFF();
|
|
19c: 28 98 cbi 0x05, 0 ; 5
|
|
RESET_START_TIMER0();
|
|
19e: 15 bc out 0x25, r1 ; 37
|
|
1a0: a8 9a sbi 0x15, 0 ; 21
|
|
1a2: 16 bc out 0x26, r1 ; 38
|
|
1a4: 10 92 1d 01 sts 0x011D, r1
|
|
1a8: 82 e0 ldi r24, 0x02 ; 2
|
|
1aa: 85 bd out 0x25, r24 ; 37
|
|
1ac: 90 e0 ldi r25, 0x00 ; 0
|
|
for(x=0; x<3; x++)
|
|
{
|
|
wdt_reset();
|
|
1ae: a8 95 wdr
|
|
RESET_TIMER0();
|
|
1b0: a8 9a sbi 0x15, 0 ; 21
|
|
1b2: 16 bc out 0x26, r1 ; 38
|
|
1b4: 10 92 1d 01 sts 0x011D, r1
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
1b8: 80 91 1d 01 lds r24, 0x011D
|
|
1bc: 86 37 cpi r24, 0x76 ; 118
|
|
1be: e0 f3 brcs .-8 ; 0x1b8 <initialize_mcu+0xe8>
|
|
asm("sei");
|
|
|
|
/* give some time for the pull up resistors to work. ~30 ms * 3 = 90 ms */
|
|
LED_OFF();
|
|
RESET_START_TIMER0();
|
|
for(x=0; x<3; x++)
|
|
1c0: 9f 5f subi r25, 0xFF ; 255
|
|
1c2: 93 30 cpi r25, 0x03 ; 3
|
|
1c4: a1 f7 brne .-24 ; 0x1ae <initialize_mcu+0xde>
|
|
wdt_reset();
|
|
RESET_TIMER0();
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
}
|
|
x = 0;
|
|
STOP_TIMER0();
|
|
1c6: 15 bc out 0x25, r1 ; 37
|
|
RESET_TIMER0();
|
|
1c8: a8 9a sbi 0x15, 0 ; 21
|
|
1ca: 16 bc out 0x26, r1 ; 38
|
|
1cc: 10 92 1d 01 sts 0x011D, r1
|
|
LED_ON();
|
|
1d0: 28 9a sbi 0x05, 0 ; 5
|
|
to the timer1 compare module to initialize.
|
|
The timer1 compare module as the Mega 168 manual states must be initialized before setting the DDR register
|
|
of the OCR1X pins.
|
|
*/
|
|
//RC_PPM_PORT_OUT_REG &= (~(1<<RC_PPM_PIN));
|
|
RC_PPM_PORT_DDR_REG |= (1<<RC_PPM_PIN);
|
|
1d2: 22 9a sbi 0x04, 2 ; 4
|
|
|
|
return;
|
|
}
|
|
1d4: 08 95 ret
|
|
|
|
000001d6 <detect_connected_channels>:
|
|
|
|
/*22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222*/
|
|
/*33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333*/
|
|
|
|
unsigned char detect_connected_channels(void)
|
|
{
|
|
1d6: cf 93 push r28
|
|
1d8: df 93 push r29
|
|
|
|
/*
|
|
There must be no error in which channels are connected to the encoder
|
|
because this will have devastating effects later on.
|
|
*/
|
|
wdt_reset();
|
|
1da: a8 95 wdr
|
|
RESET_START_TIMER0();
|
|
1dc: 15 bc out 0x25, r1 ; 37
|
|
1de: a8 9a sbi 0x15, 0 ; 21
|
|
1e0: 16 bc out 0x26, r1 ; 38
|
|
1e2: 10 92 1d 01 sts 0x011D, r1
|
|
1e6: 82 e0 ldi r24, 0x02 ; 2
|
|
1e8: 85 bd out 0x25, r24 ; 37
|
|
1ea: f0 91 19 01 lds r31, 0x0119
|
|
1ee: a0 e0 ldi r26, 0x00 ; 0
|
|
1f0: 20 e0 ldi r18, 0x00 ; 0
|
|
1f2: 30 e0 ldi r19, 0x00 ; 0
|
|
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
1f4: c1 e0 ldi r28, 0x01 ; 1
|
|
1f6: d0 e0 ldi r29, 0x00 ; 0
|
|
1f8: 29 c0 rjmp .+82 ; 0x24c <detect_connected_channels+0x76>
|
|
{
|
|
servo_connected = 0;
|
|
for(y=0; y<5; y++)
|
|
{
|
|
wdt_reset();
|
|
1fa: a8 95 wdr
|
|
RESET_TIMER0();
|
|
1fc: a8 9a sbi 0x15, 0 ; 21
|
|
1fe: 16 bc out 0x26, r1 ; 38
|
|
200: 10 92 1d 01 sts 0x011D, r1
|
|
204: e0 e0 ldi r30, 0x00 ; 0
|
|
206: 11 c0 rjmp .+34 ; 0x22a <detect_connected_channels+0x54>
|
|
x=0;
|
|
while(timer0.timer0[1] <= RC_MAX_TIMEOUT_VAL )
|
|
{
|
|
if(RC_SERVO_PORT_PIN_REG & (1<<channel)) { x=timer0.timer0[1]; }
|
|
208: 89 b1 in r24, 0x09 ; 9
|
|
20a: 90 e0 ldi r25, 0x00 ; 0
|
|
20c: 86 23 and r24, r22
|
|
20e: 97 23 and r25, r23
|
|
210: 89 2b or r24, r25
|
|
212: 11 f0 breq .+4 ; 0x218 <detect_connected_channels+0x42>
|
|
214: e0 91 1d 01 lds r30, 0x011D
|
|
if( (timer0.timer0[1] - x) >= RC_PULSE_TIMEOUT_VAL ){ servo_connected++; break; }
|
|
218: 80 91 1d 01 lds r24, 0x011D
|
|
21c: 90 e0 ldi r25, 0x00 ; 0
|
|
21e: 8e 1b sub r24, r30
|
|
220: 91 09 sbc r25, r1
|
|
222: 09 97 sbiw r24, 0x09 ; 9
|
|
224: 10 f0 brcs .+4 ; 0x22a <detect_connected_channels+0x54>
|
|
226: 5f 5f subi r21, 0xFF ; 255
|
|
228: 04 c0 rjmp .+8 ; 0x232 <detect_connected_channels+0x5c>
|
|
for(y=0; y<5; y++)
|
|
{
|
|
wdt_reset();
|
|
RESET_TIMER0();
|
|
x=0;
|
|
while(timer0.timer0[1] <= RC_MAX_TIMEOUT_VAL )
|
|
22a: 80 91 1d 01 lds r24, 0x011D
|
|
22e: 87 37 cpi r24, 0x77 ; 119
|
|
230: 58 f3 brcs .-42 ; 0x208 <detect_connected_channels+0x32>
|
|
{
|
|
if(RC_SERVO_PORT_PIN_REG & (1<<channel)) { x=timer0.timer0[1]; }
|
|
if( (timer0.timer0[1] - x) >= RC_PULSE_TIMEOUT_VAL ){ servo_connected++; break; }
|
|
}
|
|
if(servo_connected >= 3){ channel_mask |= (1<<channel); connected_channels++; break; }
|
|
232: 53 30 cpi r21, 0x03 ; 3
|
|
234: 18 f0 brcs .+6 ; 0x23c <detect_connected_channels+0x66>
|
|
236: f6 2b or r31, r22
|
|
238: af 5f subi r26, 0xFF ; 255
|
|
23a: 03 c0 rjmp .+6 ; 0x242 <detect_connected_channels+0x6c>
|
|
RESET_START_TIMER0();
|
|
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
{
|
|
servo_connected = 0;
|
|
for(y=0; y<5; y++)
|
|
23c: 4f 5f subi r20, 0xFF ; 255
|
|
23e: 45 30 cpi r20, 0x05 ; 5
|
|
240: e1 f6 brne .-72 ; 0x1fa <detect_connected_channels+0x24>
|
|
242: 2f 5f subi r18, 0xFF ; 255
|
|
244: 3f 4f sbci r19, 0xFF ; 255
|
|
because this will have devastating effects later on.
|
|
*/
|
|
wdt_reset();
|
|
RESET_START_TIMER0();
|
|
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
246: 28 30 cpi r18, 0x08 ; 8
|
|
248: 31 05 cpc r19, r1
|
|
24a: 51 f0 breq .+20 ; 0x260 <detect_connected_channels+0x8a>
|
|
24c: be 01 movw r22, r28
|
|
24e: 02 2e mov r0, r18
|
|
250: 02 c0 rjmp .+4 ; 0x256 <detect_connected_channels+0x80>
|
|
252: 66 0f add r22, r22
|
|
254: 77 1f adc r23, r23
|
|
256: 0a 94 dec r0
|
|
258: e2 f7 brpl .-8 ; 0x252 <detect_connected_channels+0x7c>
|
|
25a: 50 e0 ldi r21, 0x00 ; 0
|
|
25c: 40 e0 ldi r20, 0x00 ; 0
|
|
25e: cd cf rjmp .-102 ; 0x1fa <detect_connected_channels+0x24>
|
|
260: f0 93 19 01 sts 0x0119, r31
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return(connected_channels);
|
|
}
|
|
264: 8a 2f mov r24, r26
|
|
266: df 91 pop r29
|
|
268: cf 91 pop r28
|
|
26a: 08 95 ret
|
|
|
|
0000026c <get_channel_pw>:
|
|
{
|
|
|
|
unsigned int pw = 0;
|
|
unsigned char pw_measurement_started = 0;
|
|
|
|
wdt_reset();
|
|
26c: a8 95 wdr
|
|
/* The servo input pins are already configured as inputs with pullup resistors. */
|
|
// First we must disable the pin interrupt.
|
|
RC_PIN_INT_EN_REG &= (~(1<<RC_PIN_INT_EN_BIT));
|
|
26e: 90 91 68 00 lds r25, 0x0068
|
|
272: 9b 7f andi r25, 0xFB ; 251
|
|
274: 90 93 68 00 sts 0x0068, r25
|
|
//Now we must load the pin interrupt mask register.
|
|
RC_PIN_INT_MASK_REG = (1<<pin);
|
|
278: 21 e0 ldi r18, 0x01 ; 1
|
|
27a: 30 e0 ldi r19, 0x00 ; 0
|
|
27c: 02 c0 rjmp .+4 ; 0x282 <get_channel_pw+0x16>
|
|
27e: 22 0f add r18, r18
|
|
280: 33 1f adc r19, r19
|
|
282: 8a 95 dec r24
|
|
284: e2 f7 brpl .-8 ; 0x27e <get_channel_pw+0x12>
|
|
286: 20 93 6d 00 sts 0x006D, r18
|
|
//Clear any pin interrupt flag set.
|
|
RC_PIN_INT_FLAG_REG |= (1<<RC_PIN_INT_FLAG_BIT);
|
|
28a: da 9a sbi 0x1b, 2 ; 27
|
|
// Clear the pin interrupt ISR detection variable
|
|
pin_interrupt_detected = 0;
|
|
28c: 10 92 14 01 sts 0x0114, r1
|
|
// Finally we can enable the pin interrupt again.
|
|
RC_PIN_INT_EN_REG |= (1<<RC_PIN_INT_EN_BIT);
|
|
290: 80 91 68 00 lds r24, 0x0068
|
|
294: 84 60 ori r24, 0x04 ; 4
|
|
296: 80 93 68 00 sts 0x0068, r24
|
|
// Set and start timer1
|
|
RESET_START_TIMER0();
|
|
29a: 15 bc out 0x25, r1 ; 37
|
|
29c: a8 9a sbi 0x15, 0 ; 21
|
|
29e: 16 bc out 0x26, r1 ; 38
|
|
2a0: 10 92 1d 01 sts 0x011D, r1
|
|
2a4: 82 e0 ldi r24, 0x02 ; 2
|
|
2a6: 85 bd out 0x25, r24 ; 37
|
|
2a8: 40 e0 ldi r20, 0x00 ; 0
|
|
2aa: 50 e0 ldi r21, 0x00 ; 0
|
|
2ac: 60 e0 ldi r22, 0x00 ; 0
|
|
|
|
while(1)
|
|
{
|
|
/* Wait until the pin change state. */
|
|
do{
|
|
if( timer0.timer0[1] >= RC_MAX_TIMEOUT_VAL )
|
|
2ae: 80 91 1d 01 lds r24, 0x011D
|
|
2b2: 86 37 cpi r24, 0x76 ; 118
|
|
2b4: 18 f0 brcs .+6 ; 0x2bc <get_channel_pw+0x50>
|
|
2b6: 20 e0 ldi r18, 0x00 ; 0
|
|
2b8: 30 e0 ldi r19, 0x00 ; 0
|
|
2ba: 1f c0 rjmp .+62 ; 0x2fa <get_channel_pw+0x8e>
|
|
{
|
|
return(0);
|
|
}
|
|
|
|
}while( pin_interrupt_detected == 0 );
|
|
2bc: 80 91 14 01 lds r24, 0x0114
|
|
2c0: 88 23 and r24, r24
|
|
2c2: a9 f3 breq .-22 ; 0x2ae <get_channel_pw+0x42>
|
|
pin_interrupt_detected = 0;
|
|
2c4: 10 92 14 01 sts 0x0114, r1
|
|
if( RC_SERVO_PORT_PIN_REG & (1<<pin) ) /* if the pin is high then give it a time stamp */
|
|
2c8: 89 b1 in r24, 0x09 ; 9
|
|
2ca: 90 e0 ldi r25, 0x00 ; 0
|
|
2cc: 82 23 and r24, r18
|
|
2ce: 93 23 and r25, r19
|
|
2d0: 89 2b or r24, r25
|
|
2d2: 31 f0 breq .+12 ; 0x2e0 <get_channel_pw+0x74>
|
|
{
|
|
pw = isr_timer0_16;
|
|
2d4: 40 91 16 01 lds r20, 0x0116
|
|
2d8: 50 91 17 01 lds r21, 0x0117
|
|
2dc: 61 e0 ldi r22, 0x01 ; 1
|
|
2de: e7 cf rjmp .-50 ; 0x2ae <get_channel_pw+0x42>
|
|
pw_measurement_started = 1; /* signal that this channel got it's timer stamp.*/
|
|
|
|
}else{
|
|
// If the pin is low and it already has a time stamp then we are done.
|
|
if( pw_measurement_started )
|
|
2e0: 66 23 and r22, r22
|
|
2e2: 29 f3 breq .-54 ; 0x2ae <get_channel_pw+0x42>
|
|
{
|
|
pw = isr_timer0_16 - pw;
|
|
2e4: 20 91 16 01 lds r18, 0x0116
|
|
2e8: 30 91 17 01 lds r19, 0x0117
|
|
2ec: 24 1b sub r18, r20
|
|
2ee: 35 0b sbc r19, r21
|
|
}
|
|
}
|
|
}
|
|
|
|
/*Stop the timer */
|
|
STOP_TIMER0();
|
|
2f0: 15 bc out 0x25, r1 ; 37
|
|
RESET_TIMER0();
|
|
2f2: a8 9a sbi 0x15, 0 ; 21
|
|
2f4: 16 bc out 0x26, r1 ; 38
|
|
2f6: 10 92 1d 01 sts 0x011D, r1
|
|
|
|
return((unsigned int)pw);
|
|
}
|
|
2fa: c9 01 movw r24, r18
|
|
2fc: 08 95 ret
|
|
|
|
000002fe <wait_for_rx>:
|
|
}
|
|
|
|
#else
|
|
|
|
void wait_for_rx(void)
|
|
{
|
|
2fe: 0f 93 push r16
|
|
300: 1f 93 push r17
|
|
unsigned int pw=0;
|
|
unsigned char x = 0;
|
|
unsigned char servo_connected = 0;
|
|
unsigned char channel = 0;
|
|
|
|
RESET_START_TIMER0();
|
|
302: 15 bc out 0x25, r1 ; 37
|
|
304: a8 9a sbi 0x15, 0 ; 21
|
|
306: 16 bc out 0x26, r1 ; 38
|
|
308: 10 92 1d 01 sts 0x011D, r1
|
|
30c: 82 e0 ldi r24, 0x02 ; 2
|
|
30e: 85 bd out 0x25, r24 ; 37
|
|
310: 00 e0 ldi r16, 0x00 ; 0
|
|
do{
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
{
|
|
wdt_reset();
|
|
RESET_TIMER0();
|
|
312: 61 e0 ldi r22, 0x01 ; 1
|
|
314: 70 e0 ldi r23, 0x00 ; 0
|
|
316: 24 c0 rjmp .+72 ; 0x360 <wait_for_rx+0x62>
|
|
|
|
RESET_START_TIMER0();
|
|
do{
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
{
|
|
wdt_reset();
|
|
318: a8 95 wdr
|
|
RESET_TIMER0();
|
|
31a: a8 9a sbi 0x15, 0 ; 21
|
|
31c: 16 bc out 0x26, r1 ; 38
|
|
31e: 10 92 1d 01 sts 0x011D, r1
|
|
322: 9b 01 movw r18, r22
|
|
324: 00 2e mov r0, r16
|
|
326: 02 c0 rjmp .+4 ; 0x32c <wait_for_rx+0x2e>
|
|
328: 22 0f add r18, r18
|
|
32a: 33 1f adc r19, r19
|
|
32c: 0a 94 dec r0
|
|
32e: e2 f7 brpl .-8 ; 0x328 <wait_for_rx+0x2a>
|
|
330: 40 e0 ldi r20, 0x00 ; 0
|
|
332: 0f c0 rjmp .+30 ; 0x352 <wait_for_rx+0x54>
|
|
servo_connected = 0;
|
|
x=0;
|
|
while(timer0.timer0[1] <= RC_MAX_TIMEOUT_VAL )
|
|
{
|
|
if(RC_SERVO_PORT_PIN_REG & (1<<channel)) { x=timer0.timer0[1]; }
|
|
334: 89 b1 in r24, 0x09 ; 9
|
|
336: 90 e0 ldi r25, 0x00 ; 0
|
|
338: 82 23 and r24, r18
|
|
33a: 93 23 and r25, r19
|
|
33c: 89 2b or r24, r25
|
|
33e: 11 f0 breq .+4 ; 0x344 <wait_for_rx+0x46>
|
|
340: 40 91 1d 01 lds r20, 0x011D
|
|
if( (timer0.timer0[1] - x) >= RC_PULSE_TIMEOUT_VAL ){ servo_connected = 1; break; }
|
|
344: 80 91 1d 01 lds r24, 0x011D
|
|
348: 90 e0 ldi r25, 0x00 ; 0
|
|
34a: 84 1b sub r24, r20
|
|
34c: 91 09 sbc r25, r1
|
|
34e: 09 97 sbiw r24, 0x09 ; 9
|
|
350: 50 f4 brcc .+20 ; 0x366 <wait_for_rx+0x68>
|
|
{
|
|
wdt_reset();
|
|
RESET_TIMER0();
|
|
servo_connected = 0;
|
|
x=0;
|
|
while(timer0.timer0[1] <= RC_MAX_TIMEOUT_VAL )
|
|
352: 80 91 1d 01 lds r24, 0x011D
|
|
356: 87 37 cpi r24, 0x77 ; 119
|
|
358: 68 f3 brcs .-38 ; 0x334 <wait_for_rx+0x36>
|
|
35a: 12 c0 rjmp .+36 ; 0x380 <wait_for_rx+0x82>
|
|
35c: 00 e0 ldi r16, 0x00 ; 0
|
|
35e: dc cf rjmp .-72 ; 0x318 <wait_for_rx+0x1a>
|
|
unsigned char servo_connected = 0;
|
|
unsigned char channel = 0;
|
|
|
|
RESET_START_TIMER0();
|
|
do{
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
360: 08 30 cpi r16, 0x08 ; 8
|
|
362: d0 f2 brcs .-76 ; 0x318 <wait_for_rx+0x1a>
|
|
364: fb cf rjmp .-10 ; 0x35c <wait_for_rx+0x5e>
|
|
366: 10 e0 ldi r17, 0x00 ; 0
|
|
|
|
//Now test the found channel for a proper servo pulse.
|
|
x = 0;
|
|
while(1)
|
|
{
|
|
pw=get_channel_pw(channel);
|
|
368: 80 2f mov r24, r16
|
|
36a: 0e 94 36 01 call 0x26c ; 0x26c <get_channel_pw>
|
|
if( (pw > RC_SERVO_MIN_PW_VAL) && (pw < RC_SERVO_MAX_PW_VAL) ) { x++; }else{ x=0; }
|
|
36e: 81 52 subi r24, 0x21 ; 33
|
|
370: 93 40 sbci r25, 0x03 ; 3
|
|
372: 87 57 subi r24, 0x77 ; 119
|
|
374: 95 40 sbci r25, 0x05 ; 5
|
|
376: b8 f7 brcc .-18 ; 0x366 <wait_for_rx+0x68>
|
|
378: 1f 5f subi r17, 0xFF ; 255
|
|
if(x >= 3) { break; }
|
|
37a: 13 30 cpi r17, 0x03 ; 3
|
|
37c: a8 f3 brcs .-22 ; 0x368 <wait_for_rx+0x6a>
|
|
37e: 02 c0 rjmp .+4 ; 0x384 <wait_for_rx+0x86>
|
|
unsigned char servo_connected = 0;
|
|
unsigned char channel = 0;
|
|
|
|
RESET_START_TIMER0();
|
|
do{
|
|
for(channel=0; channel < RC_SERVO_INPUT_CHANNELS; channel++)
|
|
380: 0f 5f subi r16, 0xFF ; 255
|
|
382: ee cf rjmp .-36 ; 0x360 <wait_for_rx+0x62>
|
|
if( (pw > RC_SERVO_MIN_PW_VAL) && (pw < RC_SERVO_MAX_PW_VAL) ) { x++; }else{ x=0; }
|
|
if(x >= 3) { break; }
|
|
}
|
|
|
|
return;
|
|
}
|
|
384: 1f 91 pop r17
|
|
386: 0f 91 pop r16
|
|
388: 08 95 ret
|
|
|
|
0000038a <load_failsafe_values>:
|
|
/*77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777*/
|
|
/*88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888*/
|
|
|
|
void load_failsafe_values(void)
|
|
{
|
|
wdt_reset();
|
|
38a: a8 95 wdr
|
|
isr_channel_pw[0] = RC_FS_CH_1_TIMER_VAL;
|
|
38c: 8c ed ldi r24, 0xDC ; 220
|
|
38e: 95 e0 ldi r25, 0x05 ; 5
|
|
390: 90 93 1f 01 sts 0x011F, r25
|
|
394: 80 93 1e 01 sts 0x011E, r24
|
|
#if RC_PPM_GEN_CHANNELS >= 2
|
|
isr_channel_pw[1] = RC_FS_CH_2_TIMER_VAL;
|
|
398: 90 93 21 01 sts 0x0121, r25
|
|
39c: 80 93 20 01 sts 0x0120, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 3
|
|
isr_channel_pw[2] = RC_FS_CH_3_TIMER_VAL;
|
|
3a0: 28 ee ldi r18, 0xE8 ; 232
|
|
3a2: 33 e0 ldi r19, 0x03 ; 3
|
|
3a4: 30 93 23 01 sts 0x0123, r19
|
|
3a8: 20 93 22 01 sts 0x0122, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 4
|
|
isr_channel_pw[3] = RC_FS_CH_4_TIMER_VAL;
|
|
3ac: 90 93 25 01 sts 0x0125, r25
|
|
3b0: 80 93 24 01 sts 0x0124, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 5
|
|
isr_channel_pw[4] = RC_FS_CH_5_TIMER_VAL;
|
|
3b4: 30 93 27 01 sts 0x0127, r19
|
|
3b8: 20 93 26 01 sts 0x0126, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 6
|
|
isr_channel_pw[5] = RC_FS_CH_6_TIMER_VAL;
|
|
3bc: 30 93 29 01 sts 0x0129, r19
|
|
3c0: 20 93 28 01 sts 0x0128, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 7
|
|
isr_channel_pw[6] = RC_FS_CH_7_TIMER_VAL;
|
|
3c4: 30 93 2b 01 sts 0x012B, r19
|
|
3c8: 20 93 2a 01 sts 0x012A, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 8
|
|
isr_channel_pw[7] = RC_FS_CH_8_TIMER_VAL;
|
|
3cc: 30 93 2d 01 sts 0x012D, r19
|
|
3d0: 20 93 2c 01 sts 0x012C, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 9
|
|
isr_channel_pw[8] = RC_FS_CH_8_TIMER_VAL;
|
|
#endif
|
|
isr_channel_pw[RC_PPM_GEN_CHANNELS] = RC_RESET_PW_TIMER_VAL;
|
|
3d4: 8c ee ldi r24, 0xEC ; 236
|
|
3d6: 9c e2 ldi r25, 0x2C ; 44
|
|
3d8: 90 93 2f 01 sts 0x012F, r25
|
|
3dc: 80 93 2e 01 sts 0x012E, r24
|
|
|
|
|
|
return;
|
|
}
|
|
3e0: 08 95 ret
|
|
|
|
000003e2 <mux_control>:
|
|
/*12121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212*/
|
|
|
|
|
|
void mux_control(void)
|
|
{
|
|
long PULSE_WIDTH = isr_channel_pw[RC_MUX_CHANNEL-1];
|
|
3e2: 80 91 2c 01 lds r24, 0x012C
|
|
3e6: 90 91 2d 01 lds r25, 0x012D
|
|
|
|
#if RC_MUX_REVERSE == 0
|
|
|
|
if((PULSE_WIDTH>RC_MUX_MIN)&&(PULSE_WIDTH<RC_MUX_MAX))
|
|
3ea: a0 e0 ldi r26, 0x00 ; 0
|
|
3ec: b0 e0 ldi r27, 0x00 ; 0
|
|
3ee: 01 97 sbiw r24, 0x01 ; 1
|
|
3f0: a1 09 sbc r26, r1
|
|
3f2: b1 09 sbc r27, r1
|
|
3f4: 81 5e subi r24, 0xE1 ; 225
|
|
3f6: 94 40 sbci r25, 0x04 ; 4
|
|
3f8: a0 40 sbci r26, 0x00 ; 0
|
|
3fa: b0 40 sbci r27, 0x00 ; 0
|
|
3fc: 10 f4 brcc .+4 ; 0x402 <mux_control+0x20>
|
|
{
|
|
MUX_ON();
|
|
3fe: 29 9a sbi 0x05, 1 ; 5
|
|
400: 08 95 ret
|
|
}
|
|
else
|
|
{
|
|
MUX_OFF();
|
|
402: 29 98 cbi 0x05, 1 ; 5
|
|
404: 08 95 ret
|
|
|
|
00000406 <__vector_16>:
|
|
/* INTERRUPT SERVICE ROUTINES */
|
|
/********************************************************************************************************/
|
|
|
|
//ISR(TIMER0_OVF_vect, ISR_NAKED)
|
|
ISR(TIMER0_OVF_vect)
|
|
{
|
|
406: 1f 92 push r1
|
|
408: 0f 92 push r0
|
|
40a: 0f b6 in r0, 0x3f ; 63
|
|
40c: 0f 92 push r0
|
|
40e: 11 24 eor r1, r1
|
|
410: 8f 93 push r24
|
|
timer0.timer0[1]++;
|
|
412: 80 91 1d 01 lds r24, 0x011D
|
|
416: 8f 5f subi r24, 0xFF ; 255
|
|
418: 80 93 1d 01 sts 0x011D, r24
|
|
|
|
return;
|
|
}
|
|
41c: 8f 91 pop r24
|
|
41e: 0f 90 pop r0
|
|
420: 0f be out 0x3f, r0 ; 63
|
|
422: 0f 90 pop r0
|
|
424: 1f 90 pop r1
|
|
426: 18 95 reti
|
|
|
|
00000428 <__vector_12>:
|
|
modifying their buffers and not the actual registers.
|
|
Both actual registers are updated when the timer reaches the OCR1A (TOP) value automatically.
|
|
This way the OCR1B interrupt can be delayed as needed without any loss of timing accuracy.
|
|
*/
|
|
ISR(TIMER1_COMPB_vect)
|
|
{
|
|
428: 1f 92 push r1
|
|
42a: 0f 92 push r0
|
|
42c: 0f b6 in r0, 0x3f ; 63
|
|
42e: 0f 92 push r0
|
|
430: 11 24 eor r1, r1
|
|
432: 8f 93 push r24
|
|
434: 9f 93 push r25
|
|
436: ef 93 push r30
|
|
438: ff 93 push r31
|
|
asm("sei");
|
|
43a: 78 94 sei
|
|
}
|
|
|
|
#endif
|
|
#if RC_CONSTANT_PPM_FRAME_TIME == 0
|
|
|
|
isr_channel_number++;
|
|
43c: 80 91 15 01 lds r24, 0x0115
|
|
440: 8f 5f subi r24, 0xFF ; 255
|
|
442: 80 93 15 01 sts 0x0115, r24
|
|
if( isr_channel_number >= (RC_PPM_GEN_CHANNELS + 1) ) {isr_channel_number = 0; }
|
|
446: 80 91 15 01 lds r24, 0x0115
|
|
44a: 89 30 cpi r24, 0x09 ; 9
|
|
44c: 10 f0 brcs .+4 ; 0x452 <__vector_12+0x2a>
|
|
44e: 10 92 15 01 sts 0x0115, r1
|
|
RC_TIMER1_COMP1_REG = isr_channel_pw[isr_channel_number];
|
|
452: e0 91 15 01 lds r30, 0x0115
|
|
456: f0 e0 ldi r31, 0x00 ; 0
|
|
458: ee 0f add r30, r30
|
|
45a: ff 1f adc r31, r31
|
|
45c: e2 5e subi r30, 0xE2 ; 226
|
|
45e: fe 4f sbci r31, 0xFE ; 254
|
|
460: 80 81 ld r24, Z
|
|
462: 91 81 ldd r25, Z+1 ; 0x01
|
|
464: 90 93 89 00 sts 0x0089, r25
|
|
468: 80 93 88 00 sts 0x0088, r24
|
|
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
46c: ff 91 pop r31
|
|
46e: ef 91 pop r30
|
|
470: 9f 91 pop r25
|
|
472: 8f 91 pop r24
|
|
474: 0f 90 pop r0
|
|
476: 0f be out 0x3f, r0 ; 63
|
|
478: 0f 90 pop r0
|
|
47a: 1f 90 pop r1
|
|
47c: 18 95 reti
|
|
|
|
0000047e <__vector_5>:
|
|
|
|
/********************************************************************************************************/
|
|
|
|
ISR(PCINT2_vect)
|
|
{
|
|
47e: 1f 92 push r1
|
|
480: 0f 92 push r0
|
|
482: 0f b6 in r0, 0x3f ; 63
|
|
484: 0f 92 push r0
|
|
486: 11 24 eor r1, r1
|
|
488: 8f 93 push r24
|
|
48a: 9f 93 push r25
|
|
|
|
timer0.timer0[0]= TCNT0;
|
|
48c: 86 b5 in r24, 0x26 ; 38
|
|
48e: 80 93 1c 01 sts 0x011C, r24
|
|
if( RC_TIMER0_TIFR & (1<<TOIE0) ){RC_TIMER0_TIFR |= (1<<TOIE0); timer0.timer0[1]++; timer0.timer0[0]= 0; }
|
|
492: a8 9b sbis 0x15, 0 ; 21
|
|
494: 08 c0 rjmp .+16 ; 0x4a6 <__vector_5+0x28>
|
|
496: a8 9a sbi 0x15, 0 ; 21
|
|
498: 80 91 1d 01 lds r24, 0x011D
|
|
49c: 8f 5f subi r24, 0xFF ; 255
|
|
49e: 80 93 1d 01 sts 0x011D, r24
|
|
4a2: 10 92 1c 01 sts 0x011C, r1
|
|
isr_timer0_16 = timer0.timer0_16;
|
|
4a6: 80 91 1c 01 lds r24, 0x011C
|
|
4aa: 90 91 1d 01 lds r25, 0x011D
|
|
4ae: 90 93 17 01 sts 0x0117, r25
|
|
4b2: 80 93 16 01 sts 0x0116, r24
|
|
pin_interrupt_detected = 1;
|
|
4b6: 81 e0 ldi r24, 0x01 ; 1
|
|
4b8: 80 93 14 01 sts 0x0114, r24
|
|
|
|
|
|
return;
|
|
}
|
|
4bc: 9f 91 pop r25
|
|
4be: 8f 91 pop r24
|
|
4c0: 0f 90 pop r0
|
|
4c2: 0f be out 0x3f, r0 ; 63
|
|
4c4: 0f 90 pop r0
|
|
4c6: 1f 90 pop r1
|
|
4c8: 18 95 reti
|
|
|
|
000004ca <write_default_values_to_eeprom>:
|
|
|
|
/*33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333*/
|
|
/*44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444*/
|
|
|
|
void write_default_values_to_eeprom(void)
|
|
{
|
|
4ca: cf 93 push r28
|
|
4cc: df 93 push r29
|
|
4ce: c4 e1 ldi r28, 0x14 ; 20
|
|
4d0: d0 e0 ldi r29, 0x00 ; 0
|
|
Write a word \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_word (uint16_t *__p, uint16_t __value)
|
|
{
|
|
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
|
|
__eewr_word (__p, __value, eeprom_write_byte);
|
|
4d2: ce 01 movw r24, r28
|
|
4d4: 69 ee ldi r22, 0xE9 ; 233
|
|
4d6: 77 e0 ldi r23, 0x07 ; 7
|
|
4d8: 4b e5 ldi r20, 0x5B ; 91
|
|
4da: 50 e0 ldi r21, 0x00 ; 0
|
|
4dc: 0e 94 e4 05 call 0xbc8 ; 0xbc8 <__eewr_word>
|
|
4e0: 22 96 adiw r28, 0x02 ; 2
|
|
|
|
unsigned char x = 0;
|
|
|
|
for(x=0; x<(sizeof(ppm_off_threshold_e)/sizeof(int)); x++)
|
|
4e2: 30 e0 ldi r19, 0x00 ; 0
|
|
4e4: ca 32 cpi r28, 0x2A ; 42
|
|
4e6: d3 07 cpc r29, r19
|
|
4e8: a1 f7 brne .-24 ; 0x4d2 <write_default_values_to_eeprom+0x8>
|
|
4ea: 8a e2 ldi r24, 0x2A ; 42
|
|
4ec: 90 e0 ldi r25, 0x00 ; 0
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
#endif
|
|
EEDR = __value;
|
|
4ee: 22 e0 ldi r18, 0x02 ; 2
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
4f0: f9 99 sbic 0x1f, 1 ; 31
|
|
4f2: fe cf rjmp .-4 ; 0x4f0 <write_default_values_to_eeprom+0x26>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
4f4: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
4f6: 92 bd out 0x22, r25 ; 34
|
|
4f8: 81 bd out 0x21, r24 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
4fa: 20 bd out 0x20, r18 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
4fc: 0f b6 in r0, 0x3f ; 63
|
|
4fe: f8 94 cli
|
|
500: fa 9a sbi 0x1f, 2 ; 31
|
|
502: f9 9a sbi 0x1f, 1 ; 31
|
|
504: 0f be out 0x3f, r0 ; 63
|
|
506: 01 96 adiw r24, 0x01 ; 1
|
|
{
|
|
eeprom_write_word(&ppm_off_threshold_e[x], RC_PPM_OFF_THRESHOLD_VAL);
|
|
}
|
|
for(x=0; x < (sizeof(rc_lost_channel_e)/sizeof(char)); x++)
|
|
508: 30 e0 ldi r19, 0x00 ; 0
|
|
50a: 85 33 cpi r24, 0x35 ; 53
|
|
50c: 93 07 cpc r25, r19
|
|
50e: 81 f7 brne .-32 ; 0x4f0 <write_default_values_to_eeprom+0x26>
|
|
{
|
|
eeprom_write_byte(&rc_lost_channel_e[x], (RC_LOST_CHANNEL - 1));
|
|
}
|
|
rc_lost_channel = (RC_LOST_CHANNEL - 1);
|
|
510: 82 e0 ldi r24, 0x02 ; 2
|
|
512: 80 93 12 01 sts 0x0112, r24
|
|
ppm_off_threshold = RC_PPM_OFF_THRESHOLD_VAL;
|
|
516: 89 ee ldi r24, 0xE9 ; 233
|
|
518: 97 e0 ldi r25, 0x07 ; 7
|
|
51a: 90 93 11 01 sts 0x0111, r25
|
|
51e: 80 93 10 01 sts 0x0110, r24
|
|
|
|
return;
|
|
}
|
|
522: df 91 pop r29
|
|
524: cf 91 pop r28
|
|
526: 08 95 ret
|
|
|
|
00000528 <check_for_setup_mode>:
|
|
|
|
/*66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666*/
|
|
/*77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777*/
|
|
|
|
void check_for_setup_mode(void)
|
|
{
|
|
528: 0f 93 push r16
|
|
52a: 1f 93 push r17
|
|
52c: cf 93 push r28
|
|
52e: df 93 push r29
|
|
unsigned char x = 0;
|
|
unsigned char y = 0;
|
|
|
|
|
|
//We have to make sure that the setup mode is requested.
|
|
wdt_reset();
|
|
530: a8 95 wdr
|
|
x=0;
|
|
y=0;
|
|
setup_mode = 1;
|
|
RESET_START_TIMER0();
|
|
532: 15 bc out 0x25, r1 ; 37
|
|
534: a8 9a sbi 0x15, 0 ; 21
|
|
536: 16 bc out 0x26, r1 ; 38
|
|
538: 10 92 1d 01 sts 0x011D, r1
|
|
53c: 82 e0 ldi r24, 0x02 ; 2
|
|
53e: 85 bd out 0x25, r24 ; 37
|
|
540: 90 e0 ldi r25, 0x00 ; 0
|
|
do{
|
|
if( (RC_SETUP_PIN_REG & (1<<RC_SETUP_PIN)) == 0){ x++; }else{ x=0; }
|
|
542: 1c 9b sbis 0x03, 4 ; 3
|
|
544: 02 c0 rjmp .+4 ; 0x54a <check_for_setup_mode+0x22>
|
|
546: 90 e0 ldi r25, 0x00 ; 0
|
|
548: 01 c0 rjmp .+2 ; 0x54c <check_for_setup_mode+0x24>
|
|
54a: 9f 5f subi r25, 0xFF ; 255
|
|
{
|
|
if(timer0.timer0[1] > RC_MAX_TIMEOUT_VAL ){setup_mode = 0; break; }
|
|
54c: 80 91 1d 01 lds r24, 0x011D
|
|
550: 87 37 cpi r24, 0x77 ; 119
|
|
552: 08 f0 brcs .+2 ; 0x556 <check_for_setup_mode+0x2e>
|
|
554: e7 c0 rjmp .+462 ; 0x724 <check_for_setup_mode+0x1fc>
|
|
}
|
|
|
|
}while(x < 100);
|
|
556: 94 36 cpi r25, 0x64 ; 100
|
|
558: a0 f3 brcs .-24 ; 0x542 <check_for_setup_mode+0x1a>
|
|
55a: d9 c0 rjmp .+434 ; 0x70e <check_for_setup_mode+0x1e6>
|
|
/****************************************************************************************************/
|
|
wdt_reset();
|
|
success = 0;
|
|
if(channels_in_use > 1 )
|
|
{
|
|
if( channel_mask & (1<<(RC_LOST_CHANNEL - 1)) )
|
|
55c: 80 91 19 01 lds r24, 0x0119
|
|
560: 82 ff sbrs r24, 2
|
|
562: 8e c0 rjmp .+284 ; 0x680 <check_for_setup_mode+0x158>
|
|
{
|
|
rc_lost_channel = (RC_LOST_CHANNEL - 1);
|
|
564: 82 e0 ldi r24, 0x02 ; 2
|
|
566: 80 93 12 01 sts 0x0112, r24
|
|
56a: 8a e2 ldi r24, 0x2A ; 42
|
|
56c: 90 e0 ldi r25, 0x00 ; 0
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
#endif
|
|
EEDR = __value;
|
|
56e: 22 e0 ldi r18, 0x02 ; 2
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
570: f9 99 sbic 0x1f, 1 ; 31
|
|
572: fe cf rjmp .-4 ; 0x570 <check_for_setup_mode+0x48>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
574: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
576: 92 bd out 0x22, r25 ; 34
|
|
578: 81 bd out 0x21, r24 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
57a: 20 bd out 0x20, r18 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
57c: 0f b6 in r0, 0x3f ; 63
|
|
57e: f8 94 cli
|
|
580: fa 9a sbi 0x1f, 2 ; 31
|
|
582: f9 9a sbi 0x1f, 1 ; 31
|
|
584: 0f be out 0x3f, r0 ; 63
|
|
586: 01 96 adiw r24, 0x01 ; 1
|
|
for(x=0; x < (sizeof(rc_lost_channel_e)/sizeof(char)); x++)
|
|
588: 30 e0 ldi r19, 0x00 ; 0
|
|
58a: 85 33 cpi r24, 0x35 ; 53
|
|
58c: 93 07 cpc r25, r19
|
|
58e: 81 f7 brne .-32 ; 0x570 <check_for_setup_mode+0x48>
|
|
590: 2e c0 rjmp .+92 ; 0x5ee <check_for_setup_mode+0xc6>
|
|
eeprom_write_byte(&rc_lost_channel_e[x], rc_lost_channel);
|
|
}
|
|
success += 1;
|
|
}
|
|
|
|
}else if(channels_in_use == 1)
|
|
592: 81 30 cpi r24, 0x01 ; 1
|
|
594: 09 f0 breq .+2 ; 0x598 <check_for_setup_mode+0x70>
|
|
596: 74 c0 rjmp .+232 ; 0x680 <check_for_setup_mode+0x158>
|
|
{
|
|
for(x=0; x < RC_SERVO_INPUT_CHANNELS; x++)
|
|
{
|
|
if(channel_mask & (1<<x))
|
|
598: 80 91 19 01 lds r24, 0x0119
|
|
59c: 48 2f mov r20, r24
|
|
59e: 50 e0 ldi r21, 0x00 ; 0
|
|
5a0: 20 e0 ldi r18, 0x00 ; 0
|
|
5a2: 30 e0 ldi r19, 0x00 ; 0
|
|
5a4: 62 2f mov r22, r18
|
|
5a6: ca 01 movw r24, r20
|
|
5a8: 02 2e mov r0, r18
|
|
5aa: 02 c0 rjmp .+4 ; 0x5b0 <check_for_setup_mode+0x88>
|
|
5ac: 95 95 asr r25
|
|
5ae: 87 95 ror r24
|
|
5b0: 0a 94 dec r0
|
|
5b2: e2 f7 brpl .-8 ; 0x5ac <check_for_setup_mode+0x84>
|
|
5b4: 80 ff sbrs r24, 0
|
|
5b6: 15 c0 rjmp .+42 ; 0x5e2 <check_for_setup_mode+0xba>
|
|
{
|
|
rc_lost_channel = x;
|
|
5b8: 20 93 12 01 sts 0x0112, r18
|
|
5bc: 8a e2 ldi r24, 0x2A ; 42
|
|
5be: 90 e0 ldi r25, 0x00 ; 0
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
5c0: f9 99 sbic 0x1f, 1 ; 31
|
|
5c2: fe cf rjmp .-4 ; 0x5c0 <check_for_setup_mode+0x98>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
5c4: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
5c6: 92 bd out 0x22, r25 ; 34
|
|
5c8: 81 bd out 0x21, r24 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
5ca: 60 bd out 0x20, r22 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
5cc: 0f b6 in r0, 0x3f ; 63
|
|
5ce: f8 94 cli
|
|
5d0: fa 9a sbi 0x1f, 2 ; 31
|
|
5d2: f9 9a sbi 0x1f, 1 ; 31
|
|
5d4: 0f be out 0x3f, r0 ; 63
|
|
5d6: 01 96 adiw r24, 0x01 ; 1
|
|
for(x=0; x < (sizeof(rc_lost_channel_e)/sizeof(char)); x++)
|
|
5d8: 40 e0 ldi r20, 0x00 ; 0
|
|
5da: 85 33 cpi r24, 0x35 ; 53
|
|
5dc: 94 07 cpc r25, r20
|
|
5de: 81 f7 brne .-32 ; 0x5c0 <check_for_setup_mode+0x98>
|
|
5e0: 06 c0 rjmp .+12 ; 0x5ee <check_for_setup_mode+0xc6>
|
|
5e2: 2f 5f subi r18, 0xFF ; 255
|
|
5e4: 3f 4f sbci r19, 0xFF ; 255
|
|
success += 1;
|
|
}
|
|
|
|
}else if(channels_in_use == 1)
|
|
{
|
|
for(x=0; x < RC_SERVO_INPUT_CHANNELS; x++)
|
|
5e6: 28 30 cpi r18, 0x08 ; 8
|
|
5e8: 31 05 cpc r19, r1
|
|
5ea: e1 f6 brne .-72 ; 0x5a4 <check_for_setup_mode+0x7c>
|
|
5ec: 49 c0 rjmp .+146 ; 0x680 <check_for_setup_mode+0x158>
|
|
/****************************************************************************************************/
|
|
/* NOW WE NEED TO FIND THE THRESHOLD PULSE WIDTH THAT WILL BE USED AN A TX SIGNAL LOST TRIGGER */
|
|
/****************************************************************************************************/
|
|
if(success == 1)
|
|
{
|
|
wdt_reset();
|
|
5ee: a8 95 wdr
|
|
5f0: c0 e0 ldi r28, 0x00 ; 0
|
|
5f2: d0 e0 ldi r29, 0x00 ; 0
|
|
5f4: 10 e0 ldi r17, 0x00 ; 0
|
|
5f6: 00 e0 ldi r16, 0x00 ; 0
|
|
y = 0;
|
|
pw_buffer = 0;
|
|
for(x=0; x < 10; x++)
|
|
{
|
|
pw=get_channel_pw(rc_lost_channel);
|
|
5f8: 80 91 12 01 lds r24, 0x0112
|
|
5fc: 0e 94 36 01 call 0x26c ; 0x26c <get_channel_pw>
|
|
600: 9c 01 movw r18, r24
|
|
if(pw >= RC_SERVO_MIN_PW_VAL && pw <= RC_SERVO_MAX_PW_VAL)
|
|
602: 80 52 subi r24, 0x20 ; 32
|
|
604: 93 40 sbci r25, 0x03 ; 3
|
|
606: 89 57 subi r24, 0x79 ; 121
|
|
608: 95 40 sbci r25, 0x05 ; 5
|
|
60a: 18 f4 brcc .+6 ; 0x612 <check_for_setup_mode+0xea>
|
|
{
|
|
pw_buffer += pw;
|
|
60c: c2 0f add r28, r18
|
|
60e: d3 1f adc r29, r19
|
|
y++;
|
|
610: 0f 5f subi r16, 0xFF ; 255
|
|
if(success == 1)
|
|
{
|
|
wdt_reset();
|
|
y = 0;
|
|
pw_buffer = 0;
|
|
for(x=0; x < 10; x++)
|
|
612: 1f 5f subi r17, 0xFF ; 255
|
|
614: 1a 30 cpi r17, 0x0A ; 10
|
|
616: 81 f7 brne .-32 ; 0x5f8 <check_for_setup_mode+0xd0>
|
|
{
|
|
pw_buffer += pw;
|
|
y++;
|
|
}
|
|
}
|
|
pw_buffer /= y;
|
|
618: ce 01 movw r24, r28
|
|
61a: 60 2f mov r22, r16
|
|
61c: 70 e0 ldi r23, 0x00 ; 0
|
|
61e: 0e 94 f9 05 call 0xbf2 ; 0xbf2 <__udivmodhi4>
|
|
wdt_reset();
|
|
622: a8 95 wdr
|
|
if( (pw_buffer >= RC_PPM_OFF_UPPER_WINDOW_VAL) && (pw_buffer <= RC_SERVO_MAX_PW_VAL) )
|
|
624: cb 01 movw r24, r22
|
|
626: 84 5a subi r24, 0xA4 ; 164
|
|
628: 96 40 sbci r25, 0x06 ; 6
|
|
62a: 85 5f subi r24, 0xF5 ; 245
|
|
62c: 91 40 sbci r25, 0x01 ; 1
|
|
62e: 88 f4 brcc .+34 ; 0x652 <check_for_setup_mode+0x12a>
|
|
630: c4 e1 ldi r28, 0x14 ; 20
|
|
632: d0 e0 ldi r29, 0x00 ; 0
|
|
Write a word \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_word (uint16_t *__p, uint16_t __value)
|
|
{
|
|
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
|
|
__eewr_word (__p, __value, eeprom_write_byte);
|
|
634: 8b 01 movw r16, r22
|
|
636: 07 5e subi r16, 0xE7 ; 231
|
|
638: 1f 4f sbci r17, 0xFF ; 255
|
|
63a: ce 01 movw r24, r28
|
|
63c: b8 01 movw r22, r16
|
|
63e: 4b e5 ldi r20, 0x5B ; 91
|
|
640: 50 e0 ldi r21, 0x00 ; 0
|
|
642: 0e 94 e4 05 call 0xbc8 ; 0xbc8 <__eewr_word>
|
|
646: 22 96 adiw r28, 0x02 ; 2
|
|
{
|
|
for(x=0; x<(sizeof(ppm_off_threshold_e)/sizeof(int)); x++)
|
|
648: 80 e0 ldi r24, 0x00 ; 0
|
|
64a: ca 32 cpi r28, 0x2A ; 42
|
|
64c: d8 07 cpc r29, r24
|
|
64e: a9 f7 brne .-22 ; 0x63a <check_for_setup_mode+0x112>
|
|
650: 65 c0 rjmp .+202 ; 0x71c <check_for_setup_mode+0x1f4>
|
|
{
|
|
eeprom_write_word(&ppm_off_threshold_e[x], (pw_buffer+RC_PPM_OFF_OFFSET_VAL));
|
|
}
|
|
success += 1;
|
|
|
|
}else if( (pw_buffer <= RC_PPM_OFF_LOWER_WINDOW_VAL) && (pw_buffer >= RC_SERVO_MIN_PW_VAL) )
|
|
652: cb 01 movw r24, r22
|
|
654: 80 52 subi r24, 0x20 ; 32
|
|
656: 93 40 sbci r25, 0x03 ; 3
|
|
658: 85 5f subi r24, 0xF5 ; 245
|
|
65a: 91 40 sbci r25, 0x01 ; 1
|
|
65c: 88 f4 brcc .+34 ; 0x680 <check_for_setup_mode+0x158>
|
|
65e: c4 e1 ldi r28, 0x14 ; 20
|
|
660: d0 e0 ldi r29, 0x00 ; 0
|
|
662: 8b 01 movw r16, r22
|
|
664: 09 51 subi r16, 0x19 ; 25
|
|
666: 10 40 sbci r17, 0x00 ; 0
|
|
668: ce 01 movw r24, r28
|
|
66a: b8 01 movw r22, r16
|
|
66c: 4b e5 ldi r20, 0x5B ; 91
|
|
66e: 50 e0 ldi r21, 0x00 ; 0
|
|
670: 0e 94 e4 05 call 0xbc8 ; 0xbc8 <__eewr_word>
|
|
674: 22 96 adiw r28, 0x02 ; 2
|
|
{
|
|
for(x=0; x<(sizeof(ppm_off_threshold_e)/sizeof(int)); x++)
|
|
676: 80 e0 ldi r24, 0x00 ; 0
|
|
678: ca 32 cpi r28, 0x2A ; 42
|
|
67a: d8 07 cpc r29, r24
|
|
67c: a9 f7 brne .-22 ; 0x668 <check_for_setup_mode+0x140>
|
|
67e: 4e c0 rjmp .+156 ; 0x71c <check_for_setup_mode+0x1f4>
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
}
|
|
}
|
|
|
|
}else{
|
|
write_default_values_to_eeprom();
|
|
680: 0e 94 65 02 call 0x4ca ; 0x4ca <write_default_values_to_eeprom>
|
|
{
|
|
LED_ON();
|
|
for(x=0; x<30; x++)
|
|
{
|
|
wdt_reset();
|
|
RESET_START_TIMER0();
|
|
684: 32 e0 ldi r19, 0x02 ; 2
|
|
686: 22 e0 ldi r18, 0x02 ; 2
|
|
688: 21 c0 rjmp .+66 ; 0x6cc <check_for_setup_mode+0x1a4>
|
|
if(success == 2)
|
|
{
|
|
RC_SETUP_PORT_OUT_REG &= (~(1<<RC_SETUP_PIN));
|
|
while(1)
|
|
{
|
|
LED_ON();
|
|
68a: 28 9a sbi 0x05, 0 ; 5
|
|
68c: 90 e0 ldi r25, 0x00 ; 0
|
|
for(x=0; x<3; x++)
|
|
{
|
|
wdt_reset();
|
|
68e: a8 95 wdr
|
|
RESET_START_TIMER0();
|
|
690: 15 bc out 0x25, r1 ; 37
|
|
692: a8 9a sbi 0x15, 0 ; 21
|
|
694: 16 bc out 0x26, r1 ; 38
|
|
696: 10 92 1d 01 sts 0x011D, r1
|
|
69a: 25 bd out 0x25, r18 ; 37
|
|
/* delay ~30 ms * 3 = 100 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
69c: 80 91 1d 01 lds r24, 0x011D
|
|
6a0: 86 37 cpi r24, 0x76 ; 118
|
|
6a2: e0 f3 brcs .-8 ; 0x69c <check_for_setup_mode+0x174>
|
|
{
|
|
RC_SETUP_PORT_OUT_REG &= (~(1<<RC_SETUP_PIN));
|
|
while(1)
|
|
{
|
|
LED_ON();
|
|
for(x=0; x<3; x++)
|
|
6a4: 9f 5f subi r25, 0xFF ; 255
|
|
6a6: 93 30 cpi r25, 0x03 ; 3
|
|
6a8: 91 f7 brne .-28 ; 0x68e <check_for_setup_mode+0x166>
|
|
wdt_reset();
|
|
RESET_START_TIMER0();
|
|
/* delay ~30 ms * 3 = 100 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
}
|
|
LED_OFF();
|
|
6aa: 28 98 cbi 0x05, 0 ; 5
|
|
6ac: 90 e0 ldi r25, 0x00 ; 0
|
|
for(x=0; x<30; x++)
|
|
{
|
|
wdt_reset();
|
|
6ae: a8 95 wdr
|
|
RESET_START_TIMER0();
|
|
6b0: 15 bc out 0x25, r1 ; 37
|
|
6b2: a8 9a sbi 0x15, 0 ; 21
|
|
6b4: 16 bc out 0x26, r1 ; 38
|
|
6b6: 10 92 1d 01 sts 0x011D, r1
|
|
6ba: 35 bd out 0x25, r19 ; 37
|
|
/* delay ~30 ms * 30 = 900 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
6bc: 80 91 1d 01 lds r24, 0x011D
|
|
6c0: 86 37 cpi r24, 0x76 ; 118
|
|
6c2: e0 f3 brcs .-8 ; 0x6bc <check_for_setup_mode+0x194>
|
|
RESET_START_TIMER0();
|
|
/* delay ~30 ms * 3 = 100 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
}
|
|
LED_OFF();
|
|
for(x=0; x<30; x++)
|
|
6c4: 9f 5f subi r25, 0xFF ; 255
|
|
6c6: 9e 31 cpi r25, 0x1E ; 30
|
|
6c8: 91 f7 brne .-28 ; 0x6ae <check_for_setup_mode+0x186>
|
|
6ca: df cf rjmp .-66 ; 0x68a <check_for_setup_mode+0x162>
|
|
|
|
}else{
|
|
write_default_values_to_eeprom();
|
|
while(1)
|
|
{
|
|
LED_ON();
|
|
6cc: 28 9a sbi 0x05, 0 ; 5
|
|
6ce: 90 e0 ldi r25, 0x00 ; 0
|
|
for(x=0; x<30; x++)
|
|
{
|
|
wdt_reset();
|
|
6d0: a8 95 wdr
|
|
RESET_START_TIMER0();
|
|
6d2: 15 bc out 0x25, r1 ; 37
|
|
6d4: a8 9a sbi 0x15, 0 ; 21
|
|
6d6: 16 bc out 0x26, r1 ; 38
|
|
6d8: 10 92 1d 01 sts 0x011D, r1
|
|
6dc: 25 bd out 0x25, r18 ; 37
|
|
/* delay ~30 ms * 30 = 900 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
6de: 80 91 1d 01 lds r24, 0x011D
|
|
6e2: 86 37 cpi r24, 0x76 ; 118
|
|
6e4: e0 f3 brcs .-8 ; 0x6de <check_for_setup_mode+0x1b6>
|
|
}else{
|
|
write_default_values_to_eeprom();
|
|
while(1)
|
|
{
|
|
LED_ON();
|
|
for(x=0; x<30; x++)
|
|
6e6: 9f 5f subi r25, 0xFF ; 255
|
|
6e8: 9e 31 cpi r25, 0x1E ; 30
|
|
6ea: 91 f7 brne .-28 ; 0x6d0 <check_for_setup_mode+0x1a8>
|
|
wdt_reset();
|
|
RESET_START_TIMER0();
|
|
/* delay ~30 ms * 30 = 900 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
}
|
|
LED_OFF();
|
|
6ec: 28 98 cbi 0x05, 0 ; 5
|
|
6ee: 90 e0 ldi r25, 0x00 ; 0
|
|
for(x=0; x<3; x++)
|
|
{
|
|
wdt_reset();
|
|
6f0: a8 95 wdr
|
|
RESET_START_TIMER0();
|
|
6f2: 15 bc out 0x25, r1 ; 37
|
|
6f4: a8 9a sbi 0x15, 0 ; 21
|
|
6f6: 16 bc out 0x26, r1 ; 38
|
|
6f8: 10 92 1d 01 sts 0x011D, r1
|
|
6fc: 35 bd out 0x25, r19 ; 37
|
|
/* delay ~30 ms * 3 = 100 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
6fe: 80 91 1d 01 lds r24, 0x011D
|
|
702: 86 37 cpi r24, 0x76 ; 118
|
|
704: e0 f3 brcs .-8 ; 0x6fe <check_for_setup_mode+0x1d6>
|
|
RESET_START_TIMER0();
|
|
/* delay ~30 ms * 30 = 900 milliseconds */
|
|
while(timer0.timer0[1] < RC_MAX_TIMEOUT_VAL );
|
|
}
|
|
LED_OFF();
|
|
for(x=0; x<3; x++)
|
|
706: 9f 5f subi r25, 0xFF ; 255
|
|
708: 93 30 cpi r25, 0x03 ; 3
|
|
70a: 91 f7 brne .-28 ; 0x6f0 <check_for_setup_mode+0x1c8>
|
|
70c: df cf rjmp .-66 ; 0x6cc <check_for_setup_mode+0x1a4>
|
|
if(setup_mode)
|
|
{
|
|
/****************************************************************************************************/
|
|
/* FIRST WE MUST FIND WHICH CHANNEL WILL BE USED AS A TX SIGNAL LOST INDICATOR */
|
|
/****************************************************************************************************/
|
|
wdt_reset();
|
|
70e: a8 95 wdr
|
|
success = 0;
|
|
if(channels_in_use > 1 )
|
|
710: 80 91 18 01 lds r24, 0x0118
|
|
714: 82 30 cpi r24, 0x02 ; 2
|
|
716: 08 f0 brcs .+2 ; 0x71a <check_for_setup_mode+0x1f2>
|
|
718: 21 cf rjmp .-446 ; 0x55c <check_for_setup_mode+0x34>
|
|
71a: 3b cf rjmp .-394 ; 0x592 <check_for_setup_mode+0x6a>
|
|
/****************************************************************************************************/
|
|
/* LASTLY WE MUST INDICATE TO THE USER IF THE SETUP PROCEDURE WAS SUCCESSFUL */
|
|
/****************************************************************************************************/
|
|
if(success == 2)
|
|
{
|
|
RC_SETUP_PORT_OUT_REG &= (~(1<<RC_SETUP_PIN));
|
|
71c: 2c 98 cbi 0x05, 4 ; 5
|
|
{
|
|
LED_ON();
|
|
for(x=0; x<3; x++)
|
|
{
|
|
wdt_reset();
|
|
RESET_START_TIMER0();
|
|
71e: 32 e0 ldi r19, 0x02 ; 2
|
|
720: 22 e0 ldi r18, 0x02 ; 2
|
|
722: b3 cf rjmp .-154 ; 0x68a <check_for_setup_mode+0x162>
|
|
}
|
|
|
|
} // End of "if(setup_mode)" statement.
|
|
|
|
return;
|
|
}
|
|
724: df 91 pop r29
|
|
726: cf 91 pop r28
|
|
728: 1f 91 pop r17
|
|
72a: 0f 91 pop r16
|
|
72c: 08 95 ret
|
|
|
|
0000072e <load_values_from_eeprom>:
|
|
11 copies of each variable are read and if more than 50% + 1 values are the same and within limits
|
|
this value is taken to be valid.
|
|
If not all 11 values are the same then the array is written again with this 50% +1 value.
|
|
*/
|
|
void load_values_from_eeprom(void)
|
|
{
|
|
72e: 6f 92 push r6
|
|
730: 7f 92 push r7
|
|
732: 8f 92 push r8
|
|
734: 9f 92 push r9
|
|
736: bf 92 push r11
|
|
738: cf 92 push r12
|
|
73a: df 92 push r13
|
|
73c: ef 92 push r14
|
|
73e: ff 92 push r15
|
|
740: 0f 93 push r16
|
|
742: 1f 93 push r17
|
|
744: cf 93 push r28
|
|
746: df 93 push r29
|
|
unsigned char match_upper_limit = 0;
|
|
unsigned char match_lower_limit = 0;
|
|
unsigned char x = 0;
|
|
unsigned char y = 0;
|
|
|
|
wdt_reset();
|
|
748: a8 95 wdr
|
|
74a: 6a e2 ldi r22, 0x2A ; 42
|
|
74c: 70 e0 ldi r23, 0x00 ; 0
|
|
74e: ab 01 movw r20, r22
|
|
11 copies of each variable are read and if more than 50% + 1 values are the same and within limits
|
|
this value is taken to be valid.
|
|
If not all 11 values are the same then the array is written again with this 50% +1 value.
|
|
*/
|
|
void load_values_from_eeprom(void)
|
|
{
|
|
750: eb 01 movw r28, r22
|
|
752: 2b 96 adiw r28, 0x0b ; 11
|
|
/** \ingroup avr_eeprom
|
|
Read one byte from EEPROM address \a __p.
|
|
*/
|
|
__ATTR_PURE__ static __inline__ uint8_t eeprom_read_byte (const uint8_t *__p)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
754: f9 99 sbic 0x1f, 1 ; 31
|
|
756: fe cf rjmp .-4 ; 0x754 <load_values_from_eeprom+0x26>
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
758: 52 bd out 0x22, r21 ; 34
|
|
75a: 41 bd out 0x21, r20 ; 33
|
|
/* Use inline assembly below as some AVRs have problems with accessing
|
|
EECR with STS instructions. For example, see errata for ATmega64.
|
|
The code below also assumes that EECR and EEDR are in the I/O space.
|
|
*/
|
|
uint8_t __result;
|
|
__asm__ __volatile__
|
|
75c: f8 9a sbi 0x1f, 0 ; 31
|
|
75e: f0 b5 in r31, 0x20 ; 32
|
|
match_lower_limit = (((sizeof(rc_lost_channel_e)/sizeof(char))/2)+1);
|
|
|
|
for(x=0; x<match_upper_limit; x++)
|
|
{
|
|
match = 0;
|
|
eeprom_buf_x = eeprom_read_byte(&rc_lost_channel_e[x]);
|
|
760: af 2f mov r26, r31
|
|
762: b0 e0 ldi r27, 0x00 ; 0
|
|
764: 2a e2 ldi r18, 0x2A ; 42
|
|
766: 30 e0 ldi r19, 0x00 ; 0
|
|
768: e0 e0 ldi r30, 0x00 ; 0
|
|
/** \ingroup avr_eeprom
|
|
Read one byte from EEPROM address \a __p.
|
|
*/
|
|
__ATTR_PURE__ static __inline__ uint8_t eeprom_read_byte (const uint8_t *__p)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
76a: f9 99 sbic 0x1f, 1 ; 31
|
|
76c: fe cf rjmp .-4 ; 0x76a <load_values_from_eeprom+0x3c>
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
76e: 32 bd out 0x22, r19 ; 34
|
|
770: 21 bd out 0x21, r18 ; 33
|
|
/* Use inline assembly below as some AVRs have problems with accessing
|
|
EECR with STS instructions. For example, see errata for ATmega64.
|
|
The code below also assumes that EECR and EEDR are in the I/O space.
|
|
*/
|
|
uint8_t __result;
|
|
__asm__ __volatile__
|
|
772: f8 9a sbi 0x1f, 0 ; 31
|
|
774: 80 b5 in r24, 0x20 ; 32
|
|
for(y=0; y<match_upper_limit; y++)
|
|
{
|
|
eeprom_buf_y = eeprom_read_byte(&rc_lost_channel_e[y]);
|
|
if(eeprom_buf_y == eeprom_buf_x){ match++; }
|
|
776: 90 e0 ldi r25, 0x00 ; 0
|
|
778: 8a 17 cp r24, r26
|
|
77a: 9b 07 cpc r25, r27
|
|
77c: 09 f4 brne .+2 ; 0x780 <load_values_from_eeprom+0x52>
|
|
77e: ef 5f subi r30, 0xFF ; 255
|
|
780: 2f 5f subi r18, 0xFF ; 255
|
|
782: 3f 4f sbci r19, 0xFF ; 255
|
|
11 copies of each variable are read and if more than 50% + 1 values are the same and within limits
|
|
this value is taken to be valid.
|
|
If not all 11 values are the same then the array is written again with this 50% +1 value.
|
|
*/
|
|
void load_values_from_eeprom(void)
|
|
{
|
|
784: 85 e3 ldi r24, 0x35 ; 53
|
|
786: 90 e0 ldi r25, 0x00 ; 0
|
|
|
|
for(x=0; x<match_upper_limit; x++)
|
|
{
|
|
match = 0;
|
|
eeprom_buf_x = eeprom_read_byte(&rc_lost_channel_e[x]);
|
|
for(y=0; y<match_upper_limit; y++)
|
|
788: c2 17 cp r28, r18
|
|
78a: d3 07 cpc r29, r19
|
|
78c: 71 f7 brne .-36 ; 0x76a <load_values_from_eeprom+0x3c>
|
|
eeprom_buf_y = eeprom_read_byte(&rc_lost_channel_e[y]);
|
|
if(eeprom_buf_y == eeprom_buf_x){ match++; }
|
|
}
|
|
// If 50% +1 or more char values in the array are the same a match has been found.
|
|
// Now test them to see if they are within limits.
|
|
if(match >= match_lower_limit )
|
|
78e: e6 30 cpi r30, 0x06 ; 6
|
|
790: c0 f0 brcs .+48 ; 0x7c2 <load_values_from_eeprom+0x94>
|
|
{
|
|
if( eeprom_buf_x < RC_SERVO_INPUT_CHANNELS )
|
|
792: 18 97 sbiw r26, 0x08 ; 8
|
|
794: 08 f0 brcs .+2 ; 0x798 <load_values_from_eeprom+0x6a>
|
|
796: 7b c0 rjmp .+246 ; 0x88e <load_values_from_eeprom+0x160>
|
|
{
|
|
rc_lost_channel = eeprom_buf_x; //Load the stored value to throttle_thershold.
|
|
798: f0 93 12 01 sts 0x0112, r31
|
|
if(match < match_upper_limit)
|
|
79c: eb 30 cpi r30, 0x0B ; 11
|
|
79e: c0 f4 brcc .+48 ; 0x7d0 <load_values_from_eeprom+0xa2>
|
|
/** \ingroup avr_eeprom
|
|
Write a byte \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
|
|
{
|
|
do {} while (!eeprom_is_ready ());
|
|
7a0: f9 99 sbic 0x1f, 1 ; 31
|
|
7a2: fe cf rjmp .-4 ; 0x7a0 <load_values_from_eeprom+0x72>
|
|
|
|
#if defined(EEPM0) && defined(EEPM1)
|
|
EECR = 0; /* Set programming mode: erase and write. */
|
|
7a4: 1f ba out 0x1f, r1 ; 31
|
|
#endif
|
|
|
|
#if E2END <= 0xFF
|
|
EEARL = (size_t)__p;
|
|
#else
|
|
EEAR = (size_t)__p;
|
|
7a6: 72 bd out 0x22, r23 ; 34
|
|
7a8: 61 bd out 0x21, r22 ; 33
|
|
#endif
|
|
EEDR = __value;
|
|
7aa: f0 bd out 0x20, r31 ; 32
|
|
|
|
__asm__ __volatile__ (
|
|
7ac: 0f b6 in r0, 0x3f ; 63
|
|
7ae: f8 94 cli
|
|
7b0: fa 9a sbi 0x1f, 2 ; 31
|
|
7b2: f9 9a sbi 0x1f, 1 ; 31
|
|
7b4: 0f be out 0x3f, r0 ; 63
|
|
7b6: 6f 5f subi r22, 0xFF ; 255
|
|
7b8: 7f 4f sbci r23, 0xFF ; 255
|
|
{
|
|
for(x=0; x<match_upper_limit; x++)
|
|
7ba: 86 17 cp r24, r22
|
|
7bc: 97 07 cpc r25, r23
|
|
7be: 81 f7 brne .-32 ; 0x7a0 <load_values_from_eeprom+0x72>
|
|
7c0: 07 c0 rjmp .+14 ; 0x7d0 <load_values_from_eeprom+0xa2>
|
|
7c2: 4f 5f subi r20, 0xFF ; 255
|
|
7c4: 5f 4f sbci r21, 0xFF ; 255
|
|
/* READ WHICH CHANNEL WILL BE USED AS A RX LOST INDICATOR */
|
|
/****************************************************************************************************/
|
|
match_upper_limit = (sizeof(rc_lost_channel_e)/sizeof(char));
|
|
match_lower_limit = (((sizeof(rc_lost_channel_e)/sizeof(char))/2)+1);
|
|
|
|
for(x=0; x<match_upper_limit; x++)
|
|
7c6: c4 17 cp r28, r20
|
|
7c8: d5 07 cpc r29, r21
|
|
7ca: 09 f0 breq .+2 ; 0x7ce <load_values_from_eeprom+0xa0>
|
|
7cc: c3 cf rjmp .-122 ; 0x754 <load_values_from_eeprom+0x26>
|
|
7ce: 5f c0 rjmp .+190 ; 0x88e <load_values_from_eeprom+0x160>
|
|
}else{ match = 0; }
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( match < match_lower_limit ){ write_default_values_to_eeprom(); return; }
|
|
7d0: 04 e1 ldi r16, 0x14 ; 20
|
|
7d2: 10 e0 ldi r17, 0x00 ; 0
|
|
7d4: 68 01 movw r12, r16
|
|
11 copies of each variable are read and if more than 50% + 1 values are the same and within limits
|
|
this value is taken to be valid.
|
|
If not all 11 values are the same then the array is written again with this 50% +1 value.
|
|
*/
|
|
void load_values_from_eeprom(void)
|
|
{
|
|
7d6: 26 e1 ldi r18, 0x16 ; 22
|
|
7d8: 82 2e mov r8, r18
|
|
7da: 91 2c mov r9, r1
|
|
7dc: 80 0e add r8, r16
|
|
7de: 91 1e adc r9, r17
|
|
Read one 16-bit word (little endian) from EEPROM address \a __p.
|
|
*/
|
|
__ATTR_PURE__ static __inline__ uint16_t eeprom_read_word (const uint16_t *__p)
|
|
{
|
|
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
|
|
return __eerd_word (__p, eeprom_read_byte);
|
|
7e0: c6 01 movw r24, r12
|
|
7e2: 63 e5 ldi r22, 0x53 ; 83
|
|
7e4: 70 e0 ldi r23, 0x00 ; 0
|
|
7e6: 0e 94 ce 05 call 0xb9c ; 0xb9c <__eerd_word>
|
|
7ea: 7c 01 movw r14, r24
|
|
7ec: c4 e1 ldi r28, 0x14 ; 20
|
|
7ee: d0 e0 ldi r29, 0x00 ; 0
|
|
7f0: bb 24 eor r11, r11
|
|
match = 0;
|
|
eeprom_buf_x = eeprom_read_word(&ppm_off_threshold_e[x]);
|
|
for(y=0; y < match_upper_limit; y++)
|
|
{
|
|
eeprom_buf_y = eeprom_read_word(&ppm_off_threshold_e[y]);
|
|
if(eeprom_buf_y == eeprom_buf_x){ match++; }
|
|
7f2: ce 01 movw r24, r28
|
|
7f4: 63 e5 ldi r22, 0x53 ; 83
|
|
7f6: 70 e0 ldi r23, 0x00 ; 0
|
|
7f8: 0e 94 ce 05 call 0xb9c ; 0xb9c <__eerd_word>
|
|
7fc: 8e 15 cp r24, r14
|
|
7fe: 9f 05 cpc r25, r15
|
|
800: 09 f4 brne .+2 ; 0x804 <load_values_from_eeprom+0xd6>
|
|
802: b3 94 inc r11
|
|
804: 22 96 adiw r28, 0x02 ; 2
|
|
11 copies of each variable are read and if more than 50% + 1 values are the same and within limits
|
|
this value is taken to be valid.
|
|
If not all 11 values are the same then the array is written again with this 50% +1 value.
|
|
*/
|
|
void load_values_from_eeprom(void)
|
|
{
|
|
806: 9a e2 ldi r25, 0x2A ; 42
|
|
808: 69 2e mov r6, r25
|
|
80a: 90 e0 ldi r25, 0x00 ; 0
|
|
80c: 79 2e mov r7, r25
|
|
|
|
for(x=0; x < match_upper_limit; x++)
|
|
{
|
|
match = 0;
|
|
eeprom_buf_x = eeprom_read_word(&ppm_off_threshold_e[x]);
|
|
for(y=0; y < match_upper_limit; y++)
|
|
80e: 8c 16 cp r8, r28
|
|
810: 9d 06 cpc r9, r29
|
|
812: 79 f7 brne .-34 ; 0x7f2 <load_values_from_eeprom+0xc4>
|
|
eeprom_buf_y = eeprom_read_word(&ppm_off_threshold_e[y]);
|
|
if(eeprom_buf_y == eeprom_buf_x){ match++; }
|
|
}
|
|
// If 50% +1 or more integer values in the array are the same a match has been found.
|
|
// Now test them to see if they are within limits.
|
|
if(match >= match_lower_limit )
|
|
814: 25 e0 ldi r18, 0x05 ; 5
|
|
816: 2b 15 cp r18, r11
|
|
818: 90 f5 brcc .+100 ; 0x87e <load_values_from_eeprom+0x150>
|
|
{
|
|
if( (eeprom_buf_x >= RC_PPM_OFF_UPPER_WINDOW_VAL) && (eeprom_buf_x <= RC_SERVO_MAX_PW_VAL) )
|
|
81a: c7 01 movw r24, r14
|
|
81c: 84 5a subi r24, 0xA4 ; 164
|
|
81e: 96 40 sbci r25, 0x06 ; 6
|
|
820: 85 5f subi r24, 0xF5 ; 245
|
|
822: 91 40 sbci r25, 0x01 ; 1
|
|
824: 98 f4 brcc .+38 ; 0x84c <load_values_from_eeprom+0x11e>
|
|
{
|
|
ppm_off_threshold = eeprom_buf_x; //Load the stored value to throttle_thershold.
|
|
826: f0 92 11 01 sts 0x0111, r15
|
|
82a: e0 92 10 01 sts 0x0110, r14
|
|
if(match < match_upper_limit)
|
|
82e: 8a e0 ldi r24, 0x0A ; 10
|
|
830: 8b 15 cp r24, r11
|
|
832: 78 f1 brcs .+94 ; 0x892 <load_values_from_eeprom+0x164>
|
|
Write a word \a __value to EEPROM address \a __p.
|
|
*/
|
|
static __inline__ void eeprom_write_word (uint16_t *__p, uint16_t __value)
|
|
{
|
|
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
|
|
__eewr_word (__p, __value, eeprom_write_byte);
|
|
834: c8 01 movw r24, r16
|
|
836: b7 01 movw r22, r14
|
|
838: 4b e5 ldi r20, 0x5B ; 91
|
|
83a: 50 e0 ldi r21, 0x00 ; 0
|
|
83c: 0e 94 e4 05 call 0xbc8 ; 0xbc8 <__eewr_word>
|
|
840: 0e 5f subi r16, 0xFE ; 254
|
|
842: 1f 4f sbci r17, 0xFF ; 255
|
|
{
|
|
for(x=0; x < match_upper_limit; x++){ eeprom_write_word(&ppm_off_threshold_e[x], eeprom_buf_x); }
|
|
844: 60 16 cp r6, r16
|
|
846: 71 06 cpc r7, r17
|
|
848: a9 f7 brne .-22 ; 0x834 <load_values_from_eeprom+0x106>
|
|
84a: 23 c0 rjmp .+70 ; 0x892 <load_values_from_eeprom+0x164>
|
|
}
|
|
|
|
}else if( (eeprom_buf_x <= RC_PPM_OFF_LOWER_WINDOW_VAL) && (eeprom_buf_x >= RC_SERVO_MIN_PW_VAL) )
|
|
84c: c7 01 movw r24, r14
|
|
84e: 80 52 subi r24, 0x20 ; 32
|
|
850: 93 40 sbci r25, 0x03 ; 3
|
|
852: 85 5f subi r24, 0xF5 ; 245
|
|
854: 91 40 sbci r25, 0x01 ; 1
|
|
856: d8 f4 brcc .+54 ; 0x88e <load_values_from_eeprom+0x160>
|
|
{
|
|
ppm_off_threshold = eeprom_buf_x; //Load the stored value to throttle_thershold.
|
|
858: f0 92 11 01 sts 0x0111, r15
|
|
85c: e0 92 10 01 sts 0x0110, r14
|
|
if(match < match_upper_limit)
|
|
860: 8a e0 ldi r24, 0x0A ; 10
|
|
862: 8b 15 cp r24, r11
|
|
864: b0 f0 brcs .+44 ; 0x892 <load_values_from_eeprom+0x164>
|
|
866: c8 01 movw r24, r16
|
|
868: b7 01 movw r22, r14
|
|
86a: 4b e5 ldi r20, 0x5B ; 91
|
|
86c: 50 e0 ldi r21, 0x00 ; 0
|
|
86e: 0e 94 e4 05 call 0xbc8 ; 0xbc8 <__eewr_word>
|
|
872: 0e 5f subi r16, 0xFE ; 254
|
|
874: 1f 4f sbci r17, 0xFF ; 255
|
|
{
|
|
for(x=0; x < match_upper_limit; x++){ eeprom_write_word(&ppm_off_threshold_e[x], eeprom_buf_x); }
|
|
876: 60 16 cp r6, r16
|
|
878: 71 06 cpc r7, r17
|
|
87a: a9 f7 brne .-22 ; 0x866 <load_values_from_eeprom+0x138>
|
|
87c: 0a c0 rjmp .+20 ; 0x892 <load_values_from_eeprom+0x164>
|
|
87e: 82 e0 ldi r24, 0x02 ; 2
|
|
880: 90 e0 ldi r25, 0x00 ; 0
|
|
882: c8 0e add r12, r24
|
|
884: d9 1e adc r13, r25
|
|
/* NOW READ THE CHANNEL'S PULSE WIDTH SO IT CAN BE USED AS A TRIGGER */
|
|
/****************************************************************************************************/
|
|
match_upper_limit = (sizeof(ppm_off_threshold_e)/sizeof(int));
|
|
match_lower_limit = (((sizeof(ppm_off_threshold_e)/sizeof(int))/2)+1);
|
|
|
|
for(x=0; x < match_upper_limit; x++)
|
|
886: 8c 14 cp r8, r12
|
|
888: 9d 04 cpc r9, r13
|
|
88a: 09 f0 breq .+2 ; 0x88e <load_values_from_eeprom+0x160>
|
|
88c: a9 cf rjmp .-174 ; 0x7e0 <load_values_from_eeprom+0xb2>
|
|
}else{ match = 0; }
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( match < match_lower_limit ){ write_default_values_to_eeprom(); return; }
|
|
88e: 0e 94 65 02 call 0x4ca ; 0x4ca <write_default_values_to_eeprom>
|
|
|
|
|
|
return;
|
|
}
|
|
892: df 91 pop r29
|
|
894: cf 91 pop r28
|
|
896: 1f 91 pop r17
|
|
898: 0f 91 pop r16
|
|
89a: ff 90 pop r15
|
|
89c: ef 90 pop r14
|
|
89e: df 90 pop r13
|
|
8a0: cf 90 pop r12
|
|
8a2: bf 90 pop r11
|
|
8a4: 9f 90 pop r9
|
|
8a6: 8f 90 pop r8
|
|
8a8: 7f 90 pop r7
|
|
8aa: 6f 90 pop r6
|
|
8ac: 08 95 ret
|
|
|
|
000008ae <main>:
|
|
|
|
/********************************************************************************************************/
|
|
/* MAIN FUNCTION */
|
|
/********************************************************************************************************/
|
|
__attribute__((noreturn)) void main(void)
|
|
{
|
|
8ae: df 93 push r29
|
|
8b0: cf 93 push r28
|
|
8b2: cd b7 in r28, 0x3d ; 61
|
|
8b4: de b7 in r29, 0x3e ; 62
|
|
8b6: 60 97 sbiw r28, 0x10 ; 16
|
|
8b8: 0f b6 in r0, 0x3f ; 63
|
|
8ba: f8 94 cli
|
|
8bc: de bf out 0x3e, r29 ; 62
|
|
8be: 0f be out 0x3f, r0 ; 63
|
|
8c0: cd bf out 0x3d, r28 ; 61
|
|
unsigned char tx_signal_detected = 0;
|
|
unsigned char servo_signals_lost = 0;
|
|
unsigned char led_frequency = 0;
|
|
unsigned char led_counter = 0;
|
|
|
|
wdt_disable();
|
|
8c2: 88 e1 ldi r24, 0x18 ; 24
|
|
8c4: 0f b6 in r0, 0x3f ; 63
|
|
8c6: f8 94 cli
|
|
8c8: 80 93 60 00 sts 0x0060, r24
|
|
8cc: 10 92 60 00 sts 0x0060, r1
|
|
8d0: 0f be out 0x3f, r0 ; 63
|
|
wdt_enable(WDTO_120MS);
|
|
8d2: 2b e0 ldi r18, 0x0B ; 11
|
|
8d4: 88 e1 ldi r24, 0x18 ; 24
|
|
8d6: 90 e0 ldi r25, 0x00 ; 0
|
|
8d8: 0f b6 in r0, 0x3f ; 63
|
|
8da: f8 94 cli
|
|
8dc: a8 95 wdr
|
|
8de: 80 93 60 00 sts 0x0060, r24
|
|
8e2: 0f be out 0x3f, r0 ; 63
|
|
8e4: 20 93 60 00 sts 0x0060, r18
|
|
wdt_reset();
|
|
8e8: a8 95 wdr
|
|
|
|
initialize_mcu();
|
|
8ea: 0e 94 68 00 call 0xd0 ; 0xd0 <initialize_mcu>
|
|
/*Load the values stored in the eeprom like the throttle channel threshold etc. */
|
|
load_values_from_eeprom();
|
|
8ee: 0e 94 97 03 call 0x72e ; 0x72e <load_values_from_eeprom>
|
|
/*77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777*/
|
|
/*88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888*/
|
|
|
|
void load_failsafe_values(void)
|
|
{
|
|
wdt_reset();
|
|
8f2: a8 95 wdr
|
|
isr_channel_pw[0] = RC_FS_CH_1_TIMER_VAL;
|
|
8f4: 2c ed ldi r18, 0xDC ; 220
|
|
8f6: 35 e0 ldi r19, 0x05 ; 5
|
|
8f8: 30 93 1f 01 sts 0x011F, r19
|
|
8fc: 20 93 1e 01 sts 0x011E, r18
|
|
#if RC_PPM_GEN_CHANNELS >= 2
|
|
isr_channel_pw[1] = RC_FS_CH_2_TIMER_VAL;
|
|
900: 30 93 21 01 sts 0x0121, r19
|
|
904: 20 93 20 01 sts 0x0120, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 3
|
|
isr_channel_pw[2] = RC_FS_CH_3_TIMER_VAL;
|
|
908: 88 ee ldi r24, 0xE8 ; 232
|
|
90a: 93 e0 ldi r25, 0x03 ; 3
|
|
90c: 90 93 23 01 sts 0x0123, r25
|
|
910: 80 93 22 01 sts 0x0122, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 4
|
|
isr_channel_pw[3] = RC_FS_CH_4_TIMER_VAL;
|
|
914: 30 93 25 01 sts 0x0125, r19
|
|
918: 20 93 24 01 sts 0x0124, r18
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 5
|
|
isr_channel_pw[4] = RC_FS_CH_5_TIMER_VAL;
|
|
91c: 90 93 27 01 sts 0x0127, r25
|
|
920: 80 93 26 01 sts 0x0126, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 6
|
|
isr_channel_pw[5] = RC_FS_CH_6_TIMER_VAL;
|
|
924: 90 93 29 01 sts 0x0129, r25
|
|
928: 80 93 28 01 sts 0x0128, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 7
|
|
isr_channel_pw[6] = RC_FS_CH_7_TIMER_VAL;
|
|
92c: 90 93 2b 01 sts 0x012B, r25
|
|
930: 80 93 2a 01 sts 0x012A, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 8
|
|
isr_channel_pw[7] = RC_FS_CH_8_TIMER_VAL;
|
|
934: 90 93 2d 01 sts 0x012D, r25
|
|
938: 80 93 2c 01 sts 0x012C, r24
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 9
|
|
isr_channel_pw[8] = RC_FS_CH_8_TIMER_VAL;
|
|
#endif
|
|
isr_channel_pw[RC_PPM_GEN_CHANNELS] = RC_RESET_PW_TIMER_VAL;
|
|
93c: 8c ee ldi r24, 0xEC ; 236
|
|
93e: 9c e2 ldi r25, 0x2C ; 44
|
|
940: 90 93 2f 01 sts 0x012F, r25
|
|
944: 80 93 2e 01 sts 0x012E, r24
|
|
load_failsafe_values();
|
|
/*
|
|
The "wait_for_rx(): function waits untill the receiver has been powered up and running
|
|
so we can then detect the connected channels with certainty.
|
|
*/
|
|
wait_for_rx();
|
|
948: 0e 94 7f 01 call 0x2fe ; 0x2fe <wait_for_rx>
|
|
channels_in_use = detect_connected_channels();
|
|
94c: 0e 94 eb 00 call 0x1d6 ; 0x1d6 <detect_connected_channels>
|
|
950: 80 93 18 01 sts 0x0118, r24
|
|
check_for_setup_mode();
|
|
954: 0e 94 94 02 call 0x528 ; 0x528 <check_for_setup_mode>
|
|
led_frequency = RC_LED_FREQUENCY_VAL_1HZ; //load the defined led frequency.
|
|
|
|
/**************************** SETUP THE PIN INTERRUPT *************************************************/
|
|
|
|
// Now we must disable the pin interrupt.
|
|
RC_PIN_INT_EN_REG &= (~(1<<RC_PIN_INT_EN_BIT));
|
|
958: 80 91 68 00 lds r24, 0x0068
|
|
95c: 8b 7f andi r24, 0xFB ; 251
|
|
95e: 80 93 68 00 sts 0x0068, r24
|
|
//Now we must load the pin interrupt mask register.
|
|
RC_PIN_INT_MASK_REG = channel_mask;
|
|
962: 70 90 19 01 lds r7, 0x0119
|
|
966: 70 92 6d 00 sts 0x006D, r7
|
|
//Clear any pin interrupt flag set.
|
|
RC_PIN_INT_FLAG_REG |= (1<<RC_PIN_INT_FLAG_BIT);
|
|
96a: da 9a sbi 0x1b, 2 ; 27
|
|
// Clear the pin interrupt ISR detection variable
|
|
pin_interrupt_detected = 0;
|
|
96c: 10 92 14 01 sts 0x0114, r1
|
|
// Finally we can enable the pin interrupt again.
|
|
RC_PIN_INT_EN_REG |= (1<<RC_PIN_INT_EN_BIT);
|
|
970: 80 91 68 00 lds r24, 0x0068
|
|
974: 84 60 ori r24, 0x04 ; 4
|
|
976: 80 93 68 00 sts 0x0068, r24
|
|
// Set and start timer1
|
|
RESET_START_TIMER0();
|
|
97a: 15 bc out 0x25, r1 ; 37
|
|
97c: a8 9a sbi 0x15, 0 ; 21
|
|
97e: 16 bc out 0x26, r1 ; 38
|
|
980: 10 92 1d 01 sts 0x011D, r1
|
|
984: 82 e0 ldi r24, 0x02 ; 2
|
|
986: 85 bd out 0x25, r24 ; 37
|
|
// Take a snapshot of the servo pins in order to establish a starting point.
|
|
pin_reg_buffer1 = (RC_SERVO_PORT_PIN_REG & channel_mask);
|
|
988: 29 b1 in r18, 0x09 ; 9
|
|
98a: 27 21 and r18, r7
|
|
RESET_START_TIMER0();
|
|
98c: 15 bc out 0x25, r1 ; 37
|
|
98e: a8 9a sbi 0x15, 0 ; 21
|
|
990: 16 bc out 0x26, r1 ; 38
|
|
992: 10 92 1d 01 sts 0x011D, r1
|
|
996: 85 bd out 0x25, r24 ; 37
|
|
channel_mask_buffer &= (~y);
|
|
timer0_buffer = isr_timer0_16 - pw_of_channel[x];
|
|
if( (timer0_buffer > RC_SERVO_MIN_PW_VAL) && (timer0_buffer < RC_SERVO_MAX_PW_VAL) )
|
|
{
|
|
#if defined(RC_LOST_CHANNEL) && RC_LOST_CHANNEL > 0
|
|
if(x == rc_lost_channel)
|
|
998: 20 90 12 01 lds r2, 0x0112
|
|
{
|
|
if(ppm_off_threshold > RC_SERVO_CENTER_PW_VAL)
|
|
99c: e0 90 10 01 lds r14, 0x0110
|
|
9a0: f0 90 11 01 lds r15, 0x0111
|
|
9a4: 66 24 eor r6, r6
|
|
9a6: cc 24 eor r12, r12
|
|
9a8: bb 24 eor r11, r11
|
|
9aa: dd 24 eor r13, r13
|
|
9ac: d3 94 inc r13
|
|
9ae: 40 e1 ldi r20, 0x10 ; 16
|
|
9b0: a4 2e mov r10, r20
|
|
9b2: 00 e0 ldi r16, 0x00 ; 0
|
|
/*88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888*/
|
|
|
|
void load_failsafe_values(void)
|
|
{
|
|
wdt_reset();
|
|
isr_channel_pw[0] = RC_FS_CH_1_TIMER_VAL;
|
|
9b4: 3c ed ldi r19, 0xDC ; 220
|
|
9b6: 43 2e mov r4, r19
|
|
9b8: 35 e0 ldi r19, 0x05 ; 5
|
|
9ba: 53 2e mov r5, r19
|
|
#if RC_PPM_GEN_CHANNELS >= 2
|
|
isr_channel_pw[1] = RC_FS_CH_2_TIMER_VAL;
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 3
|
|
isr_channel_pw[2] = RC_FS_CH_3_TIMER_VAL;
|
|
9bc: 98 ee ldi r25, 0xE8 ; 232
|
|
9be: 89 2e mov r8, r25
|
|
9c0: 93 e0 ldi r25, 0x03 ; 3
|
|
9c2: 99 2e mov r9, r25
|
|
pin_reg_buffer1 = (RC_SERVO_PORT_PIN_REG & channel_mask);
|
|
RESET_START_TIMER0();
|
|
//Main endless loop.
|
|
while(1)
|
|
{
|
|
wdt_reset();
|
|
9c4: a8 95 wdr
|
|
channel_mask_buffer = channel_mask;
|
|
RESET_TIMER0();
|
|
9c6: a8 9a sbi 0x15, 0 ; 21
|
|
9c8: 16 bc out 0x26, r1 ; 38
|
|
9ca: 10 92 1d 01 sts 0x011D, r1
|
|
9ce: 17 2d mov r17, r7
|
|
9d0: 5b c0 rjmp .+182 ; 0xa88 <__stack+0x189>
|
|
while(channel_mask_buffer)
|
|
{
|
|
/* Wait until a pin change state. */
|
|
do{
|
|
if( timer0.timer0[1] >= RC_MAX_TIMEOUT_VAL )
|
|
9d2: 80 91 1d 01 lds r24, 0x011D
|
|
9d6: 86 37 cpi r24, 0x76 ; 118
|
|
9d8: 08 f0 brcs .+2 ; 0x9dc <__stack+0xdd>
|
|
9da: 5c c0 rjmp .+184 ; 0xa94 <__stack+0x195>
|
|
{
|
|
goto PPM_CONTROL;
|
|
}
|
|
|
|
}while( pin_interrupt_detected == 0 );
|
|
9dc: 80 91 14 01 lds r24, 0x0114
|
|
9e0: 88 23 and r24, r24
|
|
9e2: b9 f3 breq .-18 ; 0x9d2 <__stack+0xd3>
|
|
x=0;
|
|
y=1;
|
|
//Only pins that changed their state will be tested for a high or low level
|
|
pin_reg_buffer0 = (RC_SERVO_PORT_PIN_REG & channel_mask_buffer);
|
|
9e4: 79 b1 in r23, 0x09 ; 9
|
|
9e6: 71 23 and r23, r17
|
|
pin_interrupt_detected = 0;
|
|
9e8: 10 92 14 01 sts 0x0114, r1
|
|
channels_to_check = pin_reg_buffer1 ^ pin_reg_buffer0;
|
|
9ec: 37 2e mov r3, r23
|
|
9ee: 32 26 eor r3, r18
|
|
9f0: de 01 movw r26, r28
|
|
9f2: 11 96 adiw r26, 0x01 ; 1
|
|
9f4: 61 e0 ldi r22, 0x01 ; 1
|
|
9f6: 40 e0 ldi r20, 0x00 ; 0
|
|
9f8: 50 e0 ldi r21, 0x00 ; 0
|
|
pin_reg_buffer1 = pin_reg_buffer0;
|
|
while(x<RC_SERVO_INPUT_CHANNELS)
|
|
{
|
|
if(channels_to_check & y)
|
|
9fa: 86 2f mov r24, r22
|
|
9fc: 83 21 and r24, r3
|
|
9fe: 09 f4 brne .+2 ; 0xa02 <__stack+0x103>
|
|
a00: 3a c0 rjmp .+116 ; 0xa76 <__stack+0x177>
|
|
{
|
|
if( (pin_reg_buffer0 & y) ) /* if the pin is high then... */
|
|
a02: 86 2f mov r24, r22
|
|
a04: 87 23 and r24, r23
|
|
a06: 49 f0 breq .+18 ; 0xa1a <__stack+0x11b>
|
|
{
|
|
pw_of_channel[x] = isr_timer0_16;
|
|
a08: 80 91 16 01 lds r24, 0x0116
|
|
a0c: 90 91 17 01 lds r25, 0x0117
|
|
a10: 11 96 adiw r26, 0x01 ; 1
|
|
a12: 9c 93 st X, r25
|
|
a14: 8e 93 st -X, r24
|
|
channel_status |= y; /* signal that this channel got it's timer stamp. */
|
|
a16: 66 2a or r6, r22
|
|
a18: 2e c0 rjmp .+92 ; 0xa76 <__stack+0x177>
|
|
|
|
}else{
|
|
if( channel_status & y )
|
|
a1a: 86 2d mov r24, r6
|
|
a1c: 86 23 and r24, r22
|
|
a1e: 59 f1 breq .+86 ; 0xa76 <__stack+0x177>
|
|
{
|
|
channel_mask_buffer &= (~y);
|
|
a20: 86 2f mov r24, r22
|
|
a22: 80 95 com r24
|
|
a24: 18 23 and r17, r24
|
|
timer0_buffer = isr_timer0_16 - pw_of_channel[x];
|
|
a26: 20 91 16 01 lds r18, 0x0116
|
|
a2a: 30 91 17 01 lds r19, 0x0117
|
|
a2e: 8d 91 ld r24, X+
|
|
a30: 9c 91 ld r25, X
|
|
a32: 11 97 sbiw r26, 0x01 ; 1
|
|
a34: 28 1b sub r18, r24
|
|
a36: 39 0b sbc r19, r25
|
|
if( (timer0_buffer > RC_SERVO_MIN_PW_VAL) && (timer0_buffer < RC_SERVO_MAX_PW_VAL) )
|
|
a38: c9 01 movw r24, r18
|
|
a3a: 81 52 subi r24, 0x21 ; 33
|
|
a3c: 93 40 sbci r25, 0x03 ; 3
|
|
a3e: 87 57 subi r24, 0x77 ; 119
|
|
a40: 95 40 sbci r25, 0x05 ; 5
|
|
a42: c8 f4 brcc .+50 ; 0xa76 <__stack+0x177>
|
|
{
|
|
#if defined(RC_LOST_CHANNEL) && RC_LOST_CHANNEL > 0
|
|
if(x == rc_lost_channel)
|
|
a44: 24 16 cp r2, r20
|
|
a46: 61 f4 brne .+24 ; 0xa60 <__stack+0x161>
|
|
{
|
|
if(ppm_off_threshold > RC_SERVO_CENTER_PW_VAL)
|
|
a48: 8d ed ldi r24, 0xDD ; 221
|
|
a4a: e8 16 cp r14, r24
|
|
a4c: 85 e0 ldi r24, 0x05 ; 5
|
|
a4e: f8 06 cpc r15, r24
|
|
a50: 20 f0 brcs .+8 ; 0xa5a <__stack+0x15b>
|
|
{
|
|
if(timer0_buffer >= ppm_off_threshold)
|
|
a52: 2e 15 cp r18, r14
|
|
a54: 3f 05 cpc r19, r15
|
|
a56: 20 f0 brcs .+8 ; 0xa60 <__stack+0x161>
|
|
a58: 1b c0 rjmp .+54 ; 0xa90 <__stack+0x191>
|
|
channel_mask_buffer = 0xFF;
|
|
goto PPM_CONTROL;
|
|
}
|
|
|
|
}else{
|
|
if(timer0_buffer <= ppm_off_threshold)
|
|
a5a: e2 16 cp r14, r18
|
|
a5c: f3 06 cpc r15, r19
|
|
a5e: c0 f4 brcc .+48 ; 0xa90 <__stack+0x191>
|
|
goto PPM_CONTROL;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if(servo_signals_lost == 0)
|
|
a60: dd 20 and r13, r13
|
|
a62: 49 f4 brne .+18 ; 0xa76 <__stack+0x177>
|
|
{
|
|
asm("cli"); //Atomic operation needed here.
|
|
a64: f8 94 cli
|
|
isr_channel_pw[x] = timer0_buffer;
|
|
a66: fa 01 movw r30, r20
|
|
a68: ee 0f add r30, r30
|
|
a6a: ff 1f adc r31, r31
|
|
a6c: e2 5e subi r30, 0xE2 ; 226
|
|
a6e: fe 4f sbci r31, 0xFE ; 254
|
|
a70: 31 83 std Z+1, r19 ; 0x01
|
|
a72: 20 83 st Z, r18
|
|
asm("sei");
|
|
a74: 78 94 sei
|
|
a76: 4f 5f subi r20, 0xFF ; 255
|
|
a78: 5f 4f sbci r21, 0xFF ; 255
|
|
a7a: 12 96 adiw r26, 0x02 ; 2
|
|
a7c: 27 2f mov r18, r23
|
|
//Only pins that changed their state will be tested for a high or low level
|
|
pin_reg_buffer0 = (RC_SERVO_PORT_PIN_REG & channel_mask_buffer);
|
|
pin_interrupt_detected = 0;
|
|
channels_to_check = pin_reg_buffer1 ^ pin_reg_buffer0;
|
|
pin_reg_buffer1 = pin_reg_buffer0;
|
|
while(x<RC_SERVO_INPUT_CHANNELS)
|
|
a7e: 48 30 cpi r20, 0x08 ; 8
|
|
a80: 51 05 cpc r21, r1
|
|
a82: 11 f0 breq .+4 ; 0xa88 <__stack+0x189>
|
|
} // End of "if( channel_status & y )" statement.
|
|
|
|
} // End of "if( (pin_reg_buffer0 & y) )...else..." statement
|
|
} // End of "if(channels_to_check & y)" statement.
|
|
x++;
|
|
y=(y<<1);
|
|
a84: 66 0f add r22, r22
|
|
a86: b9 cf rjmp .-142 ; 0x9fa <__stack+0xfb>
|
|
while(1)
|
|
{
|
|
wdt_reset();
|
|
channel_mask_buffer = channel_mask;
|
|
RESET_TIMER0();
|
|
while(channel_mask_buffer)
|
|
a88: 11 23 and r17, r17
|
|
a8a: 09 f0 breq .+2 ; 0xa8e <__stack+0x18f>
|
|
a8c: a2 cf rjmp .-188 ; 0x9d2 <__stack+0xd3>
|
|
a8e: 02 c0 rjmp .+4 ; 0xa94 <__stack+0x195>
|
|
x++;
|
|
y=(y<<1);
|
|
}
|
|
|
|
} // End of "while(channel_mask_buffer)" loop.
|
|
PPM_CONTROL:
|
|
a90: 27 2f mov r18, r23
|
|
a92: 1f ef ldi r17, 0xFF ; 255
|
|
|
|
led_counter++;
|
|
a94: 0f 5f subi r16, 0xFF ; 255
|
|
if( led_counter >= led_frequency ){ led_counter = 0; TOGGLE_LED(); }
|
|
a96: 0a 15 cp r16, r10
|
|
a98: 28 f0 brcs .+10 ; 0xaa4 <__stack+0x1a5>
|
|
a9a: 85 b1 in r24, 0x05 ; 5
|
|
a9c: 91 e0 ldi r25, 0x01 ; 1
|
|
a9e: 89 27 eor r24, r25
|
|
aa0: 85 b9 out 0x05, r24 ; 5
|
|
aa2: 00 e0 ldi r16, 0x00 ; 0
|
|
|
|
//We need 'RC_MAX_BAD_PPM_FRAMES" consecutive readings in order to change the PPM generator's status.
|
|
if( channel_mask_buffer == 0 ) //IF ALL CHANNELS HAVE BEEN MEASURED...
|
|
aa4: 11 23 and r17, r17
|
|
aa6: 79 f5 brne .+94 ; 0xb06 <__stack+0x207>
|
|
{
|
|
tx_signal_lost = 0;
|
|
if(servo_signals_lost == 1) //IF PREVIOUSLY THE SERVO SIGNAL WAS LOST...
|
|
aa8: e1 e0 ldi r30, 0x01 ; 1
|
|
aaa: de 16 cp r13, r30
|
|
aac: 09 f0 breq .+2 ; 0xab0 <__stack+0x1b1>
|
|
aae: 61 c0 rjmp .+194 ; 0xb72 <__stack+0x273>
|
|
{
|
|
tx_signal_detected++;
|
|
ab0: b3 94 inc r11
|
|
if(tx_signal_detected > RC_MAX_BAD_PPM_FRAMES)
|
|
ab2: 34 e0 ldi r19, 0x04 ; 4
|
|
ab4: 3b 15 cp r19, r11
|
|
ab6: 08 f0 brcs .+2 ; 0xaba <__stack+0x1bb>
|
|
ab8: 5c c0 rjmp .+184 ; 0xb72 <__stack+0x273>
|
|
|
|
|
|
static inline void ppm_on(void)
|
|
{
|
|
|
|
RC_TIMER1_PRESCALER_REG &= (~(TIMER1_PRESCALER_BITS));
|
|
aba: 80 91 81 00 lds r24, 0x0081
|
|
abe: 8d 7f andi r24, 0xFD ; 253
|
|
ac0: 80 93 81 00 sts 0x0081, r24
|
|
TCNT1 = 0;
|
|
ac4: 10 92 85 00 sts 0x0085, r1
|
|
ac8: 10 92 84 00 sts 0x0084, r1
|
|
isr_channel_number = RC_PPM_GEN_CHANNELS;
|
|
acc: 88 e0 ldi r24, 0x08 ; 8
|
|
ace: 80 93 15 01 sts 0x0115, r24
|
|
RC_TIMER1_COMP1_REG = RC_RESET_PW_TIMER_VAL;
|
|
ad2: 8c ee ldi r24, 0xEC ; 236
|
|
ad4: 9c e2 ldi r25, 0x2C ; 44
|
|
ad6: 90 93 89 00 sts 0x0089, r25
|
|
ada: 80 93 88 00 sts 0x0088, r24
|
|
RC_TIMER1_COMP2_REG = RC_PPM_SYNC_PW_VAL;
|
|
ade: 8c e2 ldi r24, 0x2C ; 44
|
|
ae0: 91 e0 ldi r25, 0x01 ; 1
|
|
ae2: 90 93 8b 00 sts 0x008B, r25
|
|
ae6: 80 93 8a 00 sts 0x008A, r24
|
|
RC_TIMER1_TIFR |= ( (1<<OCIE1B)|(1<<TOIE1) );
|
|
aea: 86 b3 in r24, 0x16 ; 22
|
|
aec: 85 60 ori r24, 0x05 ; 5
|
|
aee: 86 bb out 0x16, r24 ; 22
|
|
RC_TIMER1_PRESCALER_REG |= TIMER1_PRESCALER_BITS;
|
|
af0: 80 91 81 00 lds r24, 0x0081
|
|
af4: 82 60 ori r24, 0x02 ; 2
|
|
af6: 80 93 81 00 sts 0x0081, r24
|
|
tx_signal_detected++;
|
|
if(tx_signal_detected > RC_MAX_BAD_PPM_FRAMES)
|
|
{
|
|
ppm_on();
|
|
servo_signals_lost = 0;
|
|
LED_ON();
|
|
afa: 28 9a sbi 0x05, 0 ; 5
|
|
afc: cc 24 eor r12, r12
|
|
afe: dd 24 eor r13, r13
|
|
b00: 44 e0 ldi r20, 0x04 ; 4
|
|
b02: a4 2e mov r10, r20
|
|
b04: 34 c0 rjmp .+104 ; 0xb6e <__stack+0x26f>
|
|
led_frequency = RC_LED_FREQUENCY_VAL;
|
|
}
|
|
}
|
|
}
|
|
else{ //IF NOT ALL CHANNELS HAVE BEEN MEASURED...
|
|
pin_reg_buffer1 = (RC_SERVO_PORT_PIN_REG & channel_mask);
|
|
b06: 29 b1 in r18, 0x09 ; 9
|
|
b08: 27 21 and r18, r7
|
|
tx_signal_detected = 0;
|
|
if(servo_signals_lost == 0)
|
|
b0a: dd 20 and r13, r13
|
|
b0c: a1 f5 brne .+104 ; 0xb76 <__stack+0x277>
|
|
{
|
|
tx_signal_lost++;
|
|
b0e: c3 94 inc r12
|
|
if(tx_signal_lost > RC_MAX_BAD_PPM_FRAMES)
|
|
b10: 94 e0 ldi r25, 0x04 ; 4
|
|
b12: 9c 15 cp r25, r12
|
|
b14: 80 f5 brcc .+96 ; 0xb76 <__stack+0x277>
|
|
/*77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777*/
|
|
/*88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888*/
|
|
|
|
void load_failsafe_values(void)
|
|
{
|
|
wdt_reset();
|
|
b16: a8 95 wdr
|
|
isr_channel_pw[0] = RC_FS_CH_1_TIMER_VAL;
|
|
b18: 50 92 1f 01 sts 0x011F, r5
|
|
b1c: 40 92 1e 01 sts 0x011E, r4
|
|
#if RC_PPM_GEN_CHANNELS >= 2
|
|
isr_channel_pw[1] = RC_FS_CH_2_TIMER_VAL;
|
|
b20: 50 92 21 01 sts 0x0121, r5
|
|
b24: 40 92 20 01 sts 0x0120, r4
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 3
|
|
isr_channel_pw[2] = RC_FS_CH_3_TIMER_VAL;
|
|
b28: 90 92 23 01 sts 0x0123, r9
|
|
b2c: 80 92 22 01 sts 0x0122, r8
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 4
|
|
isr_channel_pw[3] = RC_FS_CH_4_TIMER_VAL;
|
|
b30: 50 92 25 01 sts 0x0125, r5
|
|
b34: 40 92 24 01 sts 0x0124, r4
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 5
|
|
isr_channel_pw[4] = RC_FS_CH_5_TIMER_VAL;
|
|
b38: 90 92 27 01 sts 0x0127, r9
|
|
b3c: 80 92 26 01 sts 0x0126, r8
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 6
|
|
isr_channel_pw[5] = RC_FS_CH_6_TIMER_VAL;
|
|
b40: 90 92 29 01 sts 0x0129, r9
|
|
b44: 80 92 28 01 sts 0x0128, r8
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 7
|
|
isr_channel_pw[6] = RC_FS_CH_7_TIMER_VAL;
|
|
b48: 90 92 2b 01 sts 0x012B, r9
|
|
b4c: 80 92 2a 01 sts 0x012A, r8
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 8
|
|
isr_channel_pw[7] = RC_FS_CH_8_TIMER_VAL;
|
|
b50: 90 92 2d 01 sts 0x012D, r9
|
|
b54: 80 92 2c 01 sts 0x012C, r8
|
|
#endif
|
|
#if RC_PPM_GEN_CHANNELS >= 9
|
|
isr_channel_pw[8] = RC_FS_CH_8_TIMER_VAL;
|
|
#endif
|
|
isr_channel_pw[RC_PPM_GEN_CHANNELS] = RC_RESET_PW_TIMER_VAL;
|
|
b58: 8c ee ldi r24, 0xEC ; 236
|
|
b5a: 9c e2 ldi r25, 0x2C ; 44
|
|
b5c: 90 93 2f 01 sts 0x012F, r25
|
|
b60: 80 93 2e 01 sts 0x012E, r24
|
|
b64: bb 24 eor r11, r11
|
|
b66: dd 24 eor r13, r13
|
|
b68: d3 94 inc r13
|
|
b6a: 30 e1 ldi r19, 0x10 ; 16
|
|
b6c: a3 2e mov r10, r19
|
|
b6e: 00 e0 ldi r16, 0x00 ; 0
|
|
b70: 03 c0 rjmp .+6 ; 0xb78 <__stack+0x279>
|
|
b72: cc 24 eor r12, r12
|
|
b74: 01 c0 rjmp .+2 ; 0xb78 <__stack+0x279>
|
|
b76: bb 24 eor r11, r11
|
|
/*12121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212*/
|
|
|
|
|
|
void mux_control(void)
|
|
{
|
|
long PULSE_WIDTH = isr_channel_pw[RC_MUX_CHANNEL-1];
|
|
b78: 80 91 2c 01 lds r24, 0x012C
|
|
b7c: 90 91 2d 01 lds r25, 0x012D
|
|
|
|
#if RC_MUX_REVERSE == 0
|
|
|
|
if((PULSE_WIDTH>RC_MUX_MIN)&&(PULSE_WIDTH<RC_MUX_MAX))
|
|
b80: a0 e0 ldi r26, 0x00 ; 0
|
|
b82: b0 e0 ldi r27, 0x00 ; 0
|
|
b84: 01 97 sbiw r24, 0x01 ; 1
|
|
b86: a1 09 sbc r26, r1
|
|
b88: b1 09 sbc r27, r1
|
|
b8a: 81 5e subi r24, 0xE1 ; 225
|
|
b8c: 94 40 sbci r25, 0x04 ; 4
|
|
b8e: a0 40 sbci r26, 0x00 ; 0
|
|
b90: b0 40 sbci r27, 0x00 ; 0
|
|
b92: 10 f4 brcc .+4 ; 0xb98 <__stack+0x299>
|
|
{
|
|
MUX_ON();
|
|
b94: 29 9a sbi 0x05, 1 ; 5
|
|
b96: 16 cf rjmp .-468 ; 0x9c4 <__stack+0xc5>
|
|
}
|
|
else
|
|
{
|
|
MUX_OFF();
|
|
b98: 29 98 cbi 0x05, 1 ; 5
|
|
b9a: 14 cf rjmp .-472 ; 0x9c4 <__stack+0xc5>
|
|
|
|
00000b9c <__eerd_word>:
|
|
b9c: df 92 push r13
|
|
b9e: ef 92 push r14
|
|
ba0: ff 92 push r15
|
|
ba2: 0f 93 push r16
|
|
ba4: 1f 93 push r17
|
|
ba6: 7b 01 movw r14, r22
|
|
ba8: 8c 01 movw r16, r24
|
|
baa: fb 01 movw r30, r22
|
|
bac: 09 95 icall
|
|
bae: d8 2e mov r13, r24
|
|
bb0: c8 01 movw r24, r16
|
|
bb2: 01 96 adiw r24, 0x01 ; 1
|
|
bb4: f7 01 movw r30, r14
|
|
bb6: 09 95 icall
|
|
bb8: 98 2f mov r25, r24
|
|
bba: 8d 2d mov r24, r13
|
|
bbc: 1f 91 pop r17
|
|
bbe: 0f 91 pop r16
|
|
bc0: ff 90 pop r15
|
|
bc2: ef 90 pop r14
|
|
bc4: df 90 pop r13
|
|
bc6: 08 95 ret
|
|
|
|
00000bc8 <__eewr_word>:
|
|
bc8: df 92 push r13
|
|
bca: ef 92 push r14
|
|
bcc: ff 92 push r15
|
|
bce: 0f 93 push r16
|
|
bd0: 1f 93 push r17
|
|
bd2: d7 2e mov r13, r23
|
|
bd4: 7a 01 movw r14, r20
|
|
bd6: 8c 01 movw r16, r24
|
|
bd8: fa 01 movw r30, r20
|
|
bda: 09 95 icall
|
|
bdc: c8 01 movw r24, r16
|
|
bde: 01 96 adiw r24, 0x01 ; 1
|
|
be0: 6d 2d mov r22, r13
|
|
be2: f7 01 movw r30, r14
|
|
be4: 09 95 icall
|
|
be6: 1f 91 pop r17
|
|
be8: 0f 91 pop r16
|
|
bea: ff 90 pop r15
|
|
bec: ef 90 pop r14
|
|
bee: df 90 pop r13
|
|
bf0: 08 95 ret
|
|
|
|
00000bf2 <__udivmodhi4>:
|
|
bf2: aa 1b sub r26, r26
|
|
bf4: bb 1b sub r27, r27
|
|
bf6: 51 e1 ldi r21, 0x11 ; 17
|
|
bf8: 07 c0 rjmp .+14 ; 0xc08 <__udivmodhi4_ep>
|
|
|
|
00000bfa <__udivmodhi4_loop>:
|
|
bfa: aa 1f adc r26, r26
|
|
bfc: bb 1f adc r27, r27
|
|
bfe: a6 17 cp r26, r22
|
|
c00: b7 07 cpc r27, r23
|
|
c02: 10 f0 brcs .+4 ; 0xc08 <__udivmodhi4_ep>
|
|
c04: a6 1b sub r26, r22
|
|
c06: b7 0b sbc r27, r23
|
|
|
|
00000c08 <__udivmodhi4_ep>:
|
|
c08: 88 1f adc r24, r24
|
|
c0a: 99 1f adc r25, r25
|
|
c0c: 5a 95 dec r21
|
|
c0e: a9 f7 brne .-22 ; 0xbfa <__udivmodhi4_loop>
|
|
c10: 80 95 com r24
|
|
c12: 90 95 com r25
|
|
c14: bc 01 movw r22, r24
|
|
c16: cd 01 movw r24, r26
|
|
c18: 08 95 ret
|
|
|
|
00000c1a <_exit>:
|
|
c1a: f8 94 cli
|
|
|
|
00000c1c <__stop_program>:
|
|
c1c: ff cf rjmp .-2 ; 0xc1c <__stop_program>
|